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Abstract

The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of
a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong
forms of a-continuous mappings were introduced in 1988 and 1997. The authors extend
some of these forms to the L-fuzzy bitopological setting and construct various a-fuzzy
pairwise retracts. The concept of weakly induced spaces in the case L = [0,1] was
introduced by Martin (1980). Liu and Luo (1987) generalized this notion to the case
that L is an arbitrary F-lattice and introduced the notion of induced L-fts. Several
results are obtained, especially, for L-valued pairwise stratification spaces.
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§1. Introduction

Throughout this paper, (L,<,’) (for short L) is a fuzzy lattice, i.e., a completely
distributive complete lattice with an order-reversing involution ’ on it, and with a smallest
element 0 and a largest element 1 (0 # 1). An element a of L is called a prime element iff
a # 1 and whenever b,c € L with bAc < a then b < a or ¢ < a, the set of all prime elements
of L will be denoted by pr(L). a € L — {0} is said to be a molecule (see [15]) iff a < bV e
implies @ < b or a < ¢. The set of all molecules of L is denoted by M (L).

Let X be a non-empty set. LX denotes the collection of all mappings from X into
L. The elements of LX are called L-fuzzy sets on X. LX can be made into a fuzzy lattice
by inducing the order and involution from (L,<,’). For A € LX and a € L, we use the
notation A,y = {z € X | A(z) £ a} and suppA = {z € X | A(z) > 0}. suppA is called the
support of A. When suppA is a singleton, A is called an L-fuzzy point on X and denoted
by x, where z = suppA and a = A(z). We define M (LX) = {z, |z € X,a € M(L)}. It is
easy to check that M (LX) is just a set of all molecules of LX. We denote by ay (for short
a) an L-fuzzy set which takes the constant value ¢ € L on X.

An L-fuzzy topology on X is a subfamily § of L~ which contains 0 and 1 and is closed
under arbitrary suprema and finite infima (see [6]). The pair (L%, 6) is called an L-fuzzy
topological space (or L-fts, for short). The members of § are called L-fuzzy open sets and
the members of ¢’ are called L-fuzzy closed sets where §' = {A’ | A € §}.
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Obviously, in the case L = [0, 1], L-fuzzy topological space ([0,1]%,0) is just the fuzzy
topological space in the sense of Chang and is denoted by (X, ¢) (see [2]).

A € L¥ is called a crisp subset on X, if there exists an ordinary subset U C X such
that A = 1y : X — {0,1} C L, i.e. if A is a characteristic function of some ordinary
subset of X. For a family A C LX of L-fuzzy sets, denote the family of all the crisp subsets
contained in A by crs(.A), and denote [A] = {A C X : 14 € crs(A)}. It is clear that for every
L-fts (LX,6), (X,[d]) is a topological space and is called the background space of (LX,d)
(see [9]).

We say that the fuzzy point x, belongs to a fuzzy set U, ie., z, € U iff a < U(x),
and the set of all fuzzy points in LX is denoted by Pt(LX). A fuzzy point T, is said to be
quasi-coincident with a fuzzy set U € L* denoted by z,4U, if a £ U’(z). For U, V € LX, U
is quasi-coincident with V, denoted by U GV, if there exists x € X Such that Uz) £ V/(

If U is not quasi-coincident with V, we denote U—=GV (see [9]).

Let (LX,0) be an L-fts, A € LX, x)x € M(LX). zy is called an adherent point of A, if
for every U € Q (xy), U quasi-coincides with A, i.e., U A (see [9]).

Let (LX,6) be an L-fts, A C X, o € pr(L). Then A is called a-closed, iff for each
x € X — A, there exists U € 5 such that U(z) € a and U A 14 = 0 (see [5]).

An L-fuzzy mapping f~ : (LX,8) — (LY o), a € pr(L) is called a-continuous, (a-c
for short), if for each € X and each open set V of LY with V(f(z)) £ «, there exists an
open set U of L¥ Wlth U(z) & a such that f~(U) <V (see [5]).

Let (LX,6), (LY ) be L-fts’s, f~ : (LX,0) — (LY,0) an L-fuzzy mapping, o €
pr(L), f~ is called A—continuous, (A—c for short), if its L-fuzzy reverse mapping f* -
(LY ,0) — (L*,6) maps every a-closed (resp. a-open) in (LY,0) as an a-closed (resp.
a-open) one in (L, 4) (see [5]).

Let L be a complete lattice. The co-topology on L generated by the subbase {] a :
a € L} is called the lower co-topology of L and we denote it by §,(L). The correspondent
topology of €, (L) is called the lower topology of L and we denote it by ., (L) (€. for short)
(see [9]).

Let (X,7) be an ordinary topological space, L a complete lattice. A mapping f :
X — L is called lower semicontinuous, if f is continuous for the topology (2,.

Let (LX,8) be an L-fts. § is called stratified, if for every a € L, a € 6. (L, 6) is called
stratified, if § is stratified.

0 is called weakly induced, if every U € § is a lower semicontinuous mapping from the
background space (X, [6]) to L, (L, d) is called weakly induced, if § is weakly induced.

0 is called induced, if § is exactly the family of all the lower semicontinuous mappings
from the background space (X, [6]) to L. (LX,§) is called induced, if § is induced (see [10]).

An L-fts (L%, ) is called the stratification of (L, §) if u is generated by U{a : a € L}.

By an L-valued stratification space, we mean a stratified space or a weakly induced
space or an induced space.

The following results and definitions are fundamental for the next sections.
Lemma 1.1. (cf. [5]) Ifa € pr(L) and U = \/ UJ7 U(z) £ «, then 3 jo € J such
that U;, (z) £ o

Lemma 1.2. (cf. [ ) Ifaepr(L) andU € LY, V € LY such that (U xV)(z,y) £ «
then U(z) ¢ a and V(y) £ a.

Lemma 1.3. (cf. [5]) Let W be fuzzy open of L-fuzzy product space (LX*Y] 5 X )
such that W(z,y) £ o. Then there exist U € 6,V € « such that U(z) £ o and V(y) £ «
where o € pr(L)

Proof. By Lemmas 1.1 and 1.2.
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Proposition 1.1. (cf. [9]) Let (LX,5), (LY, u) be L-fts’s, f— : (LX,8) — (LY, u)
an L-fuzzy continuous mapping. Then f: (X, [0]) — (Y, [u]) is continuous.

Lemma 1.4. (cf. [9]) Let (L*,0), (LY,v) be L-fts’s, f : (X,[0]) — (Y, [u]) be
continuous. If (LX,0) is stratified, (LY ,~) is weakly induced, then f= : (LX,8) — (LY, u)
is an L-fuzzy continuous mapping.

Theorem 1.1. (cf. [9]) Stratified, weakly induced and induced properties are hereditary
and weakly induced property is strongly multiplicative.

Theorem 1.2. (cf. [9]) Let (L*,8), (LY, p) be L-fts’s, f= : (L*,8) — (LY, u) an
L-fuzzy continuous mapping, do and po be the stratifications of § and p respectively. Then
= (L%, 6,) — (LY, po) is continuous.

Theorem 1.3. (cf. [9]) Let (LX,0) be an L-fts, Y C X, &, the stratification of §.
Then & |y is just the stratification of § |y .

Theorem 1.4. (cf. [9]) Let (L*,d) be an L-fts. Then (LX,6) is induced if and only
if (LX,8) is both stratified and weakly induced.

Theorem 1.5. (cf. [9]) Let (LX,8) be an L-fts. Then the following are equivalent:
(i) (LX,6) is weakly induced;

(ii) For every U € 6 and every a € L, U, € [0];

(iii) For every V € ¢’ and every a € L, Vi € [0'].

Theorem 1.6. (cf. [9]) Let (LX,68) be a weakly induced L-fts, A C X. Then for the
interior A° and the closure A~ of A in (X,[d]), we have

(1) (14)° =140, (i) (1a)” =14-.
Lemma 1.5. Let (LX,68) be an L-fts, AC X. If A € [§], then A is a-open.
Proof. It is obvious.

Lemma 1.6. Let (LX,8) be a weakly induced L-fts, A C X. Then A is a-open iff
A€ [d].

Proof. =. Let A C X be a-open. Then for each z € A, there exists U € § with
U@@)£aand UN1x_4 =0 = U < 14. Since (LX) is weakly induced, it follows that
forany be L, b<a, x € Uy € [0] and = € Uy) C A. So A € [§].

<. By Lemma 1.5.

Definition 1.1. A system (LX,61,02) consisting of a non-empty set X with two L-
fuzzy topologies 61 and 6o on L is called an L-fuzzy bitopological space (briefly L-fbts).

Definition 1.2. Let (LX,8,0) be an L-fots, o € pr(L). (LX,6,0) is called a-PTy if
Vo,y€ X, x#y, there exist U € §, V € o, such that U(z) £ a, V(y) £ @ and U AV =,
there exist U' € o,V' € 6, such that U'(z) £ a,V'(y) £ o and U' AV’ = 0. In the case
L =1, see [8].

Definition 1.3. Let (L, 61,02) be an L-fots, A C X, a € pr(L). Then A is called
a-pairwise closed (a-P-closed for short) iff A is a-closed in both (L~ ,61) and (L, d2).

Definition 1.4. An L-fuzzy mapping f=— : (LX,61,02) — (LY, 01,02) is called an L-
fuzzy pairwise continuous (resp. a-pairwise continuous) mapping; briefly FPc (resp. a-Pc),
if the induced mappings [~ : (LX,6,) — (LY ,01) (k = 1,2) are L-fuzzy continuous (resp.
a-continuous). In the case L = I, FPc mappings refer to [14].
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Definition 1.5. An L-fbts (LX,81,0:) is called pairwise stratified (resp. pairwise
weakly induced, pairwise induced) L-fbts iff both (LX,61) and (L, 8,) are stratified (resp.
weakly induced, induced).

For other definitions and results not explained in this paper, the reader may refer to
[1,2,6,7,9].

8 2. «a-Fuzzy Pairwise Retracts

Definition 2.1. Let (LX,61,62) be an L-fbts, Y C X. Then (LY .61 |y,02 |y) is
called an a-fuzzy pairwise retract (a-FPR for short) of (LX,81,62) if there exists an a-fuzzy
pairwise continuous mapping r— : (L%, 61,02) — (LY, 61 |y, 62 |y) with the identity mapping
r |y: idy,

Definition 2.2. Let (L%, 61,02), (LY, u1, u2) be L-fbts’s, f~ : L — LY an L-fuzzy
mapping, a € pr(L). If for each x € X and V € p; with V(f(z)) £ «a, there exists U € §;
with U(x) £ o, 4,7 € {1,2}, i # j, such that

0 Ly Ue

(ii) fﬂ((S -int (5-—CI(U)) <V;

(i) ((6;-1(U))) < V;

(iv) f7(0;-int(d;-c1(U)) < pi-int (pj-cl(V));
) F(U) < preint (el (V)),
1s called
) a-fuzzy pairwise clopen continuous (a-FPcoc, for short);
il)  a-fuzzy pairwise super continuous (a-FPsc, for short);
ii) strongly a-fuzzy pairwise continuous (sa-FPc, for short);
iv) a-fuzzy pairwise §-continuous (a-FPd-c, for short);
(v) a-fuzzy pairwise almost continuous (a-FPac, for short).

1 <

(
then f

(i
(
(i
(

Definition 2.3. Let (LX,61,02) be an L-fbts, Y C X. Then (LY ,61 |y, 02 |y) is called
an a-fuzzy pairwise clopen retract (resp. an a-fuzzy pairwise super retract, strongly a-fuzzy
pairwise retract, an a-fuzzy pairwise d-retract and an a-fuzzy pairwise almost retract); o-
FPCOR (resp. a-FPSR, Sa-FPR, a-FPS-R and a-FPAR) for brevity; iff there exists an a-
FPcoc (resp. a-FPsc, sa-FPc, a-FPS-c and a-FPac) = : (LX,81,69) — (LY, 61 |y, 62 |y)
such that r |y = idy.

Remark 2.1. Every L-fuzzy pairwise retract (L-FPR) is a-FPR.

The implications between these different notions of a-fuzzy pairwise retracts are given
by the following diagram

Sa-FPR L-FPR
4 ¢

a-FPCOR = «FPSR = «o-FPR
4 ¢

a-FP-R = o-FPAR

Example 2.1. Let X = [0,1], Y = {0,1}, L be the lattice given by the following
diagram. We define r : X — Y by

0, if xel0,0.5],
r(z) =
1, if e (0.5,1],
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and let 6 = {0,U,V,1}, 6o = {0, W, 1}, where

d, if zev,
Ur) = .
d, if ze X-Y; 71
d f X —{0.5} N\
s if e — O, b’ a’
Vi(z) = . \/d=d/
a, if z=0.5; /N
a r\/‘b
a, if z€Y, 0
W(z) =
d, otherwise.

One can easily show that 7~ is a-FPc at a = b and hence (LY,d; |y,d2 |y) is an
a-FPR of (LX, 81, 8,) but neither a-FPSR nor L-FPR.
And let 6; = {0, W, 1}, 62 = {0,V*,d, 1}, where

V*(2) c, if ze€Y,
xTr) =
c, if reX-Y.

One can easily show that at o = b, (LY, 8; |y, 62 |y) is an a-FPAR of (L¥,d,62) but
not a-FPJ-R.

Also, let 87 = {0,W,1} and 43 = {0,d,¢c,1}. One can easily show that at a = b,
(LY, 681 |y, 62 |y) is an a-FPSR of (LX,d1,d2) but neither an a-FPCOR nor an Sa-FPR.

Example 2.2. Let X = N = {1,2,3,---} and Y = {5,10}, L be the same lattice
given in Example 2.1. We define r : X — Y as follows:

5, if xis odd,
r(z) =

10, if x is even,

and let §; = {0,U, 1}, do = {0, W, 1}, where U, W € L¥ defined as follows:

d, 1<x <5,
U(l’){
1, T > 5,
c, 1<2x<5U((x>10),
e - ( )Ula > 10)
d, 5<ax<10

One can easily show that 7~ is an a-FPac and hence (LY, 0 |y,d2 |y) is an a-FPAR
of (LX,61,82) but not an a-FPR, at a = a.

Also, let 4y = {0,a/,1} and 02 = {0,W,1}. One can easily show that at a« = a,
(LY, 68 |y, 62 |y) is an a-FP6-R of (L, 6y,82) but not an a-FPSR.

Definition 2.4. Let (LX,61,82) be an L-fbts. Then (LX,d1,62) is called

(i) a-pairwise regular space if for each x € X and each U € §; with U(z) % «, there
exists V € §; with V(z) £ a such that §;-c1(V) < U.

(ii) a-pairwise semiregular space if for each v € X and each U € &; with U(z) £ «a,
there exists V € 6; with V(z) ¢ a such that §;-int (§;-c1(V)) < U.

(iii) a-pairwise almost reqular space if for each x € X and each U € §; with U(z) £ a,
there exists V € 6; with V(z) ¢ a such that §;-c1 (V) < §;-int(8;-c1 (U)).
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Remark 2.2. From the preceding definition it is clear that every a-pairwise regular
space is an a-pairwise semiregular space and also an a-pairwise almost regular space. Also
an a-pairwise semiregular space and an a-pairwise almost regular space are independent
notions.

Example 2.3. Let X = {z!,2%}, L be the same lattice given in Example 2.1.

Let 0; = {0,d,1} and 65 = {0,a,1}. Then (LX,6;,52) is a-pairwise semiregular but
not a-pairwise almost regular at a=b.

And let §; = {0, 2} \/l‘a,, xl,va2, 1} and 65 = {0,d,1}. Then (LX, 1, d2) is a-pairwise
almost regular but not a-pairwise semiregular at o = b.

Theorem 2.1. Let (LX,61,02) be an a-pairwise semiregular L-fbts, Y C X. Then the
following are equivalent:

(i) LY is an a-FPR of LX;

(ii) LY is an a-FPSR of L.

Proof. (ii)=-(i). It follows from the definitions.
(i)=(ii). Let LY be an a-FPR of L. Then there exists an a-FPc 77 : (LX, 01,02) —
(L 51 |y,52 ‘y) with r ‘y— idy, so r— (LX 51) (LY 51 |y) r— (LX 52)
(LY, 6o |y) are o-Fc mappings. Then V z € X Ve |y with V(r(z)) £ a=3U €4
Wlth U ) £ a such that 7 (U) < V. Since LX is a-pairwise semlregular I W € §; with
ﬁ a such that §;-int (0;-c1(W)) < U = 77 (d;-int (§;-cl(W))) < r~(U) <V, i # j.
Then 7~ is a-FPsc and hence LY is an a-FPSR of L¥

Theorem 2.2. Let (LX,61,02) be an L-fots, Y C X and (LY,81 |y,d2 |y) be a-
pairwise semireqular. Consider the following properties

(i) LY is an a-FPR of L%,

(ii) LY is an a-FPAR of L,

(iii) LY is an a-FPS-R of L%,

(iv) LY is an a-FPSR of L.

Then, (iv)<=(iii)= ()<= (ii).

Proof. Clearly (iv)=-(iii)=-(ii), (iv)=(1)=(ii).

It suffices to show that (iii)=-(iv) and (ii)=(i).

(iii)=>(iv). Since LY is an a-FPS-R of LX, there exists an a-FP§-c mapping 7~
(LX761762) — (LY,(Sl |y,52 ‘y) such that r Iy_ idy

Now we are going to prove that v~ is a-FPsc. Let € X, W € §; |y with W(r(z)) £ «,
where LY is a-pairwise semiregular = 3 V € §; |y with V( (z)) £ a such that d; |y—
int (6; |y-cl(V)) < W. Since LY is an a-FP§-R of LX = 3 U € §; with U(z) £ o and
7 (8;-int(0;-c1 (U))) < 6; |y-int(d; |y-cl(V)) < W, ie., r~ is a-FPsc and hence LY is an
a-FPSR of LX.

(ii)=(i). Since LY is an a-FPAR of L¥X, there exists an a-FPac mapping 7~
(LX,(51,52) — (LY,(Sl |y,52 ‘Y) such that r |y— idy.

Now we are going to prove that r— is a-FPc. Let x € X, W e 5 ly with W(r(z)) £ o
where LY is a-pairwise semiregular = 3 V € §; |y with V(r )) % « such that 0 |v-
int (§; |y-cl(V)) < W. Since LY is an a-FPAR of LX = 3 U € §; with U(z) £ a and
r=(U) < 4; |y-int (6; |y-cl(V)) < W, i.e., r~ is a-FPc and hence LY is an a- FPR of LX.

Theorem 2.3. LetY C X, and (L*,61,02), (LY, 81 |y, 02 |y) are a-pairwise semireg-
ular L-fbots’s. Then the following are equivalent:

(i) LY is an a-FPR of LX;

(i) LY is an a-FPAR of LX;

(iii) LY is an a-FPS-R of L*;

(iv) LY is an a-FPSR of LX.
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Proof. It follows from Theorem 2.1 and Theorem 2.2.

Theorem 2.4. Let (LX,51,62) be an a-pairwise almost regular L-fbts, Y C X. Then
the following are equivalent:

(i) LY is an Sa-FPR of LX;

(ii) LY is an a-FPSR of L.

Proof. (i)=(ii). It is clear.

(ii)=(i). Since LY is an a-FPSR of L¥, there exists an a-FPsc mapping r—
(LX761,(52) — (LY751 |y,52 ‘Y) such that r |y— idy

Now we are going to prove that r— is sa-FPc. Let re X, W e |y withW(r(z)) £ a.
Since LY is an a-FPSR of LX = 3V € §; with V(z) £ a and r (6;-int (6;-cl (V))) < W,
but LX is a-pairwise almost regular, 3 U € §; Wlth Uz ﬁ a and 6;-cl (U) < §;-int(6;-
cl(V)) = r7(6;-cl(U)) < r~(d;-int (§;-cl (V) < W, ie., r~ is sa-FPc and hence LY is an
Sa-FPR of LX.

Corollary 2.1. Let Y C X, and (L*,81,02),(LY,61 |y,02 |y) are a-pairwise regu-
lar L-fbts’s. Then the properties, a-FPR, «-FPSR, Sa-FPR, a-FPS-R, a-FPAR are all
equivalent.

Theorem 2.5. Let f— : (L%, 61,02) — (LY, 01,02) be an L-fuzzy mapping and g :
X — X XY its ordinary graph. Then g~ is a-FPsc <= f~ is a-FPsc and L is a-pairwise
semaregular.

Proof. =. Suppose g~ is a FPSC Let z € X, W € o; with W(f(z)) £ o. Then
U=1xW € é; xo; such that U(g(z)) £ a. Since g7 is a-FPsc = 3V € §; with V(z) £ a
such that ¢ (d;-int (6;-cl(V))) S U and 0;-int (6;-c1(V)) < ¢ (U) = LA f (W) =
e (W) = f~(0;-int (5 (V)< f7f (W) <W = f~ is a-FPsc.

We show that LX is a- pa1rw1se semiregular. Let z € X, 0 € §; with 6(z) £ a. Then
6 x 1 € 6; x o; such that (§ x 1)(g(x)) £ a. Since g~ is a-FPsc = 3 0* € §; w1th0* )£ a
such that

97 (0;-int (05-c1(0%))) < 0 x 1 = d;-int (§;-c1 (0*)) < g" (O x 1) =0 A f7 (1) =0.

Then LX is a-pairwise semiregular.
<. Assume f~ is a-FPsc and L¥ is a-pairwise semiregular.
Let x € X, W € &; x 0; with W(g(z)) £ o, by Lemma 1.3 = 3 W; € §; with
) £ o, Wy € o; with Wa(f(x)) £ « such that Wy x Wa < W. Since f~ is a-FPsc
= 30, € §; with 02(z) £ « such that

fﬂ((;i—int (6j—cl (92))) < Wy = (5i—int (5]‘—C1 (62)) < f‘ii(WQ),

and also L¥ is a-pairwise semiregular = 3 91 € 6; with 0;(z) £ a such that &;-int (6;-
cl(61)) < Wh. Clearly 61 A by =0 € 6; and 0(z) £ «,

d;-int (0-cl(0)) = d;-int (6;-cl (61 A 62))

< (0;-int (d;-c1 (61))) A (d;-int (65-cl (02)))
SWLA ST (W) =g" " (WL x W) < g™ (W)
g (B-int (6,-¢1(0))) < g~ g™ (W) < W,

Thus g~ is a-FPsc.
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Corollary 2.2. Let (LX,61,02) be an L-fbts, Y C X and r— : (LX,81,60) — (LY,
01 |y, 02 |y) be an L-fuzzy mapping such that r |y=idy, g : X — X XY its ordinary graph.
Then g~ is a-FPsc <= LY is an a-FPSR of LX and LX is a-pairwise semireqular.

Theorem 2.6. Let f~ : (LX,61,02) — (LY, 01,02) be an L-fuzzy mapping and g :
X — X x Y its ordinary graph. If g~ is sa-FPc, then f~ is sa-FPc and L is a-pairwise
almost regular.

Proof. Suppose f~ is sa- FPc Let 2 € X, W € o; with W(f(z)) £ o Then
U=1xW €§; xo; such that U(g(x)) £ a. Since g~ is sa-FPc = 3V € §; with V(z) £ a
such that g~ (4;-c1(V)) < U, and

5l (V) < g (U) = LA J* (W) = [ (W)
= [T (V) S fTfT W) =W
= f7 issa-FPc.

We show that L¥X is a-pairwise almost regular.
Let z € X, 6 € §; with 0(x) £ a. Then9><1€5 X o; such that (0 x 1)(g(z)) £ a.
Since g~ is sa-FPc = 3 0* € 6 w1th 6*(x) £ a such that

g (0-cl (7)) <O x1
=0;-cl(0") < g (@ x1)=0Af"(1) =6 < b-int (6;-c1 (6)).
Then L¥ is a-pairwise almost regular.

Corollary 2.3. Let (LX,81,05) be an L-fbts, Y C X and r— : (L%, §1,02) —
(LY 01 |y, 02 |y) be an L-fuzzy mapping such that v |y= idy, g : X — X x Y its or-
dinary graph. If g~ is sa-FPc, then LY is an Sa-FPR of LX and LY is a-pairwise almost
regular.

Theorem 2.7. Let f= : (LX,61,02) — (LY, 01,02) be an L-fuzzy mapping and g :
X — X xY its ordinary graph. Then

g~ is sa-FPc <= 7 is sa-FPc and L™ is a-pairwise regular.

Proof. = . Assume f7 is sa FPc. Let z € X, W € o; with W(f(z)) £ a. Then
U=1xW € §; xo; such that U(g(x)) £ . Since g is sa-FPc = EIV€(5 WlthV ) £«
such that g7 (d;-c1 (V) < U, and

0j-cl(V) < g* " (U) = LA f7 (W) = [ (W)
= [7(6-l (V) < fTfT(W) < W
= 7 is sa-FPc.

We show that LX is a- pairwise regular. Let z € X, 0 € §; with 6(z) £ a. Then
6 x 1 € 6; x o; such that (0 x 1)(g(x)) £ a. Since g~ is sa-FPc = 3 0* € §; w1th¢9* ) £«
such that

g7 (6;-c1(07) <O x1 = 6,-cl(0") < g (O x1)= OAF(1) =0.

Then L¥ is a-pairwise regular.
<. Assume [ is sa-FPc of L and L¥ is a-pairwise semiregular.
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Let z € X, W € ¢; x o; with W(g(z)) £ a. By Lemma 1.3 = 3 W; € §; with
Wi(z) £ a, Wa € o; with Wa(f(x)) £ « such that Wi x Wy < W, where [~ is sa-FPc.
= 36y € §; with 92(17) ﬁ « such that f*}((Sj—Cl (02)) < Wy = 6j—C1 (02) < f(-ii(WQ), and
also LX is a-pairwise regular = 3 0; € §; with 0, (z) £ a such that §;-cl(01) < Wh.

Clearly 01 A 02 = 6 € §; such that 6(x) £ «,

§;-cl(0) = 6;-c1 (B, A ) < (8;-c1 (81)) A (8;-l (62))
SWINFT(We) =g (Wi x W) < g™ (W)
=g (6;=cl(0)) <g7g" (W) < W.
Thus g~ is sa-FPe.

Corollary 2.4. Let (L*,01,62) be L-fots, Y C X and r— : (LX,61,02) — (LY, 61 |y,
02 |y) be an L-fuzzy mapping such that r |y=idy, g : X — X XY its ordinary graph. Then

—

g~ is sa-FPc <= LY is an Sa-FPR of LX and LX is a-pairwise reqular.

Proposition 2.1. The composition of a-FPc (resp. «-FPcoc, a-FPsc, sa-FPe, a-
FPS-c) mappings is an a-FPc (resp. a-FPcoc, a-FPsc, sa-FPc, a-FP§-c) mapping.

Proof. It is obvious.

Theorem 2.8. Let (LX,681,02) be an L-fbts, Y C X. Then LY is an a-FPR (resp.
a-FPCOR, a-FPSR, Sa-FPR, a-FP5-R) of LX iff, for any (L% ,~1,72) L-fbts, every a-FPc
(resp. a-FPcoc, a-FPsc, sa-FPec, a-FP§-c) mapping g~ : LY — L%, g~ has an extension
over X.

Proof. By Proposition 2.1.

Theorem 2.9. Let (LX,81,05) be an L-fbts, Z CY C X. If L is an a-FPCR (resp.
a-FPCOR, a-FPR, a-FPCOR, a-FPAR, a-FPAR, Sa-FPR, Sa-FPR) of LY, and LY is
an a-FPSR (resp. a-FP3-R, Sa-FPR, a-FPAR, Sa-FPR, a-FPCR, a-FPj-R, a-FPR) of
LX, then L? is an a-FPSR (resp. a-FPSR, Sa-FPR, a-FPR, a-FPS-R, a-FPAR, a-FPSR,
a-FPR) of LX.

Proof. It is obvious.

Definition 2.5. Let (L*,81,682), (LY ,y1,72) be L-fbts’s. Then the L-fuzzy pairwise
mapping f~ 1 (LX,81,82) — (LY ,71,72) is called A-pairwise continuous (A-Pc for short)
mapping if both = : (LX,61) — (LY ,y1) and f~ : (LX,82) — (LY, 72) are A-continuous
mappings.

And if Y C X, then (LY, 61 |y, 62 |y) is called a A-pairwise retract (A-PR for short) of
(LX,61,062) if there exists a A- pairwise continuous mapping v~ : (LX,61,82) — (LY, 61 |y,
02 |y) such that r |y=idy.

Clearly every a-PR is a A-PR but the converse is not true in general.

Example 2.4. Let X = {2!,22,23}, Y = {2'}, and L the same lattice given in
Example 2.1. Consider 81, do on L¥ defined by

o ={0,ahvad val 1}, S ={0ziva? va} 1}
Clearly LY is a A-PR of LX but not an a-PR of LX at a = a.

Theorem 2.10. Let (LX,0,0) be an L-fbts and a-PTy. Then every a-FPR of (L,
0,0) is a-P-closed.
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Proof. Let (LY,d |y, o |y) be an a-FPR of (L%, 6, o), where (L, 6, o) is a-PT5. Then
there exists an a-fuzzy continuous mapping r— : LX — LY such that r(y) =y, Yy € Y.
Let v € X =Y = z # r(z), r(x) € Y. But (LX,6,0) is a-PTy, then there exist U € 6,
V € o, such that U(z) £ o, V(r(z)) £ a« and U AV = 0; there is V' € §, U’ € o, such that
V'(r(z)) £ o, U'(z) ¢ cand U AV’ = 0.

Therefore V |y€ o |y and V |y (r(z)) £
3 Wi € o such that Wi(z) £ o and r—(W;) <
Wi(z) £ o and Wi A ly = 0.

And also therefore V' |y € § |y and V' |y (r(z)) £ «.

Since r is a-pairwise continuous = 3 Wy € § such that Wa(z) £ « and r—(Ws) <
V' |y . Put W5 = Wo AU € § such that W (z) £ o and Wi Aly =

For, assume that 3 z € Y, a € L-{0} such that Wy (z) >
Wi(z) AU (z) > 0. But

«. Since r~ is a-pairwise continuous =
V |y . Put Wi = W7 AU’ € o such that

0
0, W5(z) > a, hence
Wi(z) <r T rm (W) (z) <r T (Vy)(2) = (V Iy)(r(2) = (V Iy)(2) = V(2).

That is W1 (z) < V(2), so, V(2) AU'(z) > 0, and similarly V'(z) AU(z) > a = (VAU A
V' AU')(z) > 0, a contradiction to U AV =0 and U’ AV’ = 0. Hence Wi A 1ly =0 and
W5 Aly =0, s0Y is a-closed in both (LX,§) and (LY, o). Hence Y is a-P-closed.

§ 3. «a-Fuzzy Pairwise Retract of L-Valued
Pairwise Stratification Spaces

Proposition 3.1. Let (LY, 8, |y, 82 |y) be an L-FPR of (LX,6y,82). Then
(LX,61,02) is pairwise stratified <= (LY, 6, |y, 02 |y) is pairwise stratified.

Theorem 3.1. Let (LX, puy,p2) be the pairwise stratification of (LX,61,02), and
(LY, 81 |y,02 |y) be an L-FPR of (LX,81,02). Then (LY, iy |y,u2 |y) is an L-FPR of
(LX7//"17/’L2)'

Proof. By Theorem 1.2 and Theorem 1.3.

Proposition 3.2. If (LY,6; |y, 02 |y) is an L-FPR of (LX,81,082). Then (Y,[81 |v],
[02 |y]) is an ordinary pairwise retract of (X, [d1], [d2])-

Proof. By Proposition 1.1.
Theorem 3.2. Let (LX,81,08) be a pairwise induced L-fbts, Y C X.
(LY 61 |v,02 |v) is an L-FPR of (L, 61, 02)
< (Y, [01 |v],[62 |v]) s an ordinary pairwise retract of (X, [01], [02])-

Proof. = . By Proposition 3.2.
< . By Theorems 1.1, 1.4 and Lemma 1.4.

Proposition 3.3. Let (LX,81,62) be a weakly induced L-fts, Y C X. (Y,[01 |y],
[62 |y]) is an ordinary pairwise retract of (X, [01],[d2]), iff (LY,61 |y,d2 |y) is a A-FPR
of (L™, 81, 85).

Proof. By Lemma 1.6.
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Theorem 3.3. Let (LX,01,82), (LY ,71,72) be pairwise weakly induced L-fbts’s, f— :
LX — LY be an L-fuzzy mapping. Then the following hold:

(i) If f— is an a-FPec, then the ordinary mapping f : (X, [01],[02]) — (Y, [n], [12]) is
Pc;

(ii) If f~ is an a-FPac, then the ordinary mapping [ : (X, [01],[02]) — (Y, [11], [12])
15 Pac.

Proof. (i) Let z € X, f(z) € A € [’yz] a €pr(l) = 14 € v and 14(f(z)) £ .
But f~ is an a-FPc = 3 W € §; with W(z) £ o and f~ (W) < 14. Let a € L. Since LX
is pairwise weakly induced, we have Wiqy € [6i], (W)w) < ff7 (W)@ < f(1a)) =
f7HA) = f(W)(a) <A, i=1,2. Then f is ordinary Pc.

(i) Let z € X, f(z) € A€ ), a €pr(l) = 14 € 4 and 14(f(x)) £ o. But [~
is a-FPac = 3 W € §; with W (z) £ a by Theorem 1.6. f~ (W) < ~;-int (yj-cl(14)) = 74~
int (1(y,)-cl (A)) = 1py,y-int ([v;]-cl (A)).

Let a € L = W, € [6], Wiy < [ f7(W)ay < f (1[w] int ([v;]-c1(A4)))@) =
S ([yil-int ([y5]-cl (A))) = f(W(a)) < [vi]-int ([7;]-c1 (A)). Then f is ordinary Pac.
1 2 4
Example 3.1. Let X = R, Y =1, L = {O,g,g,g 5 } Consider f : X — Y
defined as
0, z <0,
flx)=q1—u=, 0<z<l,
1, r>1,

81, 63 on LY defined as 6, = {0,U, 1}, &2 = {0, V, 1}, where

é, if ze(—o0,-1),
v = g if xe€[-1,00)

5 ,00),

1, if ze€(—o0,-1),
Vie) = %, if ze[-1,00).

Then [01] = [d2] = {0, X}, clearly f : (X,[01],[02]) — (Y,[01 |v],[02 |v]) is an ordinary
pairwise continuous mapping (OPc) but f~ is not a-FPc at o = #. And also f is an
ordinary Pac mapping but f~ is not a-FPac.

Theorem 3.4. If (L, 61,02) is a pairwise induced L-fbts, Y C X, then the following
are equivalent:

(i) LY is an a-FPR of LX;

(ii) Y is an ordinary a-PR of X;

(iii) LY is an A-FPR of L*;

(iv) Y is an ordinary PR of X.

Proof. By Theorems 3.2, 3.3 and Proposition 3.3.

Remark 3.1. Let (LX,6;,05) be a pairwise weakly induced L-fbts, (X, [01],[02]) be
the pairwise background space of (LX,6;,0,) and Y C X. Then we have the following
diagram
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Y isan OPR of X <= LY isan A-FPR of LX
LY isan FT‘TPR of LX = LY isan ofFPR of LX
LY isan a-FPCRof LX = LY isan Oz—TILPSR of LX
LY isan a-lFl‘PAR of LX <« LY isan a—i“lé—PR of LX

I

Y isan OPAR of X,

O=ordinary.

Theorem 3.5. Let (LX,81,05) be a pairwise weakly induced L-fbts. Then the following
are equivalent:

(1) (LX7 51, 62) S OZ—PTQ,'

(ii) The set A ={(z,y): (z,y) € X x X, x =y} is closed in (X x X,[61 X d2]).

Proof. (i)=(ii). Let (z,y) € A = x # y, but LY is «-PTy = I U € &, U(x) £
a, V€ 6,V(y) £ oand UAV = 0. Since LX is pairwise weakly induced, we have
U(a) € [51], V(a) S [52] and © € U(a), (TS V(a). But UAV =0 = U(a) ﬂV(a) =0 =
V(2,y) € Uy X Viay =  # ¥, (2,y) € Uy X Via) C A’, then A’ is open and hence A is
closed in (X x X, [§1 x d2]).

(i)=(1). Letz,ye X, x £y = (z,y) € A, but A isopen = I G € [§1], H € [62] and
GxHCA,GNH=0 = 1¢ €61, 1y € 0y, for every a € pr(L) = 1lg(z) £ o, 1 (y) £ a
and 1 Alyg = 0.
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