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Abstract

In this paper, a complete classification of arc-transitive cubic graphs of order 4p is
given.
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§ 1 . Introduction and Preliminaries

Throughout this paper graphs are finite, simple and undirected. For a graph X, let
V (X), E(X), A(X) and Aut (X) denote the vertex set, edge set, arc set and full automor-
phism group of X, respectively. For s ≥ 1, an s-arc of X is a sequence (v0, v1, · · · , vs) of s+1
vertices such that (vi, vi+1) ∈ A(X) and vi 6= vi+2. Then X is said to be s-arc-transitive if
Aut (X) acts transitively on the set of s-arcs of X. In particular, if Aut (X) acts regularly
on the s-arcs, then X is called s-regular.

Let G be a finite group and S a subset of G such that S = S−1 and 1 6∈ S. Then we
define the Cayley graph X = Cay (G,S) of G with respect to S to be the graph with the
vertex set V (X) = G and the edge set E(X) = {{g, sg} ∣∣ g ∈ G, s ∈ S}.

This note deals with cubic graphs. One of significant work in this topic is due to Tutte
who proved in 1947 that every finite cubic symmetric graph is s-regular for some s ≤ 5 (see
[14, 15]). Later, since 1970s, many authors have done a lot of work on arc-transitive cubic
graphs. See [3, 7, 9, 12, 13, 16] for example.

This note is an attempt to determine arc-transitive cubic graphs of special orders. Let
p be a prime. From [5] we may read off all arc-transitive cubic graphs of order 2p. We write
it as a theorem.

Theorem 1.1. Let p be a prime. Then every connected arc-transitive cubic graph of
order 2p is isomorphic to one of the following:

(1) K4 where p = 2;
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(2) K3,3 where p = 3;
(3) The Petersen graph O3 where p = 5;
(4) When p ≡ 1 (mod 3), the graph G(2p, 3). This graph has a vertex set Zp ∪ Z′p,

where Zp = {0, 1, · · · , p − 1} is a cyclic group of order p written additively, and Z′p =
{0′, 1′, · · · , (p−1)′} is another copy of cyclic group of order p, and the edge set of this graph
is {xy′

∣∣ x − y ∈ H(p, 3)}, where H(p, 3) is the subgroup of order 3 of the multiplicative
group Z∗p of Zp. If p = 7, then G(2 · 7, 3) is the Heawood graph.

The main purpose of this note is to give a classification of arc-transitive cubic graphs
of order 4p, where p is a prime. For our purpose, we mainly use group-theoretical method
and a theorem due to Lorimer [11]. Before stating it, we need the concept of block graph of
a G-vertex-transitive graph X.

Assume that G acts on V (X) transitively and imprimitively. Assume that Σ =
{B1, B2, · · · , Bn} is a complete block system. The block graph X with respect to Σ is
defined by

V (X) = Σ,

E(X) = {{Bi, Bj}
∣∣ there exists vi ∈ Bi, vj ∈ Bj , such that {vi, vj} ∈ E(X)}.

If N is an intransitive normal subgroup of G, then the orbits of N form a complete
block system. This special case is often very useful.

Now we state Lorimer’s Theorem.

Theorem 1.2. Let X be a connected arc-transitive graph of valency p, p a prime.
Let G ≤ Aut (X) act on X arc-transitively. And every proper subgroup of G does not act
arc-transitively on X. Let N be a maximal semiregular normal subgroup of G. Then one of
the following is true.

(1) N = 1, and G is a nonabelian simple group;
(2) N is transitive on V (X) and hence G = N : Zp, the semidirect product of N and

Zp;
(3) N has two orbits on V (X) and X is bipartite;
(4) N has more than two orbits on V (X) and X is a covering graph of the block graph

which has the orbits of N as vertices.

Since we need to determine arc-transitive coverings of a special graph, a new linear
criterion in [6] for lifting automorphisms of the base graph to the covering graphs is useful.
Now we give a brief description of a special case (only for our application) of this criterion.

Given a graph X, called the base graph, and a group K, called the voltage group,
a voltage assignment of X is a function φ : A(X) → K with the property that φ(u, v) =
φ(v, u)−1 for each (u, v) ∈ A(X). The graph X̃ = X ×φ K derived from φ is defined by
V (X̃) = V (X) ×K and E(X̃) = {((u, g), (v, φ(u, v)g))

∣∣ (u, v) ∈ E(X), g ∈ K}. If all the
voltages φ(u, v) generate K, this graph is connected and called a regular covering of X with
respect to the voltage assignment φ and the group K. Each {(u, g)

∣∣ g ∈ A} is called a fibre
of X̃. Moreover, by defining (u, g′)g := (u, g′g) for any g ∈ K and (u, g′) ∈ V (X ×φ K), K
can be identified with a fibre-preserving automorphism subgroup of Aut (X ×φ K) acting
regularly on each fibre. Let α be an automorphism of X. α can be lifted to an automorphism
α̃ of X̃ if πα̃ = απ, where π is the the first coordinate projection from X̃ to X. Our problem
is to find a necessary and sufficient condition for α to be lifted. For this we should consider
all possible voltage assignments.

Assume that X has n + 1 vertices and n + 1 + m edges. We name the vertices of X by
{1, 2, · · · , n + 1}. An arc (i, j) is called positive if i < j; otherwise, it is called negative. We
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use A+(X) and A−(X) to denote the sets of positive and negative arcs of X, respectively.
Now assume that K = Zp. Choose a spanning tree T of X, whose edge set is E0 with

|E0| = n. Next choose a co-tree edge e1 arbitrarily. Let E2 = E(X) \ (E0 ∪ E1), where
E1 = {e1}. Write down the arcs in A+(E0), A+(E1) and A+(E2) in a certain order. Assign
the voltages to the above three sets so that Φ0 = 0, Φ1 = 1 and Φ2 = M , where {Φi}, as n
by 1, 1 by 1, and m by 1 matrices, are formed by the voltages assigned to the arcs in A+(Ei)
according to the given order. We call M the generating matrix of the voltage assignment.

For a given spanning tree T , and a positive cotree arc (u, v), there is a unique path
from v to u in T which is denoted by [v, · · · , u]. We call the closed walk (u, [v, · · · , u]) the
fundamental cycle belonging to (u, v), and denote it by C(u, v;T ).

We may define the incidence matrix P for the fundamental cycles of the graph X
with respect to the tree T as follows. For each positive cotree arc (u, v), let pu,v be the
n-dimensional row vector over GF(p) whose (i, j)-coordinate pu,v

i,j indexed by the positive
tree arc (i, j) of the given order is defined by

pu,v
i,j =





1, if (i, j) is in C(u, v;T ),

−1, if (j, i) is in C(u, v;T ),

0, otherwise.

Then P is the (m+1)×n matrix whose row vectors are pu,v, indexed by the positive cotree
arcs (u, v) of the given order.

Applying the matrix P , we let D = ((−M, Im×m)P,−M, Im×m), whose columns are
indexed by the arcs in A+(E0), A+(E1), A+(E2) according to the given order. We call the
matrix D the discriminant matrix for a lift of α. For convenience, set D0 = (−M, Im×m)P ,
D1 = −M and D2 = Im×m, so that D = (D0,D1,D2), as a block matrix.

Let D = (· · · , ci,j , · · · ), where ci,j is the column indexed by (i, j) ∈ A+(X). For a
given σ ∈ Aut (X), let cσ

i,j = ciσ−1 ,jσ−1 , where we assume that ci,j = −cj,i for any arc (i, j).
Let Dσ = (· · · , cσ

i,j , · · · ) for any (i, j) ∈ A+(X), and let (Dσ)0, (Dσ)1 and (Dσ)2 denote
the first, the second and the third blocks of the matrix Dσ respectively, as before. Then, by
the main theorem in [6], one can say that

α can be lifted ⇐⇒ (Dα)1 + (Dα)2M = 0. (1.1)

Now we are in the position to state the main result of this note.

Theorem 1.3. Let X be a connected arc-transitive cubic graph of order 4p, p a prime.
Then X is one of the following: Q3, the 3-dimensional cube; D20, the dodecahedron; C28,
the Coxeter graph; and GP(10, 3), the generalized Peterson graph, which is also the standard
double cover of Petersen graph.

§ 2 . Proof of Theorem 1.3

By Theorem 1.2, we have four cases. If Case 1 happens, we have

Lemma 2.1. If N = 1, then G ∼= A5 or PSL(2, 7), and X ∼= D20 or C28.

Proof. Since G acts arc-transitively on X, by Tutte [14, 15] the stabilizer Gv has
order dividing 48, and hence 12p

∣∣ |G|
∣∣ 263p. Thus G is a three-prime simple group. By

[10, pp.12–14], G is one of A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3)
and PSU(4, 2). Checking the orders, we have that G ∼= A5 for p = 5 and G ∼= PSL(2, 7) for
p = 7.
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Case 1. G ∼= A5, |V (X)| = 20. In this case X is a Sabidussi coset graph X ∼=
Sab (G,H, HuH) where |H| = 3 and u is an involution. Since A5 has one class of elements
of order 3, we may assume that H = 〈(123)〉. Since X is connected, G = 〈HuH〉 = 〈H, u〉.
Hence u has the form (a4)(b5); so u = (14)(25), (24)(15), (14)(35), (34)(15), (24)(35), or
(34)(25). Since these six involutions are conjugate under NS5(H) ∼= S3×S2 = 〈(12), (13)〉×
〈(45)〉. The graph X is unique up to isomorphism. This graph is D20, the Dodecahedron.

Case 2. G ∼= PSL(2, 7), |V (X)| = 28. In this case X is a Sabidussi coset graph
X ∼= Sab (G,H,HuH) where |H| = 6 and u is a 2-element. Since PSL(2, 7) has one
class of subgroups of order 3 whose normalizer is isomorphic to S3. So PSL(2, 7) has one
class of S3 and H ∼= S3. We claim that every subgroup K ∼= S3 is contained in two
subgroups isomorphic to S4, whose intersection is K. To prove this we consider the action
of G = PSL(2, 7) ∼= GL(3, 2) on the Fano plane H. Assume that the points of H are
{(x, y, z)

∣∣ x, y, z ∈ GF(2)} and the lines of H are {[a, b, c]
∣∣ a, b, c ∈ GF(2)}, and that

(x, y, z) ∈ [a, b, c] ⇐⇒ ax + by + cz = 0. The point and the line stabilizers in G are all
isomorphic to S4. For example, the stabilizer of (1, 0, 0) in G is

M =








1 0 0
u v w
x y z




∣∣∣∣∣∣
u, v, w, x, y, z ∈ GF(2), vz − wy = 1




∼= S4, (2.1)

and the stabilizer of [1, 0, 0] in G is

N =








1 s t
0 v w
0 y z




∣∣∣∣∣∣
s, t, v, w, y, z ∈ GF(2), vz − wy = 1




∼= S4. (2.2)

It is easy to verify that the intersection of two point stabilizers or two line stabilizers has
order 4, and that the intersection of a point stabilizers and a line stabilizer has order 8 if
the point and the line are incident; has order 6 (and isomorphic to S3) if the point and the
line are not incident. The above examples M and N has intersection S3. In fact, we have

M ∩N =








1 0 0
0 v w
0 y z




∣∣∣∣∣∣
v, w, y, z ∈ GF(2), vz − wy = 1




∼= S3. (2.3)

Take H = M ∩N and u =

0@1 1 1
1 1 0
1 0 1

1A. Let X = Sab (G,H, HuH). We shall show that X

is the unique arc-transitive cubic Sabidussi coset graph with respect to G and its subgroup
H. Hence it is isomorphic to the Coxeter graph. First, it is easy to check that o(u) = 4.
Secondly, since M and N are the only maximal subgroups of G containing H, we have

〈H,u〉 = G. Thirdly, it is easy to calculate that H ∩ Hu =

8<:I,

0@1 0 0
0 0 1
0 1 0

1A9=;:= L. Since

|L| = 2, the valency of X is 3. Finally, we show that the only connected orbital graph of
valency 3 of G on Ω = [G : H] is X, where [G : H] is the set of right cosets of H in G. For
this, it is easy to see that u has six choices, that is, u±1, b−1u±1b and bu±1b−1, where b is
an element of order 3 in H, and these 6 elements give the same double coset HuH.

If Theorem 1.2(2) happens, we have

Lemma 2.2. If N is transitive on V (X), then G = N : Z3 and X ∼= Q3.
Proof. In this case X = Cay (N, S) and G ≤ NA(N), where A = Aut (X). This

implies Z3 ≤ Aut (N,S). Let Z3 = 〈α〉. Since |N | = 4p, N is one of the following:
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(1) N = D4p=〈a, b | a2p = b2 = 1, ab = a−1〉;
(2) N = Q4p = 〈a, b | a2p = 1, b2 = ap, ab = a−1〉;
(3) N = 〈a, b | ap = b4 = 1, ab = ak〉, p ≡ 1 (mod 4), k2 ≡ −1 (mod p);
(4) N is abelian.
Case (1). Since S−1 = S, S contains an involution. Since α cyclically permutes the

three elements in S, so all the elements in S are involutions and ap /∈ S. We may assume
that S = {b, bai, baj}. Since (aj)α = (bbaj)α = baib = a−i, we have o(ai) = o(aj), and
〈a〉 = 〈ai, aj〉. It follows that both i and j are coprime to 2p. Without loss of generality, we
may assume S = {b, ba, bak}. On the other hand, aα = (bba)α = babak = ak−1, (bak)α =
baak(k−1) = b. So ak2−k+1 = 1, 2p | k2 − k + 1, a contradiction.

Case (2). Since the generalized quaternion group has only one involution, N 6= 〈S〉,
and hence X is disconnected. So, no new graph occurs here.

Case (3). If (biaj)2 = 1, then b2ja(kj+1)i = 1, which implies that j = 2. This shows
that the elements in S has the form b2aj . We assume that S = {b2ai, b2aj , b2ak}. It is easy
to check that N 6= 〈S〉, and hence X is disconnected. Again, no new graph occurs here.

Case (4). Since N is abelian, one has N ∼= Z3
2, and X ∼= Q3.

Now assume that Theorem 1.2(3) happens. If p = 2, it is easy to see that X ∼= Q3, the
3-dimensional cube. If p 6= 2, taking the Sylow p-subgroup H of N , since N is semiregular,
H is characteristic in N and hence H CG. Consider the block graph X of X whose vertices
are the orbits of H. It is easy to see that X is a cycle of size 4. However, X is a covering
graph of X, X should have valency 2, a contradiction.

Finally assume that Theorem 1.2(4) happens. In this case N has more than two orbits
on V (X) and X is a covering graph of the block graph X given by the orbits of N . Since N
is semiregular, |N | = 2, 4 or p. If |N | = 4, |V (X)| = p is odd, which implies that the valency
of X is not 3, a contradiction. If |N | = p, X ∼= K4, X is a covering graph of K4 with covering
transformation group Zp. Lemma 2.3 will prove that X ∼= Q3. If |N | = 2, X has order 2p.
By Theorem 1.1, X ∼= K4, K3,3, G(2p, 3) or O3. We should work out all arc-transitive 2-fold
coverings of these graphs. For K4, Lemma 2.3 has done. For K3,3 and G(2p, 3), Lemmas
2.4 and 2.5 will prove that there are no such coverings, respectively. Finally for O3, [6]
has determined the only coverings are D20, the dodecahedron, and P (10, 3), the generalized
Petersen graph which is also the standard double covering of Petersen graph.

In the next three lemmas, for the unification of symbol usage with the graph covering
theory, we use X to denote block graph X, and use X̃ to denote the covering graph of the
block graph.

Lemma 2.3. Let X = K4, and the covering transformation group K = Zp, p a prime.
Then the arc-transitive regular covering X̃ ∼= Q3 and p = 2.

Proof. Take a spanning tree T of K4, see Fig. 1.

r4 r 3

r 2r1

r�
�
�
�
�

r 3@
@
@

@
@

r4 r 3

r 2r1
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@
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X T

Fig. 1

Let E0 = E(T ), E = E(X) \ E0. A+(E0) = {(1, 2), (1, 3), (1, 4)}, A+(E) = {(2, 3),
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(2, 4), (3, 4)}. Then the incidence matrix of fundamental cycles of X with respect to T is

P =

0@
(1, 2) (1, 3) (1, 4)

(2, 3) 1 −1 0
(2, 4) 1 0 −1
(3, 4) 0 1 −1

1A.

Take α = (12)(34), β = (234) ∈ Aut (X). By Equation (1.1) we let M = (a, b)t,
E1 = {23} and E2 = {24, 34}. Then

D0 = (−M, I2×2)P =
� (1, 2) (1, 3) (1, 4)

1− a a, −1
−b 1 + b −1

�
,

D = (D0,D1,D2) =
� (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

1− a a, −1 −a 1 0
−b 1 + b −1 −b 0 1

�
.

If arc-transitive coverings exist, then α, β can be lifted. By Equation (1.1),

0 = Dα
1 + Dα

2 M = (c23)α + (c24c34)αM

= (c14) + (c13c43)M

=
(−1
−1

)
+

(
a 0

1 + b −1

)(
a
b

)

=
(

a2 − 1
a + ab− b− 1

)
,

0 = Dβ
1 + Dβ

2M = (c23)β + (c24c34)βM

= (c34) + (c32c42)M

=
(

0
1

)
+

(
a −1
b 0

)(
a
b

)

=
(

a2 − b
ab + 1

)
.

So we have a2 ≡ 1 (mod p), a2 ≡ b (mod p), and hence b ≡ 1 (mod p); also we have
a + ab− b− 1 ≡ 0 (mod p) and ab + 1 ≡ 0 (mod p), we get a ≡ 3 (mod p). It follows from
ab + 1 ≡ 0 (mod p) that 4 ≡ 0 (mod p). Since p is a prime, we have p = 2 and X̃ ∼= Q3.

Lemma 2.4. Let X = K3,3, and the covering transformation group K = Z2. Then
the arc-transitive regular covering X̃ does not exist.

Proof. Take a spanning tree T of X; see Fig. 2.
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X T
Fig. 2
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Let E0 = E(T ), E = E(X) \ E0 and let

A+(E0) = {(1, 4), (1, 5), (1, 6), (2, 4), (3, 4)}, A+(E) = {(2, 5), (2, 6), (3, 5), (3, 6)}.
Then the incidence matrix of fundamental cycles of X with respect to T is

P =

0BB@
(1, 4) (1, 5) (1, 6) (2, 4) (3, 4)

(2, 5) 1 −1 0 −1 0
(2, 6) 1 0 −1 −1 0
(3, 5) 1 −1 0 0 −1
(3, 6) 1 0 −1 0 −1

1CCA.

Take α = (123) ∈ Aut (X). By Equation (1.1), we let M = (a, b, c)t, E1 = {25} and
E2 = {26, 35, 36}. Then

D0 = (−M, I3×3)P =

0@
(1, 4) (1, 5) (1, 6) (2, 4) (3, 4)

−a + 1 a −1 a− 1 0
−b + 1 b− 1 0 b −1
−c + 1 −c −1 c −1

1A.

D = (D0,D1,D2) =

0@
(1, 4) (1, 5) (1, 6) (2, 4) (3, 4) (2, 5) (2, 6) (3, 5) (3, 6)

−a + 1 a −1 a− 1 0 −a 1 0 0
−b + 1 b− 1 0 b −1 −b 0 1 0
−c + 1 −c −1 c −1 −c 0 0 1

1A.

If the arc-transitive coverings of X exist, then α can be lifted. By Equation (1.1),

0 = Dα
1 + Dα

2 M = (c25)α + (c26c35c36)αM

= (c35) + (c36c15c16)M

=

0@0
1
0

1A+

0@0 a −1
0 b− 1 0
1 c −1

1A0@a
b
c

1A
=

0@ ab− c

b2 − b + 1
a + bc− c

1A.

So b2 − b + 1 ≡ 0 (mod 2), which is a contradiction.

Lemma 2.5. Let X = G(2p, 3), and the covering transformation group K = Z2. Then
the arc-transitive regular covering X̃ does not exist.

Proof. First we assume that p > 7. In this case Aut (X) = (Zp : Z3) : Z2. If X has an
arc-transitive regular covering X̃, then Aut (X) can be lifted. So the fibre-preserving group
G has order 12p. Since p ≡ 1 (mod 3), G has normal Sylow p-subgroup P . Consider the
block graph X of X̃ relative to the orbits of P . Then X = K4. By Lemma 2.3, the only
arc-transitive covering graph of K4 with K = Zp is Q3, a contradiction.

Now we assume that p = 7. In this case X is the Heawood graph and A = Aut (X) =
PSL(2, 7) : Z2. It follows that A has arc-transitive automorphism group H of order 42, 168
and 336. We shall prove that these three kinds of groups cannot be lifted. If |H| = 42 and H

can be lifted, then the covering graph X̃ has an automorphism group of order 84. It follows
that the Sylow p-subgroup P of H is normal in H. The argument in the above paragraph
gives a contradiction. Now assume that |H| ≥ 168. We shall use the linear criterion in the
above two lemmas.

Let T be a spanning tree of the Heawood graph X; see Fig. 3.
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Let E0 = E(T ), E = E(X) \ E0, and let

A+(E0) = {(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (3, 7), (3, 8), (4, 9),
(4, 10), (5, 11), (7, 12), (9, 13), (10, 14)},

A+(E) = {(5, 12), (6, 13), (6, 14), (7, 13), (8, 11), (8, 14), (9, 11), (10, 12)}.

Then the incidence matrix of fundamental cycles of X with respect to T is

P =

0BBBBBBBBB@

(1, 2) (1, 3) (1, 4) (2, 5) (2, 6) (3, 7) (3, 8) (4, 9) (4, 10) (5, 11) (7, 12) (9, 13) (10, 14)

(5, 12) 1 −1 0 1 0 −1 0 0 0 0 −1 0 0
(6, 13) 1 0 −1 0 1 0 0 −1 0 0 0 −1 0
(6, 14) 1 0 −1 0 1 0 0 0 −1 0 0 0 −1
(7, 13) 0 1 −1 0 0 1 0 −1 0 0 0 −1 0
(8, 11) −1 1 0 −1 0 0 1 0 0 −1 0 0 0
(8, 14) 0 1 −1 0 0 0 1 0 −1 0 0 0 −1
(9, 11) −1 0 1 −1 0 0 0 1 0 −1 0 0 0
(10, 12) 0 −1 1 0 0 −1 0 0 1 0 −1 0 0

1CCCCCCCCCA
.

Take
α = (2, 3, 4)(5, 8, 9)(6, 7, 10)(14, 13, 12),

β = (1, 7, 10, 9, 6, 8, 5)(2, 3, 12, 4, 13, 14, 11) ∈ Aut (X).

By Equation (1.1), we let M = (a, b, c, d, e, f, g)t, and

E1 = {(5, 12)},
E2 = {(6, 13), (6, 14), (7, 13), (8, 11), (8, 14), (9, 11), (10, 12)}.

Then

D0 = (−M, I7×7)P

=

0BBBBBBBBBBBBBB@

(1, 2) (1, 3) (1, 4) (2, 5) (2, 6) (3, 7) (3, 8) (4, 9) (4, 10) (5, 11) (7, 12) (9, 13) (10, 14)

−a + 1 a −1 −a 1 a 0 −1 0 0 a −1 0

−b + 1 b −1 −b 1 b 0 0 −1 0 b 0 −1

−c 1 + c −1 −c 0 1 + c 0 −1 0 0 c −1 0

−d − 1 1 + d 0 −d − 1 0 d 1 0 0 −1 d 0 0

−e 1 + e −1 −e 0 e 1 0 −1 0 e 0 −1

−f − 1 f 1 −f − 1 0 f 0 1 0 −1 f 0 0

−g g − 1 1 −g 0 g − 1 0 0 1 0 g − 1 0 0

1CCCCCCCCCCCCCCA
.

D1 = (a, b, c, d, e, f, g)t,

D2 = I7×7.

If H can be lifted, then at least α, β can be lifted. By Equation (1.1),
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0 = Dα
1 + Dα

2 M

= (c(5,12))α + (c(6,13)c(6,14)c(7,13)c(8,11)c(8,14)c(9,11)c(10,12))αM

=

0BBBBBBB@
a2 − e
g + ab

b− e + ac
−f + ad
ae + 1

d + af − f
c + ag − a

1CCCCCCCA.

From this equation we have a = e ≡ 1 (mod 2), d = f ≡ 0 (mod 2), and the value of
b, c, g is 1 or 0 (mod 2). It follows that

0 = Dβ
1 + Dβ

2M

= (c(5,12))β + (c(6,13)c(6,14)c(7,13)c(8,11)c(8,14)c(9,11)c(10,12))βM,0BBBBBBB@
−1 + g
−1− c
−1 + g
b− 1
−c
−g
1

1CCCCCCCA = 0,

which is also a contradiction.

§ 3 . Final Remarks

1. When we finished the work in this note, we were told that Feng et. al. [8, Theorem
4.6] also obtained the same result. However, their work heavily relied on a census of arc-
transitive cubic graphs (see [2]) which used MAGMA and the aid of a computer. Our work
is purely mathematical.

2. The same methods used in this note can also be used in other classification problems
of arc-transitive cubic graphs. For example, we also get the following theorem, the proof of
it is omitted.

Theorem 3.1. Let X be a connected arc-transitive cubic graph of order 6p, p a prime.
Then X is one of the following:

(1) Two regular coverings of K3,3 with covering transformation groups Z3 and Zp;
(2) A 5-regular cubic graph of order 30 (see [1, p.125]);
(3) A vertex-primitive 4-regular cubic graph of order 102 found by Wong (see [16], and

also see [1, 18B]).

Acknowledgement. The work in this paper was done when the first author visited
Shanxi Teachers University.
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