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ETA INVARIANTS, DIFFERENTIAL CHARACTERS
AND FLAT VECTOR BUNDLES∗∗
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Abstract

The purpose of this paper is to give a refinement of the Atiyah-Singer families index
theorem at the level of differential characters. Also a Riemann-Roch-Grothendieck
theorem for the direct image of flat vector bundles by proper submersions is proved,
with Chern classes with coefficients in C/Q. These results are much related to prior
work of Gillet-Soulé, Bismut-Lott and Lott.
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§ 0 . Introduction and Main Theorems

The purpose of this paper is to establish a version of the Atiyah-Singer families index the-
orem (see [3]), where the Chern character takes its values in the C/Q differential characters
of Cheeger-Simons [16]. As a non trivial corollary, we obtain a version of a Riemann-
Roch-Grothendieck theorem for the direct image of complex flat vector bundles by proper
submersions, where the Chern classes are cohomology classes with coefficients in C/Q. This
last result complements a result of Bismut-Lott [14, Theorem 0.1] for the corresponding
imaginary parts.

Let π : M → B be a proper submersion, with a compact oriented spin even dimensional
fibre Z. Let THM be a vector subbundle of TM such that TM = THM ⊕ TZ. Let gTZ

be a metric on TZ. Let ∇TZ be the Euclidean correction on (TZ, gTZ) constructed in [6,
Section 1] which is canonically associated to (π, THM, gTZ). Let STZ be the Z2-graded
vector bundle of (TZ, gTZ) spinors. Let (ξ, gξ,∇ξ) be a complex hermitian vector bundle
with connection. Let DZ be the family of Dirac operators acting on smooth sections of
STZ ⊗ ξ along the fibres Z.

Assume that the dimension of ker DZ is locally constant, i.e. ker DZ is a vector bundle
on B. Then ker DZ inherits a natural L2 metric. Let ∇ker DZ

be the unitary connection
on kerDZ one obtains by projecting the unitary connection on the bundle of sections of
STZ ⊗ ξ along the fibres Z constructed in [6].

Let η̃ be the odd real form on B of [7] such that

dη̃ = π∗[Â(TZ,∇TZ)ch (ξ,∇ξ)]− ch (kerDZ ,∇kerDZ

). (0.1)

Manuscript received April 21, 2004.
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Let Ĥ(M,R/Q) be the ring of differential characters of Cheeger-Simons [16] with coef-
ficients in R/Q. If P is a characteristic polynomial with coefficients in Q, and if (E,∇E)
is a vector bundle equipped with a metric preserving connection, we denote by P̂ (E,∇E) ∈
Ĥ(M,R/Q) the differential character constructed in [16, Section 2], which lifts the obvious
Chern-Weil real closed form P (E,∇E). We use a similar notation on B.

Theorem 0.1. The following identity holds,

ĉh(kerDZ ,∇ker DZ

) + η̃ = π∗[A(TZ,∇TZ)ĉh(ξ,∇ξ)] in Ĥ(B,R/Q). (0.2)

In fact Theorem 0.1 is a straightforward consequence of the original expression given by
Cheeger-Simons for the eta invariant in terms of differential characters (see [16]), and of the
adiabatic limits results of Bismut-Cheeger [7] and Dai [17], of which (0.2) is a considerable
weakening.

Now we make the same assumptions as before, except that we no longer assume the fibres
Z to be oriented, spin, or even dimensional.

Let (F,∇F ) be a complex flat vector bundle on M . If P is taken as before, a simple
modification of [16] allows us to define P̂ (F,∇F ) ∈ Hodd(M,C/Q). Let e be the Euler class,
and c be the Chern class. Then ê(TZ,∇TZ)ĉ(F,∇F ) ∈Ĥ(M,C/Q) does not depend on the
choice of the Euclidean connection ∇TZ , and will just be denoted by ê(TZ)ĉ(F,∇F ).

Let H(Z, F|Z) be the direct image of F by π. Then H(Z, F|Z) is a complex Z-graded
vector bundle on M , equipped with a flat connection ∇H(Z,F|Z).

Theorem 0.2. If the orientation bundle o(TZ) is the lift of a Z2-line bundle on B, then

ĉ(H(Z, F|Z),∇H(Z,F|Z)) = π∗[ê(TZ)ĉ(F,∇F )] in Ĥ(B,C/Q). (0.3)

To establish Theorem 0.2, we use a result of Bismut-Lott [14, Theorem 0.1], which says
that in full generality, the imaginary parts of (0.3) coincide. As to the real parts, we use
essentially a version of Theorem 0.1, for another family of Dirac operator DZ,dR. Also, by
using a result of [14], we show that η̃ = 0, from which (0.3) follows.

We refer to the appendix by K. Corlette and H. Esnault for more precise statements
when (F,∇) is the trivial bundle with connection (C, d), so that Hi(Z,C) is equipped with
the classical Gauss-Manin connection. In fact when π is a proper submersion with orientable
fibres, then the total class ĉ(Hi(Z,C)⊕HdimZ−i(Z,C)) vanishes, and if π is a proper smooth
morphism of complex manifolds with Kähler fibres, then the total class ĉ(Hi(Z,C)) of the
individual Hi(Z,C) vanishes.

Theorem 0.1 has already appeared in the literature. In fact, in degree 1, (0.2) is a mod
(Q) version of the holonomy theorem of [9] (this mod (Q) version being quite easy, the
whole purpose of [9] being to lift the mod (Q) ambiguity). Also in [22], when M and B are
Kähler and ξ is holomorphic, Gillet and Soulé have given a proof of Theorem 0.1, based on
the classical Riemann-Roch-Grothendieck theorem, on the existence of Bott-Chern classes
(see [10]), of analytic torsion forms (see [11, 21], and the Hodge decomposition on B. Using
the existence of a map from their arithmetic Chow groups (see [18, 19]) to the differential
characters, they could give a direct verification of the weaker differential character version
of their conjectural formula for arithmetic Riemann-Roch in Arakelov geometry (see [20]).
This conjecture has later been proved in [21] for the first Chern class, using the analytic
results of [13].

It thus seems natural to write a simple proof of Theorem 0.1 in full generality in the
C∞ category, in which the objects appearing in (0.2) live naturally. Incidently note that
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the adiabatic limit argument which allows us to pass from [16] to Theorem 0.1 cannot be
extended to the Arakelov theoretic setting, even if one uses the results of [5] on the adiabatic
limit of the Ray Singer holomorphic torsion of a fibered manifold, the obstruction being the
Hodge conjecture.

In [23], Lott has developed a R/Z index theory, for the direct image of a virtual bundle
whose Chern character vanishes. The identity established in [23, Corollary 2] is an identity
of odd classes in H(B,R/Q), which is essentially equivalent to Theorem 0.1 when ch(ξ)
vanishes in H(M,Q). The formula of Lott [23] also contains the form η̃, and its proof uses
[7] and [17]. Finally, let us observe that in [23], by modifying the form η̃ “at infinity”, Lott
has extended his formula to the case where ker DZ is not necessarily a vector bundle on B.
A similar deformation argument can also be worked out in the context of Theorem 0.1.

When taking the direct image of a flat vector bundle F , the main point of Theorem 0.2
is that the form η̃ vanishes identically. Rather surprisingly, the work of Bismut-Lott [14],
which is essentially devoted to a refinement of the equality of the imaginary parts of (0.3) at
the level of differential forms, also provides us with the argument which shows the vanishing
of the form η̃.

This paper is organized as follows. In Section 1, we prove Theorem 0.1. In Section 2,
we construct differential characters with values in C/Q, and we recall a few properties of
the Euler class and of the corresponding Euler character. Finally in Section 3, we prove
Theorem 0.2.

§ 1 . Differential Characters and the η̃ Form

The purpose of this section is to establish Theorem 0.1. This result is a straightforward
application of a formula of Cheeger and Simon [16] for the eta invariants in terms of differ-
ential characters, and of the results on adiabatic limits of eta invariants of Bismut-Cheeger
[7] and Dai [17]. Also we discuss briefly the relation of Theorem 0.1 to corresponding results
of Gillet-Soulé [22].

This section is organized as follows. In (a), we briefly recall the construction by Cheeger
and Simons [16] of the differential characters. In (b), we state the result of [16] expressing
the eta invariant in terms of differential characters. In (c), we give the construction in [7] of
the form η̃. Finally in (d), we prove Theorem 0.1.

(a) The differential characters of Cheeger and Simons

Let M be a compact oriented manifold. Let A = R or C. Let

Ĥ•(M,A/Q) =
dim M⊕

0

Ĥk(M,A/Q)

be the ring of differential characters of Cheeger and Simons [16] with values in A/Q. To
make the reading of this paper easier, we briefly recall the definition of the differential
characters and some of their properties.

Let C•(M) (resp. C•(M)) be the group of singular chains (resp. cochains) in M . Let
Z•(M) ⊂ C•(M) be the subgroup of cycles in M . Let ΛA(M) be the set of smooth A-valued
differential form on M , let ΛA

0 (M) be the subgroup of smooth A-valued closed differential
forms on M with periods lying in Q. In particular, if ω ∈ ΛC

0 (M), Im(ω) is exact.
Put

Ĥ•(M,A/Q) = {f ∈ Hom(Z•(M),A/Q), df ∈ ΛA(M)}. (1.1)
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Let
∫

M
: Ĥ•(M,A/Q) → A/Q be the obvious evaluation map. Then by [16, Theorem

1.1], there are natural exact sequences

0 → H•(M,A/Q) → Ĥ•(M,A/Q) δ1→ ΛA
0 (M)[1] → 0,

0 → ΛA(M)
ΛA

0 (M)
→ Ĥ•(M,A/Q) δ2→ H•(M,Q)[1] → 0.

(1.2)

The construction of (δ1, δ2) is as follows. If f ∈ Ĥ(M,A/Q), let T be a A-valued cochain
whose A/Q reduction T̃ is such that T̃|Z = f . Then there is (ω, c) ∈ ΛA

0 (M) × Z•(M,Q)
such that

dT = ω − c. (1.3)

Let [c] ∈ H•(M,Q) be the class of c. Then by [16, Proof of Theorem 1.1],

δ1f = ω, δ2f = [c]. (1.4)

Also in [16, Section 1], Cheeger and Simons have constructed a ring structure on Ĥ(M,
A/Q), so that δ1 and δ2 are ring homomorphisms.

Assume now that A = R. Let (E, gE ,∇E) be a complex Hermitian vector bundle on M
with unitary connection. Let P be an invariant polynomial with rational coefficients. Let
P (E,∇E) ∈ ΛR

0 (M) be the corresponding Chern-Weil closed differential form, which repre-
sents the characteristic class P (E) ∈ Heven(M,Q). In [16, Section 2], Cheeger and Simons
have constructed a differential character P̂ (E,∇E) ∈ Ĥodd(M,R), which is “natural”, and
such that

δ1P̂ (E,∇E) = P (E,∇E). (1.5)

(b) Differential characters and the eta invariant

Let M be a compact oriented spin manifold of odd dimension. Let gTM be a Riemannian
metric on TM . Let ∇TM be the Levi-Civita connection on (TM, gTM ).

Let STM be the Hermitian bundle of (TM, gTM ) spinors. The connection ∇TM lifts to
a unitary connection ∇ST M

on STM .
Let ξ be a complex vector bundle on M , let gξ be a Hermitian metric on ξ and let ∇ξ

be a unitary connection on (ξ, gξ).
Let c(TM) be the Clifford algebra of (TM, gTM ), i.e., the algebra spanned by 1 and

X ∈ TM , with the commutation relations

XY + Y X = −2〈X, Y 〉, X, Y ∈ TM. (1.6)

Then STM ⊗ ξ is a c(TM) Clifford module.
Let DM be the Dirac operator acting on Γ(STM ⊗ ξ). Namely, if e1, · · · , en is an or-

thonormal frame in TM , then

DM =
n∑
1

c(ei)∇ST M⊗ξ
ei

. (1.7)

Let Sp(DM ) be the spectrum of DM . Let η(s) be the eta function of DM defined by
Atiyah-Patodi-Singer [2]. Namely, for s ∈ C, Re(s) À 0, set

η(s) =
∑

λ∈Sp(DM )
λ6=0

sgn(λ)
|λ|s . (1.8)
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By [2, Theorem 4.2], η(s) extends to a holomorphic function near s = 0. Set

η̄(s) =
1
2
(η(s) + dimkerDM ). (1.9)

Then η̄(0) is called the (reduced) eta invariant of DM .
Let Â and ch be the Hirzebruch genus and the Chern character respectively. Let

̂̂
A (TM,∇TM ), ĉh(ξ,∇ξ) denote the lifts in Ĥodd(M, R/Q) of the Chern-Weil represen-
tatives Â(TM,∇TM ), ch(ξ,∇ξ). Now, we recall a result of Cheeger and Simons [16].

Theorem 1.1. (Cheeger and Simons) The following identity holds,

η̄(0) =
∫

M

̂̂
A (TM,∇TM )ĉh(ξ,∇ξ) in R/Q. (1.10)

Proof. The proof of [16, Theorem 9.2] is an easy consequence of the index theorem of
Atiyah- Patodi-Singer for manifolds with boundary [2], and of the definition of the differential
characters.

(c) The local families index theorem and the form η̃

Let now π : M → B be a submersion of smooth manifolds with compact even dimensional
fibre Z. We assume that TZ is oriented and spin. Let gTZ be a metric on TZ. Let
STZ = STZ

+ ⊕ STZ
− be the corresponding Z2-graded Hermitian vector bundle of (TZ, gTZ)

spinors. Let ∇TZ
|Z be the Levi-Civita connection on (TZ, gTZ) along the fibres Z. The

connection ∇TZ
|Z induces a fibrewise connection ∇ST Z

|Z on STZ . Let ξ be a complex vector
bundle on M , let gξ be a Hermitian metric on ξ, and let ∇ξ be a unitary connection on ξ.
Let c(TZ) be the Clifford algebra of TZ. Then S ⊗ ξ is a c(TZ) Clifford module.

Definition 1.2. For b ∈ B, let Hb = H+
b ⊕H−

b be the vector space of smooth sections
of (STZ ⊗ ξ)|Zb

on Zb.

Then H = H+ ⊕H− is a Z2-graded vector bundle on B. Let dvZ be the volume form
along the fibre Z. We equip H with the L2 Hermitian product

s, s′ ∈ H → 〈s, s′〉 =
∫

Z

〈s, s′〉ST Z⊗ξdvZ . (1.11)

For b ∈ B, let DZ
b be the Dirac operator acting on Hb. If e1, · · · , en is an orthonormal frame

in TZ, then
DZ =

∑
c(ei)∇ST Z⊗ξ

|Z,ei
. (1.12)

Moreover DZ exchanges H+ and H−, so that

DZ =
[

0 DZ
−

DZ
+ 0

]
. (1.13)

Let THM be a subbundle of TM such that

TM = THM ⊕ TZ. (1.14)

Let PTZ : TM → TZ be the associated projection. Let ∇TZ be the connection on
(TZ, gTZ) associated to (THM, gTZ), which is constructed in [6, Theorem 1.9]. In other
words, let gTB be a metric on TB. Let

gTM = π∗gTB ⊕ gTZ (1.15)
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be the obvious metric on TM = THM ⊕ TZ. Let ∇TM,L be the Levi-Civita connection on
(TM, gTM ). Set

∇TZ = PTZ∇TM,L. (1.16)

Then by [6, Theorem 1.9], the connection ∇TZ does not depend on gTB . Also ∇TZ preserves
gTZ and restricts to the Levi-Civita connection ∇TZ

|Z along the fibres Z. Let ∇ST Z

be the
connection induced by ∇TZ on STZ .

If U ∈ TB, let UH be the lift of U in THM , so that π∗UH = U .

Definition 1.3. Let ∇H be the connection on H, such that if s is a smooth section of
STZ ⊗ ξ over M , if U ∈ TB, then

∇H
U s = ∇ST Z⊗ξ

UH s. (1.17)

If U ∈ TB, the Lie derivative operator LUH acts on the tensor algebra of TZ. If U ∈ TB,
let k(U) be given by

1
2
LUH dvZ = k(U)dvZ . (1.18)

Definition 1.4. Set
∇H,u = ∇H + k. (1.19)

Then the connection ∇H,u preserves the Hermitian product (1.11). If U, V ∈ TB, set

T (U, V ) = −PTZ [UH , V H ]. (1.20)

Now we use the superconnection formalism of Quillen [26]. First we recall the definition
of the Levi-Civita superconnection of [6, Section 3].

Definition 1.5. For t > 0, let At be the Levi-Civita superconnection on H,

At = ∇H,u +
√

tDZ − c(T )
4
√

t
. (1.21)

We fix once and for all a square root
√

i of i. Our formulas will not depend on this choice.
Let ϕ : Λ(T ∗M) → Λ(T ∗M) be given by α → (2πi)−degα/2α.

Definition 1.6. For t > 0, set

αt = ϕTrs[exp(−A2
t )]. (1.22)

By [6, Theorem 3.4], [8, Theorem 1.5], the forms αt are real, even, closed, and represent
ch(ker DZ

+ − kerDZ
−) in cohomology. In the sequel, the convergence of forms on B is taken

in the sense of uniform convergence over compact sets together with their derivatives. First
we recall the local families index theorems of [6, Theorems 4.12 and 4.16].

Theorem 1.7. As t → 0,

αt → α0 = π∗[Â(TZ,∇TZ)ch(ξ,∇ξ)]. (1.23)
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Definition 1.8. Set

βt = (
√

2iπ)−1ϕTrs

[( DZ

2
√

t
+

c(T )
8t3/2

)
exp(−A2

t )
]
. (1.24)

Now we recall some results of [11, Theorems 2.11 and 2.20] and [7, Theorem 4.35].

Theorem 1.9. The forms βt are odd and real. Moreover for t > 0,

∂αt

∂t
= −dβt. (1.25)

Finally, as t → 0,
βt = O(1). (1.26)

Assume now that kerDZ
+, kerDZ

− have locally constant dimension over B. Then they
form smooth complex vector bundles on B. Let P ker DZ

: H → kerDZ be the orthogonal
projection operator. Let gker DZ

be the metric on kerDZ induced by the Hermitian product
(1.6) on kerDZ .

Definition 1.10. Set
∇ker DZ

= P ker DZ∇H,u. (1.27)

Then ∇ker DZ

= ∇ker DZ
+ ⊕∇ker DZ

− preserves the metric gker DZ

= gker DZ
+ ⊕ gker DZ

− . Put

ch(kerDZ ,∇ker DZ

) = ch(ker DZ
+,∇ker DZ

+)− ch(kerDZ
−,∇ker DZ

−). (1.28)

Definition 1.11. Set
α∞ = ch(kerDZ ,∇kerDZ

). (1.29)

Now we recall a result of [4, Theorem 9.23].

Theorem 1.12. As t → +∞,

αt = α∞ +O
( 1√

t

)
,

βt = O
( 1

t3/2

)
.

(1.30)

Definition 1.13. Set

η̃ =
∫ +∞

0

βtdt. (1.31)

In view of Theorems 1.9 and 1.12, the form η̃ is well defined.

Theorem 1.14. The smooth odd real form η̃ is such that

dη̃ = π∗[Â(TZ,∇TZ)ch(ξ,∇ξ)]− ch(ker DZ ,∇ker DZ

). (1.32)

Proof. This follows immediately from Theorems 1.7, 1.9 and 1.12.

(d) Differential characters and the form η̃
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Theorem 1.15. The following identity holds,

ĉh(kerDZ ,∇ker DZ

) + η̃ = π∗[
̂̂
A (TZ ,∇TZ)ĉh(ξ,∇ξ)] in Ĥ(B,R/Q). (1.33)

Proof. We only need to prove (1.33) when B is orientable, the general case being
obtained by replacing B by an oriented double cover. Set

δ = ĉh(kerDZ ,∇ker DZ

) + η̃ − π∗[
̂̂
A (TZ,∇TZ)ĉh(ξ,∇ξ)]. (1.34)

In view of Theorem 1.14 and of [16, Theorem 1.1], it is clear that δ ∈ Hodd(B,R/Q). We
will prove that

δ = 0. (1.35)

Assume first that B is compact and of odd dimension, and also that B is oriented
and spin. Let (ξ′, gξ′ ,∇ξ′) be a complex vector bundle on B equipped with a metric gξ′

and a unitary connection ∇ξ′ . Let gTB be a metric on TB. Let gTM
ε be the metric on

TM = THM ⊕ TZ,

gTM
ε = π∗

gTB

ε
⊕ gTZ . (1.36)

Let ∇TM,L
ε be the Levi-Civita connection on (TM, gTM

ε ).
Clearly TM is oriented and spin. Let η̄ξ⊗π∗ξ′

ε (0) be the eta invariant of the Dirac operator
on M associated to the metric gTM

ε and the vector bundle (ξ⊗π∗ξ′,∇ξ⊗π∗ξ′). By Theorem
1.1,

η̄ξ⊗π∗ξ′
ε (0) =

∫

M

̂̂
A (TM,∇TM

ε )ĉh(ξ,∇ξ)π∗ĉh(ξ′,∇ξ) in R/Q. (1.37)

Let η̄ker DZ
±⊗ξ′(0) be the eta invariant of the Dirac operator on B associated to the metric

gTB and the vector bundle (ker DZ
± ⊗ ξ′,∇ker DZ

±⊗ξ′). Put

η̄ker DZ⊗ξ′(0) = η̄ker DZ
+⊗ξ′(0)− η̄ker DZ

−⊗ξ′(0). (1.38)

By proceeding as in [9, Equation (3.196)], we find that as ε → 0,

∫

M

̂̂
A (TM,∇TM

ε )ĉh(ξ,∇ξ)π∗ĉh(ξ′,∇ξ′) →
∫

B

̂̂
A (TB,∇TB)ĉh(ξ′,∇ξ′)π∗[

̂̂
A (TZ,∇TZ)ĉh(ξ,∇ξ)] in R/Q.

(1.39)

Now by the variational formula of [2], we know that as ε → 0, η̄ξ⊗π∗ξ′
ε (0) converges in R/Z.

More precisely, by results of Bismut-Cheeger [7, Theorem 4.35] and Dai [17, Theorem 0.1],
we find that as ε → 0,

η̄ξ⊗π∗ξ′
ε (0) →

∫

B

Â(TB,∇TB)ch(ξ′,∇ξ′)η̃ + η̄ξ′⊗ker DZ

(0) mod (Z). (1.40)

Strictly speaking, we cannot directly apply [7] or [17], since in [7], it is assumed that kerDZ =
0 and in [17], that kerDZ is a vector bundle, and that as ε → 0, the dimension of ker DM

ε

stabilizes. Here, in general, this assumption is not verified. However, as explained in [23,
Section 4], by a simple modification of the argument of [17], one shows easily that if one
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disregards small eigenvalues of DM
ε , one introduces an error in the evaluation of η̄ξ⊗π∗ξ′

ε (0),
which lies in Z, without modifying the rest of the argument. Also by Theorem 1.1, we get

η̄ker DZ⊗ξ′(0) =
∫

B

̂̂
A (TB, gTB)ĉh(ξ′,∇ξ)ĉh(kerDZ ,∇ker DZ

) in R/Q. (1.41)

From (1.37)–(1.41), we find that for any (ξ′,∇ξ′),

∫

B

̂̂
A (TB,∇TB)ĉh(ξ′,∇ξ′)δ = 0 in R/Q. (1.42)

Let cξ′ be an even cocycle in Heven(B,Q) representing Â(TB)ch(ξ). Then (1.36) is equivalent
to ∫

B

cξ′ t δ = 0 in R/Q. (1.43)

As ξ′ ∈ K0(B), the ch(ξ′) generate Heven(B,Q). Since Â is a stable class (i.e. Â(0) = 1),
as ξ′ ∈ K0(B), Â(TB)ch(ξ′) generates Heven(B,Q). By (1.43), we get (1.33).

In the case of a general manifold B, we proceed differently. In effect by a result of Thom
[27, Theorem 2.29], if h is any homology class, there is n ∈ Z and an oriented compact
submanifold S such that S represents nh.

So let h be an odd homology class and let S be an oriented compact submanifold taken
as before. Put

MS = π−1(S). (1.44)

Then MS is a compact oriented manifold, which fibres over S with compact fibre Z. If S is
spin, we proceed as before, and by following the arguments after (1.41), we get

δ = 0. (1.45)

If S is not spin, we replace the spin complex of S by the signature complex of [2]. The
only difference with respect to the previous arguments is that Â is replaced by the modified
genus of Hirzebruch L, which is still stable. Ultimately, we still get (1.45). The proof of our
theorem is completed.

Remark 1.16. It should be pointed out that when M and B are compact and Kähler,
and the vector bundle ξ is holomorphic, Gillet and Soulé [22] give an easy proof of (1.27).
Their proof uses the existence of analytic torsion forms and of Bott-Chern classes (see [10]),
and the Hodge decomposition.

The holonomy theorem of [9, Theorem 3.16] follows easily from (1.34). In degree 1, (1.27)
is a mod (Q) version of [9]. In [21], Gillet and Soulé get directly this mod (Q) version from
(1.27).

Also in [23], Lott has established a result closely related to Theorem 1.15, by considering
the case where the Chern character of the virtual bundle ξ vanishes. Then (1.27) becomes
an equation of cohomology classes with coefficients in R/Q. The formula of Lott [23] also
involves the form η̃, and its proof uses the adiabatic limit results of [7] and [17]. Note that in
[23], Lott also gives a formula when kerDZ is not a vector bundle on B. A similar extension
can be given of Theorem 1.15 along the lines of [23].
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§ 2 . Differential Characters, the Euler Class
and Flat Vector Bundles

This section is mostly technical. In (a) we recall the construction given in [16, Sec-
tion 3] of the Euler differential character. In (b) we modify the constructions of [16] in a
straightforward way to obtain differential characters valued in

C
Q
' R

Q
⊕R.

Finally in (c) we give more explicit formulas for the differential characters of flat vector
bundles. In the whole section, we use the notation of Section 1(a).

(a) The Euler differential character

Let X be a smooth manifold. Let E be a real oriented vector bundle on X. Let e(E) ∈
HdimE(X,Z) be the Euler class of E. If dim E is odd, e(E) is torsion. More precisely,

2e(E) = 0. (2.1)

Let ∇E be a metric preserving connection on E. Let e(E,∇E) ∈ ΛR,dimE(X) be the
Chern-Weil representative of e(E), and let ê(E,∇E) ∈ ĤdimE−1(X,R/Z) be the corre-
sponding lift of e(E,∇E). If dimE is odd, e(E,∇E) = 0. By [16, Theorem 1.1] (which is
Equation (1.2) with A = R, and Q replaced by Z), if dim E is odd,

ê(E,∇E) ∈ HdimE−1(X,R/Z). (2.2)

In particular ê(E,∇E) does not depend on ∇E .
Let S(E) be the sphere bundle on E. Let TS(E) be the relative tangent bundle to the

spheres S(E). Then TS(E) is of rank dim E− 1. Let e(TS(E)) be the corresponding Euler
class.

Now we establish a simple result in the manner of Cheeger-Simons [16, Section 3].
Let z ∈ ZdimE−1(X). Then by [16, Equation (3.1)], we can find y ∈ ZdimE−1(SE), w ∈

CdimE(X), with
z = π∗(y) + ∂w. (2.3)

Theorem 2.1. If dim E is odd, then

〈ê(E,∇E), z〉 = −1
2

∫

y

e(TS(E)). (2.4)

In particular
2ê(E,∇E) = 0 in H(X,R/Z). (2.5)

Proof. In [24, Section 7], using the Berezin integral formalism, Mathai and Quillen
have associated to any real orientable vector bundle E with a metric gE and an Euclidean
connection ∇E , a form ψ(E, gE ,∇E) on the sphere bundle S(E), of degree dim E − 1 such
that

dψ(E, gE ,∇E) = π∗e(E,∇E),
∫

S(E)

ψ(E,∇E) = −1. (2.6)

The construction of ψ(E, gE ,∇E) is functorial. It follows from (2.6) that modulo cobound-
aries, ψ(E, gE ,∇E) only depends on ∇E , and not on gE . We identify X to the zero section
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of E. Let δX be the current of integration on X. In [28, Section 3], ψ(E, gE) has been
extended to a current on E, such that

dψ(E, gE ,∇E) = π∗e(E,∇E)− δX , (2.7)

from which the second identity (2.6) follows.
Now we proceed as in [16, Section 3]. Take z, y, w as in (2.3). Assume that dim E is odd.

Set

χ̂(E,∇E)(z) =
∫

y

ψ(E, gE ,∇E) ∈ R/Z. (2.8)

We claim that (2.8) is well defined. In effect if z = 0, then

π∗(y) = −∂w. (2.9)

and so by [16, Equation (3.1)] , there is y′ ∈ ZdimE(SE), and k ∈ Z such that if SdimE−1 is
one fibre SE,

y = ∂y′ + kSdimE−1. (2.10)

From (2.6), (2.8) and (2.10), we deduce that

χ̂(E,∇E)(z) ∈ Z. (2.11)

So (2.8) is well defined.
From (1.4) and the equation of currents (2.7), we find easily that, with the notation of

[16],

δ1χ̂(E,∇E) = 0,

δ2χ̂(E,∇E) = e(E) in H(X,Z). (2.12)

Using (2.12) and universality [16, Theorem 2.2], we deduce as in [16, Section 3] that

χ̂(E,∇E) = ê(E,∇E) in H(X,R/Z). (2.13)

Moreover by a simple calculation given in [15, Equation (6.20)] (where∇f should be formally
replaced by the tautological section of E over SE), we find that on SE,

ψ(E, gE ,∇E) = −1
2
e(TS(E)) mod coboundaries. (2.14)

From (2.13) and (2.14), we get (2.4). Equation (2.5) follows (2.4).

Remark 2.2. Of course (2.1) and (2.5) are compatible. Note that (2.5) can be proved
directly by the same argument as in [16, Proposition 8.12], where only flat vector bundles
were considered.

Let µ be a Z2-line bundle. Let C•(X, µ), and C•(X, µ) be the groups of chains and
cochains with coefficients in µ. Let Z•(X,µ) be group of cycles in C•(X, µ). Let Λ be the
group of smooth differential forms on X with values in µ.

Set
Ĥ(X,R/Z⊗ µ) = {f ∈ Hom(Z•(X, µ),R/Z), ∂f ∈ Λ}. (2.15)



26 J. M. BISMUT

If µ is non trivial, another description of Ĥ(X,R/Z⊗µ) is as follows. Let ρ : T → X be
a double covering of X on which ρ∗µ is trivial. Then T has a natural involution ε. Clearly

Ĥ(X,R/Z⊗ µ) = [Ĥ(T,R/Z)]antiinvariant. (2.16)

Let now E be a real vector bundle on X, and assume that E is non-orientable. Let
ρ : T → X be the double covering of X associated to the orientation bundle o(E). Then
ê(ρ∗(E,∇E)) ∈ [Ĥ(T,R/Z)]antiinvariant. Let ê(E,∇E) be the corresponding differential char-
acter in Ĥ(X,R/Z⊗ o(E)).

(b) Differential characters with values in C/Q

Let X be a smooth manifold. Since

C
Q

=
R
Q
⊕R,

if f ∈ Ĥ(X,C/Q), then f can be written uniquely as

f = g + ih, g ∈ Ĥ(X,R/Q), h ∈ ΛR(X)

dΛR(X)
. (2.17)

Let (E,∇E) be a complex vector bundle with connection over X. If ∇E preserves a
metric gE , as we saw in Section 1(a), Cheeger and Simons [16, Section 2] have associated
to an invariant polynomial P with rational coefficients a differential character P̂ (E,∇E) ∈
Ĥ(X,R/Q). Strictly speaking, the construction given in [16] does not work for non metric
connections, since the theorem of Narasimhan-Ramanan [25] used in [16] does not apply to
non metric connections. However if ∇E,u is a metric preserving connection on E, there is
an unambiguously defined Chern-Simons form P̃ (E,∇E ,∇E,u) in ΛC(X)

dΛC(X)
such that

dP̃ (E,∇E ,∇E,u) = P (E,∇E,u)− P (E, ∇E). (2.18)

Also P̃ (E,∇E ,∇E,u) is functorial.
Let P̂ (E,∇E) ∈ Ĥ(X,C/Q) be given by

P̂ (E,∇E) = P̂ (E,∇E,u)− P̃ (E,∇E ,∇E,u). (2.19)

One verifies easily that P̂ (E,∇E) does not depend on ∇E,u.
Let ck be the kth Chern class, associated to the kth symmetric function σk (1 ≤ k ≤

dimE). Then one has the trivial identities

ĉk(E∗,∇E∗) = ĉk(E,∇E),

ĉk(E∗,∇E∗) = (−1)k ĉk(E,∇E),

ĉk(E,∇E) = (−1)k ĉk(E,∇E). (2.20)

(c) Differential characters and flat vector bundles

Assume now that (F,∇F ) is a flat complex vector bundle. Then

δ1P̂ (F,∇F ) = 0, (2.21)
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and so by (1.2), P̂ (F,∇F ) ∈ H(X,C/Q).
Let gF be a Hermitian metric on F . Set

ω(F, gF ) = (gF )−1∇F gF . (2.22)

Then ω(F, gF ) is a 1-form with values in self-adjoint endomorphisms of F . By [14, Propo-
sition 1.3], we know that for any k ∈ N∗,

Tr[ω2k(F, gF )] = 0. (2.23)

For k ∈ N, set

dk(F, gF ) =
1

(2πi)k−1
Tr[ω2k−1(F, gF )]. (2.24)

Then by [14, Theorems 1.8 and 1.11], the dk(F, gF ) are real closed forms and their coho-
mology class dk(F ) do not depend on gF .

Let ∇F,u be the connection

∇F,u = ∇F +
1
2
ω(F, gF ). (2.25)

Then ∇F,u preserves the metric gF . Also

(∇F,u)2 = −1
4
ω2(F, gF ). (2.26)

From (2.23) and (2.26), we get

ch(F,∇F,u) = rk(F ). (2.27)

Now we state a result of [14, Proposition 1.14].

Theorem 2.3. The following identities hold

Re ĉh(F,∇F ) = ĉh(F,∇F,u) in Hodd(X,R/Q),

Im ĉh(F,∇F ) = − 1
4π

+∞∑

k=1

(k − 1)!
(2k − 1)!

dk(F ) in Hodd(X,R). (2.28)

Proof. [14, Proposition 1.14] only gives the second equality (2.29). However the proof
of [14, Proposition 1.14] and (2.19) show that the first identity in (2.29) also holds.

If (F,∇F ), (F ′,∇F ′) are flat, if P and P ′ are invariant polynomials with rational coeffi-
cients, and have no constant term, by [16, Proposition 8.7],

P̂ (F,∇F )P̂ ′(F ′,∇F ′) = 0 in H(X,C/Q). (2.29)

§ 3 . Differential Characters, Flat Vector Bundles
and Direct Images

The purpose of this section is to establish Theorem 0.2. Namely, if π : M → B is a
proper submersion, if F is a flat vector bundle on B, we calculate the Chern class of Rπ∗F
in H(B,C/Q) in terms of the corresponding classes of F in H(M,C/Q). The imaginary
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part of the corresponding classes is easily dealt with by a result of Bismut-Lott [14]. A
modification of Theorem 0.1 allows us to treat the R/Q part of the equality.

This section is organized as follows. In (a), we describe the geometric setting. In (b), in
full generality, we show the equality of the imaginary part in (0.3). In (c), we establish the
corresponding equality of the R/Q parts, when the fibres of Z are locally orientable over B.
Finally in (d), we give a weaker version of Theorem 0.2 when this assumption is not verified.
In this section, we use the notation of Sections 1 and 2.

(a) A proper submersion

Let π : M → B be a submersion of smooth manifolds, with compact fibre Z. Let (F,∇F )
be a complex flat vector bundle on M .

Let H(Z, F|Z) be the complex Z-graded vector bundle on B, such that for any b ∈ B,

H(Z, F|Z)b = H(Zb, F|Zb
). (3.1)

The Z- graded vector bundle H(Z,F|Z) is equipped with a flat connection ∇H(Z,F|Z).
Let

c = 1 + c1 + · · ·+ ck + · · · (3.2)

be the Chern polynomial. Set

ĉ(H(Z,F|Z)) =
dimZ∑

i=0

(−1)iĉ(Hi(Z, F|Z)) ∈ Ĥ(M,C/Q). (3.3)

By [16, Theorem 1.1] (which is quoted in (1.2), with Q now replaced by Z), since ĉ(F,∇F ) ∈
H(M,C/Z), if ∇TZ is any metric preserving connection on TZ,

ê(TZ,∇TZ)ĉ(F,∇F ) ∈ H(M,C/Z). (3.4)

In particular, ê(TZ,∇TZ)ĉ(F,∇F ) does not depend on ∇TZ . From now on, we will write
ê(TZ)ĉ(F,∇F ) instead of ê(TZ,∇TZ)ĉ(F,∇F ).

By Theorem 2.1, if dim Z is odd,

2ê(TZ)ĉ(F,∇F ) = 0 in H(M,C/Z). (3.5)

(b) The imaginary part of the C/Q classes

We recall a result of Bismut-Lott [14, Theorem 0.1].

Theorem 3.1. The following identity holds,

Im ĉ(H(Z, F|Z),∇H(Z,F|Z ) = π∗[ê(TZ) Im ĉ(F,∇F )] in H(B,R). (3.6)

Proof. Let gF be a Hermitian metric on F . Let nk(x1, · · · , xq) be the Newton polyno-
mial

nk(x1, · · · , xq) =
q∑
1

xk
i . (3.7)

Then by (2.28), we find that

Im
n̂k

k!
(F,∇F ) = − 1

4π

(k − 1)!
(2k − 1)!

dk(F ) in H2k−1(M,R). (3.8)
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Also using Newton’s formulas and (2.29), we see easily that

ĉk(F,∇F ) =
(−1)k−1

k
n̂k(F,∇F ) in H(M,C/Q). (3.9)

By a result of [14, Theorem 0.1], we know that for any k ∈ N,

dk(H(Z, F|Z)) = π∗[c(TZ)dk(F )] in H(B,R). (3.10)

From (3.9)–(3.11), we get (3.6).

(c) The real part of the C/Q classes

Theorem 3.2. If o(TZ) is the lift to M a Z2-line bundle on B, then

ĉ(H(Z, F|Z),∇H(Z,F|Z)) = π∗[ê(TZ)ĉ(F,∇F )] in H(B,C/Q). (3.11)

In particular, if dim Z is odd, under the same assumptions as before,

ĉ(H(Z, F|Z),∇H(Z,F|Z)) = 0 in H(B,C/Q). (3.12)

Proof. By Theorem 3.1, we only need to show that the real parts of (3.11) coincide.
Let gF be a Hermitian metric on F . Recall that the metric preserving connection ∇F,u was
defined in (2.25). Let gTZ be a metric on the relative tangent bundle TZ.

For b ∈ B, let Eb be the vector space of smooth sections on Λ(T ∗Z) ⊗ F on Zb. Then
the Eb’s are the fibres of an infinite dimensional vector bundle E on B. The metrics gTZ , gF

induce an L2 Hermitian product on the fibres of E.
Let dZ be the fibrewise de Rham operator acting on E, let dZ∗ be the formal adjoint of

dZ . Put
DZ,dR = dZ + dZ∗. (3.13)

By Hodge theory, for every b ∈ B,

H(Zb, F|Zb
) ' kerDZb,dR. (3.14)

As a subbundle of E, kerDZ,dR inherits a Hermitian metric from the L2 metric of E. Let
gH(Z,F|Z) be the corresponding Hermitian metric on H(Z,F|Z).

Then (H(Z,F|Z), gH(Z,F|Z)) is a flat Z-graded Hermitian vector bundle on B. Therefore
we can construct on B objects which are the obvious analogues of the ones we constructed
for F in (2.22)–(2.25).

By (2.27),
δ1ĉh(F,∇F,u) = 0

and so by (1.2),
ĉh(F,∇F,u) ∈ H(M,R/Q). (3.15)

By (3.15), we find that ê(TZ)ĉh(F,∇F,u) is a well-defined element of H(M,R/Q). Similarly,
ĉh(H(Z, F|Z),∇H(Z,F|Z),u) ∈ H(B,R/Q).

Put

δ = ĉh(H(Z,F|Z),∇H(Z,F|Z),u)− π∗[ê(TZ)ĉh(F,∇F,u)] ∈ H(B,R/Q). (3.16)

We will show that
δ = 0 in H(B,R/Q). (3.17)
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By using Theorem 2.3 and (3.17), (3.11) will follow.
Let ∇TZ be the Levi-Civita connection on (TZ, gTZ). Of course ∇TZ is only defined

fibrewise. Let ∇Λ(T∗Z)⊗F,u be the connection on Λ(T ∗Z) ⊗ F along the fibres Z, induced
by ∇Z and ∇F,u.

Recall that Λ(T ∗Z) is a left and right TZ Clifford module. Namely by identifying TZ
and T ∗Z, if X ∈ TZ, put

c(X) = X ∧ −iX ,

ĉ(X) = X ∧+iX .
(3.18)

Then if X, Y ∈ TZ,

c(X)c(Y ) + c(Y )c(X) = −2〈X, Y 〉,
ĉ(X)ĉ(Y ) + ĉ(Y )ĉ(X) = 2〈X,Y 〉,
c(X)ĉ(Y ) + ĉ(Y )c(X) = 0. (3.19)

Let e1, · · · , en be an orthonormal frame in TZ. Let DZ be the operator

DZ =
n∑
1

c(ei)∇Λ(T∗Z)⊗F,u
ei

. (3.20)

Then DZ is a standard Dirac operator acting on E, which is self-adjoint with respect to the
L2 Hermitian product of E.

Let V be the operator

V = −1
2

n∑
1

ĉ(ei)ω(F, gF )(ei). (3.21)

We recall a result from [15, Proposition 4.12].

Proposition 3.3. The following identity holds,

DZ,dR = DZ + V. (3.22)

Let THM be a smooth subbundle of TM such that

TM = THM ⊕ TZ. (3.23)

1. The case where dim Z is even and TZ is oriented

Assume that dim Z is even and TZ is oriented. For simplicity, we first assume that B is
odd dimensional, compact, oriented and spin.

Let gTB be a Riemannian metric on TB. We equip TM = THM ⊕ TZ with the metric

gTM = π∗gTB ⊕ gTZ . (3.24)

Let (ξ′, gξ′ ,∇ξ′) be a vector bundle on B equipped with a metric gξ′ and a unitary connection
∇ξ′ .

Let STB be the vector bundle on B of the (TB, gTB) spinors. Then STB is a TB-Clifford
module.
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If X ∈ TZ, c(X), ĉ(X) act naturally on Λ(T ∗Z)⊗π∗STB . Let N be the number operator
of Λ(T ∗Z). If f ∈ TB, we make c(f) act on Λ(T ∗Z)⊗ π∗STB by the formula

c(f) = (−1)N ⊗ c(f). (3.25)

It is then trivial to see that with these conventions, if X, Y ∈ TM , the analogue of (3.22)
holds, so that Λ(T ∗Z)⊗̂π∗STB is a left TM -Clifford module. In particular, c(f) anti-
commutes with the c(X), ĉ(X) (X ∈ TZ). Assume temporarily that TZ is spin. Let
STZ = STZ

+ ⊕ STZ
− be the corresponding vector bundle of (TZ, gTZ) spinors. Then

Λ(T ∗Z) = STZ⊗̂STZ∗. (3.26)

Also, STM = π∗STB⊗̂STZ is the vector bundle of (TM, gTM ) spinors.
Let ∇TM,L be the Levi-Civita connection on (TM, gTM ). Then ∇TM,L induces a unitary

connection ∇ST M

on STM . Let ∇TB be the Levi-Civita connection on (TB, gTB), and let
∇ST B

be the induced connection on STB .
Let ∇TZ be the connection on TZ constructed in [6, Theorem 1.9] (and briefly described

in Section 1(c)) which is associated to (THM, gTZ). As the notation indicates, ∇TZ restricts
to the previously considered Levi-Civita connection along the fibres Z. Then ∇TZ induces
a unitary connection ∇ST Z∗

on STZ∗, and a connection ∇Λ(T∗Z) on Λ(T ∗Z).
Let ∇Λ(T∗Z)b⊗π∗ST B ,L be the connection on Λ(T ∗Z)⊗̂π∗STB = STM ⊗̂STZ∗ induced

by ∇ST M

and ∇ST Z∗
. Let ∇Λ(T∗Z)b⊗π∗ST B

be the connection on Λ(T ∗Z)⊗̂π∗STB induced
by ∇Λ(T∗Z) and ∇ST B

.
Let e′1, · · · , e′n+m be an orthonormal frame in TM . Let 〈S( · ) · , · 〉 be the (0, 3) tensor

constructed in [6, Section 1] which is associated to (THM, gTZ). Then

∇Λ(T∗Z)b⊗π∗ST B ,L = ∇Λ(T∗Z)b⊗π∗ST B

+
1
4
〈S( · )e′i, e′j〉c(e′i)c(e′j). (3.27)

Let ∇u (resp. ∇L,u) be the connection on Λ(T ∗Z)⊗̂F ⊗ π∗(STB ⊗ ξ′) induced by

∇Λ(T∗Z), ∇F,u, ∇π∗ST B

, ∇ξ′ (resp. ∇Λ(T∗Z)⊗π∗ST B ,L, ∇F,u, ∇ξ′).

Definition 3.4. Let DM be the Dirac operator acting on smooth sections of Λ(T ∗Z)⊗
F ⊗ π∗(STB ⊗ ξ′) over M ,

DM =
n+m∑

1

c(e′i)∇L,u
e′i

. (3.28)

Recall that the operator DZ acting fibrewise is defined in (3.20). Clearly, the operator
DZ also acts on smooth sections of Λ(T ∗Z) ⊗ F ⊗ π∗(STB ⊗ ξ′). Let e1, · · · , en be an
orthonormal frame in TZ. If U ∈ TB, set as in (1.18),

1
2
LUH dvZ = k(U)dvZ . (3.29)

Let f1, · · · , fn be an orthonormal frame in TB. Set

DH = c(fα)(∇u
fH

α
+ k(fH

α )). (3.30)

Put
c(T ) =

1
2
〈TH(fH

α , fH
β ), ei〉c(fα)c(fβ)c(ei). (3.31)
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Then by proceeding as in [7, Equation (4.26)], we get

DM = DH + DZ − c(T )
4

. (3.32)

The operator DZ,dR constructed in (3.16) also acts on smooth sections of Λ(T ∗Z) ⊗ F ⊗
π∗(STB ⊗ ξ′). Let D′M be the operator

D′M = DH + DZ,dR − c(T )
4

. (3.33)

Let η̄DM

(0), η̄D′M
(0) be the eta invariants associated to DM , D′M .

Proposition 3.5. The following identity holds,

η̄DM

(0) = η̄D′M
(0) mod (Z). (3.34)

Proof. By (3.13), (3.22), (3.32) and (3.33),

D′M = DM + V. (3.35)

Now V is a matrix valued operator anticommuting with the c(X) (X ∈ TM).
Using the variation formula for the eta invariant (see [2]), and local index theory tech-

niques as in [7, Proof of Theorem 2.7], we get (3.34).

Put

B(x1, · · · , xq) =
q∏
1

2 sinh
(xi

2

)
. (3.36)

Theorem 3.6. The following identity holds,

η̄D′M
(0) =

∫

M

̂̂
A (TM,∇TM )B̂(TZ,∇TZ)ĉh(F,∇F,u)π∗ĉh(ξ′,∇ξ′) in R/Q. (3.37)

Proof. Let D̃M
± be the standard Dirac operator acting on smooth sections of STM ⊗̂STZ∗

±
⊗π∗ξ′, which is associated to the metric gTM and to the connections ∇ST Z∗

± ,∇ξ′ . Then by
[7, Equation (4.26)], D̃M

± verifies the obvious analogue of (3.32). Let D̃M be the operator
acting or smooth sections of STM ⊗̂STZ∗ ⊗ π∗ξ′,

D̃M =

[
D̃M

+ 0
0 −D̃M

−

]
. (3.38)

Let τ be the operator defining the grading of STZ . If f ∈ TB, the natural action of c(f)
on STM is given by

c(f) = c(f)⊗ τ. (3.39)

We claim that DM is unitarily equivalent to D̃M . In fact, let τ ′ be the operator defining
the Z2-grading of STZ∗. Clearly

(−1)N = τ⊗̂τ ′. (3.40)

By (3.25), (3.32) and (3.40),

τ−1DMτ = DH −DZ +
c(T )

4
. (3.41)
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By (3.25), (3.32), (3.39)–(3.41), we get

DM
+ = D̃M

+ ,

τ−1DM
− τ = −D̃M

− .
(3.42)

By (3.42), we see that DM and D̃M are unitarily equivalent. In particular,

η̄DM

(0) = η̄
eDM

+ (0)− η̄
eDM
− (0) mod (Z). (3.43)

By a result of [16, Theorem 9.2] (see Theorem 1.1),

η̄
eDM
± (0) =

∫

M

̂̂
A (TM,∇TM )ĉh(STZ∗

± ,∇ST Z∗
± )ĉh(F,∇F,u)π∗ĉh(ξ′,∇ξ′). (3.44)

So using (3.44), we get

η̄DM

(0) =
∫

M

̂̂
A (TM,∇TM )(ĉh(STZ∗

+ ,∇ST Z∗
+ )− ĉh(STZ∗

− ,∇ST Z∗
− ))

· ĉh(F,∇F,u)π∗ĉh(ξ′,∇ξ′) in R/Q. (3.45)

Now by [1, p.484],

ch(STZ∗
+ ,∇ST Z∗

+ )− ch(STZ∗
− ,∇ST Z∗

− ) = B(TZ,∇TZ). (3.46)

Using Proposition 3.5, (3.45) and (3.46), we get (3.37). The proof is completed.

Now we replace gTB by gT B

ε , for ε > 0. We introduce the subscript ε to indicate the
dependence on the parameter ε > 0. From (3.37), we get

η̄D′M
ε (0) =

∫

M ′

̂̂
A (TM,∇TM

ε )B̂(TZ,∇TZ)ĉh(F,∇F,u)π∗ĉh(ξ′,∇ξ′) in R/Q. (3.47)

By proceeding as in [9, Equation (3.196)] and in (1.39), we find that as ε → 0,
∫

M ′

̂̂
A (TM,∇TM

ε )B̂(TZ,∇TZ)ĉh(F,∇F,u)π∗ĉh(ξ′,∇ξ′)

→
∫

B

̂̂
A (TB,∇TB)ĉh(ξ′,∇ξ′)π∗[ê(TZ,∇TZ)ĉh(F,∇F,u)] in R/Q. (3.48)

Let∇E,u be the unitary connection on E, which is the obvious analogue of the connection
∇H,u of Definition 1.4. Let AdR

t be the analogue of the superconnection At in (1.21), i.e.,

AdR
t = ∇E,u +

√
tDZ,dR − c(T )

4
√

t
· (3.49)

Since DZ,dR is a perturbation of DZ by the matrix valued operator V , which anticommutes
with the c(X)’s (X ∈ TZ), by proceeding as in [7, Proof of Theorem 2.7], one verifies easily
that the superconnection AdR

t is as good as the superconnection At from the point of view
of the local families index theorem of [6].
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By [14, Proposition 3.14], the orthogonal projection of the connection ∇E,u on kerDZ,dR

' H(Z, F|Z) coincides with ∇H(Z,F|Z),u.
Let DB be the Dirac operator on B acting on smooth sections of STB ⊗H(Z, F|Z)⊗ ξ′,

where STB ⊗H(Z,F|Z) ⊗ ξ′ is equipped with the obvious unitary connection. Let η̃dR be
the analogue of the form η̃ constructed in Definition 1.13, which is now associated to the
superconnection AdR

t . Then the analogue of (1.32) is

dη̃dR = π∗[e(TZ,∇TZ)ch(F,∇F,u)]− ch(H(Z, F|Z),∇H(Z,F|Z),u). (3.50)

Using (2.27) and (3.50), we find that

dη̃dR = 0. (3.51)

We claim that the arguments of Bismut-Cheeger [7] and Dai [17] still apply to η̄D′M
ε (0)

as ε → 0. In effect, as explained before, the perturbation of DZ by V is irrelevant from the
point view of local index theory. Moreover kerDZ,dR is a vector bundle on B. Using the
analogue of (1.40), we find that as ε → 0,

η̄D′M
ε (0) →

∫

B

Â(TB,∇TB)ch(ξ′,∇ξ′)η̃dR + η̄DB

(0) mod (Z). (3.52)

Again, by Theorem 1.1,

η̄DB

(0) =
∫

B

̂̂
A (TB,∇TB)ĉh(H(Z,F|Z),∇H(Z,F|Z),u)ĉh(ξ′,∇ξ′) in R/Q. (3.53)

Theorem 3.7. The following identity holds,

η̃dR = 0. (3.54)

Proof. By [14, Theorem 3.15], we know that

ϕTrs{exp−AdR,2
t } = rk(F )χ(Z). (3.55)

By understanding (3.55) correctly, we can derive from (3.49) that for t > 0,

Trs

[(DdR

2
√

t
+

c(T )
8t3/2

)
exp(−AdR,2

t )
]

= 0. (3.56)

Let us give a direct proof of (3.56). By [14, Equations (3.49), (3.50)], there are supercon-
nection A′t, A

′′
t such that

A′2t = 0, A′′2t = 0, AdR
t =

1
2
(A′′t + A′t). (3.57)

By [14, Equation (3.57)],
∂A′t
∂t

=
[N

2t
, A

′
t

]
,

∂A′′t
∂t

= −
[N

2t
, A

′′
t

]
.

(3.58)

Set
Bt =

1
2
(A′′t −A′t). (3.59)



ETA INVARIANTS, DIFFERENTIAL CHARACTERS AND FLAT VECTOR BUNDLES 35

From (3.57)–(3.59), we get

B2
t = −AdR,2

t ,
∂AdR

t

∂t
=

[
− N

2t
, Bt

]
. (3.60)

Now Bt is a fibrewise differential operator. Using (3.60) and the fact that supertraces vanish
on supercommutators [26], we obtain

Trs

[∂AdR
t

∂t
exp(−AdR,2

t )
]

= Trs

[[
Bt,

N

2t

]
exp(B2

t )
]

= Trs

[[
Bt,

N

2t
exp(B2

t )
]]

= 0, (3.61)

which is just (3.56). The proof of our theorem is completed.

By (3.16), (3.47), (3.48), (3.52)–(3.54), we get
∫

B

̂̂
A (TB,∇TB)ĉh(ξ′,∇ξ′)δ = 0. (3.62)

The proof of (3.17) continues as the proof of Theorem 1.15. Thus we obtain Theorem 3.2.
This argument still applies to the case of a general manifold B.

2. The case where dim Z is odd and TZ is oriented

Now we assume that dim Z is odd and TZ is oriented. Again, we first assume that B is
odd dimensional, compact, orientable and spin. We still introduce the objects appearing in
(3.28), (3.33).

Theorem 3.8. The following identity holds,

η̄DM

(0) = η̄D′M
(0) mod (Z), η̄DM

(0) = 0 mod (Z/2). (3.63)

Proof. For 0 ≤ s ≤ 1, set
DM

s = DM + sV. (3.64)

Let η̄DM
s (0) be the eta invariant of DM

s . Then by [2], the derivative modZ of η̄DM
s (0) is

exactly the constant term in the asymptotic expension as t → 0 of
√

tTr[V exp(−tDM,2
s )]. (3.65)

However since dim M is even, this constant term vanishes.
Let e1, · · · , en be an oriented orthonormal frame in TZ. Set

ρ = ĉ(e1) · · · ĉ(en). (3.66)

Then clearly
∇Λ(T∗Z)⊗F,uρ = 0. (3.67)

Moreover since n is odd, using (3.19), it is clear that if X ∈ TM, c(X) anticommutes with
ρ, and if Y ∈ TZ, ĉ(Y ) commutes with ρ. It follows that DM anticommutes with ρ. So if
λ lies in the spectrum of DM ,−λ also lies in the spectrum, and so

η̄DM

(0) =
1
2
dimkerDM . (3.68)

The proof is completed.
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Remark 3.9. In general D′M does not anticommute with ρ.

As before, we replace gTB by gT B

ε with ε > 0. From Theorem 3.8, we get

η̄DM
ε (0) = 0 mod (Z/2). (3.69)

By Hodge theory,
kerDZ,dR = H(Z, F|Z). (3.70)

We claim that all the arguments in part 1 of the proof of Theorem 3.2 can be applied to
the problem under consideration. This is not as direct as before, since here dimM is even,
which is a case not considered in [7]. The difficulty is essentially to show that the local index
calculations carry through in this case. However recall that by [BF, Section 1b)], if f1 · · · fm

is an orthonormal base of TB, among the monomials in the c(fα)’s, only 1 and c(f1) · · · c(fm)
have a nonzero trace, when acting on STB . Any monomial in the c(fα), c(ei), ĉ(ei) whose
trace on π∗STB ⊗ Λ(T ∗Z) is nonzero is a monomial in the c(ei), ĉ(ei) which is a factor of
1 or of c(f1) · · · c(fm). If this monomial is odd, then it is either an odd monomial in the
c(ei), ĉ(ei) or it is an even monomial in the c(ei), ĉ(ei) which factors c(f1) · · · c(fm). Now
an odd monomial in the c(ei), ĉ(ei) acts as an odd operator on Λ(T ∗Z), i.e. it exchanges
Λeven(T ∗Z) and Λodd(T ∗Z) and its trace is 0. In view of [BF, Equation (1.7)] and of (3.28),
we find that if N is a monomial in the c(ei), ĉ(ei)’s,

Trπ∗ST B⊗Λ(T∗Z)[i
dimB−1

2 c(f1) · · · c(fm)N ] = 2(dimB−1)/2TrΛ(T∗Z)
s [N ]. (3.71)

Using (3.71) and [15, Proposition 4.9], we see that the only odd monomial in the c(fα), c(ei),
ĉ(ei) whose trace is nonzero is

c(f1) · · · c(fm)c(e1) · · · c(en)ĉ(e1) · · · ĉ(en). (3.72)

Practically, this means that as in usual local index theory, we must use all the Clifford
variables c(fα), c(ei) to get a nontrivial trace. The proof then continues as in the case where
dim Z is even.

3. The general case

Assume now that the fibres Z are fibrewise orientable, i.e. the orientation bundle o(TZ)
descends to the base B. Let B̂ be a double covering of B, such that the fibration π : Z → B
lifts to a fibration π : Ẑ → B̂, where the fibre Ẑ are now orientable. Over B̂, the obvious
analogue of (3.11) holds in H(B̂,C/Q). Both sides of (3.11) are invariant under the obvious
involution ε, so they descend to B. The proof of Theorem 3.2 is completed.

Remark 3.10. It might be possible to prove Theorem 3.2 in full generality. However, in
part 1 of the proof, we can no longer use the Atiyah-Padodi-Singer index theorem (see [2])
to establish the Cheeger-Simons identity of Theorem 3.6. Similarly in part 2 of the proof, ρ
in (3.60) is no longer well defined.

(d) Extensions

Although we do not prove (3.11) in full generality, i.e., when o(TZ) is arbitrary, we will
prove a weaker, but general statement.

Theorem 3.11. In full generality, if dim Z is even, for any k ∈ N,

ĉk(H(Z,F|Z),∇H(Z,F|Z)) + (−1)k ĉk(H(Z,F ∗|Z),∇H(Z,F∗Z))

= 2π∗[ê(TZ)ĉk(F,∇F )] in H(B,C/Q). (3.73)
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If dimZ is odd, then for k ∈ N,

ĉk(H(Z,F|Z),∇H(Z,F|Z))− (−1)k ĉk(H(Z,F ∗|Z),∇H(Z,F∗|Z)) = 0 in H(B,C/Q). (3.74)

Proof. Let ρ : M̂ → M be a double covering of M on which TZ lifts to an orientable
bundle. Then M̂ still fibres over B, with a fibre Ẑ which double covers Z. Clearly

H(Ẑ, ρ∗F|Z) = H(Z,F|Z) + H(Z, F|Z ⊗ o(TZ)). (3.75)

Also, by Poincaré duality,

Hp(Z(F,⊗o(TZ))|Z) = (HdimZ−p(Z, F ∗|Z))∗. (3.76)

By Theorem 3.2, if π̂ : M → B is the obvious projection,

ĉ(H(Ẑ, ρ∗F|Z),∇H(bZ,ρ∗F| bZ)) = 2π∗[ê(TZ)ĉh(F,∇F )) in H∗(B,C/Q). (3.77)

Also by (2.20) and (3.76),

ck(H(Z, (F ⊗ o(TZ))|Z),∇H(Z,(F|Z⊗o(TZ))|Z )

= (−1)k+dimZck(H(Z, F ∗|Z),∇H(Z,F∗|Z ). (3.78)

From (3.75)–(3.78), we get (3.73) and (3.74).

Theorem 3.12. If F ' F ∗, then

ĉk(H(Z,F|Z),∇H(Z,F|Z)) = π∗[ê(TZ)ck(F,∇F )]

in H(B,C/Q) if dim Z is even, k is even,

= 0 in H(B,C/Q) if dim Z is odd, k is odd. (3.79)

If F ' F
∗
, then

ĉk(H(Z,F|Z),∇H(Z,F|Z)) = π∗[ê(TZ)ĉk(F,∇F )] if dim Z is even. (3.80)

Proof. If F ' F ∗, we use Theorem 3.11. If F ' F
∗
,

H(Z, F ∗|Z) = H(Z, F|Z). (3.81)

Then we use (2.20) and Theorem 3.11 to obtain the equality of the real parts in (3.80), the
imaginary parts (which both vanish in this case) being equal by Theorem 3.1. The proof of
Theorem 3.12 is completed.
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[19] Gillet, H. & Soulé, C., Characteristic classes for algebraic vector bundles with Hermitian metrics, I,
Publ. Math., 131(1990), 163–203; II, 131(1990), 205–238.
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Appendix: Classes of Local Systems of Hermitian Vector Spaces

(by K. CORLETTE1 and H. ESNAULT2)

For a local system V on a topological manifold S associated to a representation

ρ : π1(S, s) → GL(n,C)

of the fundamental group, we denote by

ĉi(V ) = ĉi(ρ) = βi + γi ∈ H2i−1(S,C/Z)

the class defined in [4, 1]:

βi ∈ H2i−1(S,R) (see [1, (2.20)]),

γi ∈ H2i−1(S,R/Z) (see [4, §4]).

If f : X → S is a smooth proper morphism of C∞ manifolds with orientable fibers, the
Riemann-Roch theorem (see [1, Theorem (0.2) and Theorem (3.11)]) says

ĉi

( dim(X/S)∑

j=0

(−1)jRjf∗C
)

= 0

in H2i−1(S,C/Q), for all i ≥ 1.

The purpose of this short note is to show how to apply Reznikov’s ideas (see [12]) to
obtaining vanishing of the single classes ĉi(Rjf∗C) under some assumptions.

Definition A.1. Let A be a ring with Z ⊂ A ⊂ C. A local system of A hermitian
vector spaces is a local system associated to a representation ρ whose image ρ(π1(S, s)) lies
in GLn(A) ⊂ GLn(C) and U(p, q) ⊂ GLn(C) for some pair (p, q) with n = p + q, where
U(p, q) is the unitary group with respect to a non-degenerate hermitian form with p positive,
and q negative eigenvalues.

Theorem A.1. Let S be a topological manifold and let ρ : π1(S, s) → GL(n, F ) be a
representation of the fundamental group with values in a number field F . Assume that for all
real and complex embeddings σ : F → R (⊂ C) and σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C)
is a local system of σ(F ) hermitian vector spaces. Then ĉi(ρ) = 0 in H2i−1(S,C/Q) for all
i ≥ 1.

1Department of Mathematics, The University of Chicago, Illinois 60637, USA.
Email: kevin@math.uchicago.edu

2Universität Essen, FB6, Mathematik, 45117 Essen, Germany. Email: esnault@uni-essen.de
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Examples of local systems of Q hermitian vector spaces are provided by Q variations
of Hodge structures (see [9, I.2]), whose main instances are the Gauß-Manin local systems
Rjf∗C, where f : X → S is a smooth proper morphism of complex manifolds with Kähler
fibres. So Theorem A.1 implies

Theorem A.2. Let f : X → S be a smooth proper morphism of complex manifolds with
Kähler fibres. Then

ĉi(Rjf∗C) = 0

in H2i−1(S,C/Q) for all i ≥ 1, j ≥ 0.

In the C∞ category, other examples are provided by Poincaré duality.

Theorem A.3. Let f : X → S be a smooth proper morphism of C∞ manifolds with
orientable fibres. Then

ĉi(Rjf∗C⊕R(dim(X/S)−j)f∗C) = 0

in H2i−1(S,C/Q) and
ĉi(Rdim(X/R)/2f∗C) = 0

in H2i−1(S,C/Q) if dim(X/S) is even.

Proof of Theorem A.1. The U(p, q) flat bundle being isomorphic to the conjugate of
its dual, the formula (see [1, (2.21)]) says that βi = 0. Thus we just have to consider γi.

We may first assume that Λnρ : π1(S, s) → C∗ is trivial. In fact, it is torsion as a
unitary and rational representation, say of order N , and V ⊕ · · · ⊕ V (N times) has trivial
determinant. On the other hand,

ĉi(V ⊕ · · · ⊕ V ) = Nĉi(V )

in H2i−1(S,C/Q), as
ĉi(V ) · ĉj(V ) = 0

for i ≥ 1, j ≥ 1, in H2(i+j)−1(S,C/Q). (The multiplication is defined by image (ĉi(V ) in
H2i(S,Z)) · ĉj(V ) (see [4, (1.11)]).)

Furthermore, by adding trivial factors to V , one may assume that n is as large as one
wants.

There is an open cover S = ∪
α
Sα trivializing V with transition functions

λαβ ∈ Λ(Sαβ , SLn(F ))

such that
σ ◦ λαβ ∈ Λ(Sαβ , SLn(σ(F )) ∩ U(p, q)).

One has the continuous maps

ϕ : S•
α−→ BSLn(F ) σ−→ BSLn(σ(F )) τ−→ BSLn(C)δ

ι−→ BSLn(C),
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and

ψ : S•
σ◦λ−→ BSU(p, q)

µ−→ BSLn(C),

where S• is the simplicial classifying manifold associated to the open cover Sα, BSLn(F )
and BSLn(σ(F )) are the simplicial classifying sets, BG is the simplicial (C∞) classifying
manifold for

G = SLn(C), SU(p, q),

BSLn(C)δ is the discrete simplicial classifying set. So ϕ = ψ.

By [4, §8], there is a class γuniv
i ∈ H2i−1(BSLn(C)δ,R), whose image

γ̄univ
i ∈ H2i−1(BSLn(C)δ,R/Q) = H2i−1(BSLn(C)δ,R)/H2i−1(BSLn(C)δ,Q)

verifies

γi = λ∗σ∗τ∗γ̄univ
i .

We now apply Reznikov’s idea to use Borel’s theorem. By [2, (7.5) (11.3)] and [3, (6.4)iii,
(6.5)], for n sufficiently large compared to i, H2i−1(BSLn(F ),R) is generated by

(
⊗
σ

σ∗τ∗ι∗H•(BSLn(C),R)
)(2i−1)

,

where (2i− 1) denotes the part of the tensor product of degree (2i− 1). Thus σ∗τ∗γ̄univ
i ∈

H2i−1(BSLn(F ),R) is a sum of elements of the shape ⊗
σ
σ∗τ∗ι∗xσ, where at least one xσ ∈

H2i−1
cont (SLn(C),R), for some j ≤ i. This implies that

γi =
∑

⊗
σ
(σ ◦ λ)∗µ∗xσ,

and for each summand, there is at least one

µ∗xσ ∈ H2j−1
cont (SU(p, q),R).

It remains to observe that

for p + q = n large H2i−1
cont (SU(p, q),R) = 0.

In fact, if p = q, this is part of [2, 10.6]. In general, the continuous cohomology of the R
valued points of the R algebraic group SU(p, q) is computed by

H•
cont(SU(p, q),R) = H•(HomK(Λ•Gc/K),R),

where K is the maximal compact subgroup SU(p, q) ∩ (U(p) × U(q)), K is its Lie algebra,
G is the Lie algebra of SU(p, q). The right hand side equals

H•(HomK(Λ•Gc/K),R),
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where Gc is the Lie algebra of the compact form SU(p + q) of SU(p, q). This group is the
de Rham cohomology of the manifold SU(p + q)/SU(p + q) ∩ (U(p)× U(q)), a Grassmann
manifold without odd cohomology.

Remark A.1. To a representation ρ, one may also associate the classes

ci(ρ) ∈ H2i−1(S,C/Z(i))

defined by λ∗cuniv
i , where λ : S• → BGLn(C)δ is defined by locally constant transition

functions of the local system, and

cuniv
i ∈ H2i−1(BGLn(C)δ,C/Z(i)) = H2i

D (BGLn(C)δ,Z(i)),

where HD is the Deligne-Beilinson cohomology, where cuniv
i are the restriction to BGLn(C)δ

of the Chern classes in the Deligne-Beilinson cohomology of the universal bundle on the
simplicial algebraic manifold BGLn. One does not know in all generality that λ∗cuniv

i =
ĉi(V ).

Again writing cuniv
i as buniv

i + zuniv
i , with

buniv
i ∈ H2i−1(BGLn(C)δ,R(i− 1)),

zuniv
i ∈ H2i−1(BGLn(C)δ,R(i)/Z(i)),

one knows that by definition buniv
i lies in the image of the continuous cohomology of GLn(C):

H2i−1
D (BGLn(C)•,Z(i)) −→ H2i

D (BGLn(C)•,R(i))

−→ H2i−1(BGLn(C)•,S∞R(i−1)) ∼= H2i−1
cont (GLn(C),R(i− 1))

−→ H2i−1(BGLn(C)δ,R(i− 1)),

where S∞R(i−1) is the sheaf of R(i− 1) valued C∞ functions. (In fact Beilinson gave a precise
identification of this class in terms of the Borel regulator. See [11] for details.) Thus by the
previous argument, λ∗buniv

i = 0.

As before, we may assume that ρ has SU(p, q) values, since the multiplication

ci(ρ) · cj(ρ)

factorizes through the Betti class in H2i(S,Z(i)) of ρ (see [6, Proof of (3.4)]). Furthermore,
by definition, zuniv

i is a discrete cohomology class. Thus one can apply the same argument
as in Theorem A.1 to prove.

Theorem A.4. Let S be a topological manifold and let ρ : π1(S, s) → GL(n, F ) be a
representation of the fundamental group with values in a number field F . Assume that for all
real and complex embeddings σ : F → R (⊂ C) and σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C)
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is a local system of σ(F ) hermitian vector spaces. Then ci(ρ) = 0 in H2i−1(S,C/Q) for all
i ≥ 1.

On the other hand, if S is an algebraic manifold, then the image of ci(ρ) under the map

H2i−1(S,C/Z(i)) −→ H2i
D (S,Z(i))

is the Chern class cDi (E) of the underlying algebraic vector bundle E on V ⊕OSan (see [6,
(3.5)]). So one has

Corollary A.1. Let S be an algebraic manifold and let ρ : π1(S, s) → GL(n, F ) be a
representation of the fundamental group with values in a number field F . Assume that for all
real and complex embeddings σ : F → R (⊂ C) and σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C)
is a local system of σ(F ) hermitian vector spaces. Then the Chern classes of the underlying
algebraic bundle in the Deligne cohomology are torsion.

Remark A.2. Let f : X → S be a proper equidimensional morphism of algebraic
smooth complex proper varieties X and S, such that f is smooth outside a normal crossing
divisor Σ, with D := f−1(Σ) a normal crossing divisor without multiplicities (that is, f is
“semi-stable” in codimension 1). Then the Gauß-Manin bundles

Hj = Rjf∗Ω•X/S(log D)

have an integrable holomorphic (in fact algebraic) connection with logarithmic poles along
Σ whose residues are nilpotent (monodromy theorem, see e.g. [8, (3.1)]). This implies [7,
Appendix B], that the de Rham classes of Hj are zero. Therefore

cDi (Hj) ∈ H2i−1(S,C/Z(i))/F i ⊂ H2i−1
D (S,Z(i)),

that is, modulo torsion, cDi (Hj) lies in the intermediate Jacobian, and cDi (Hj |S−Σ) is torsion
(see Corollary A.1, Theorem A.2). It would be interesting to understand those classes, in
particular as one knows that there are only finitely many such classes for Hj of a given rank,
as there are, according to Deligne [5], finitely many Z variations of Hodge structures of a
given rank on S − Σ, and Hj is the canonical extension of Rjf |S−Σ∗C.

In fact, if f has relative (complex) dimension 1, even the Chern classes of Hj in the Chow
groups of S are torsion, as a consequence of Grothendieck-Riemann-Roch theorem (see [10,
(5.2)]).
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[ 5 ] Deligne, P., Un théorème de finitude pour la monodromie, in Discrete Groups in Geometry and Anal-
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