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η-INVARIANT AND CHERN-SIMONS CURRENT∗∗

ZHANG Weiping∗

Abstract

The author presents an alternate proof of the Bismut-Zhang localization formula
of η invariants, when the target manifold is a sphere, by using ideas of mod k index
theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a
consequence, it is shown that the R/Z part of the analytically defined η invariant of
Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold
can be expressed purely geometrically through a stable Chern-Simons current on a
higher dimensional sphere. As a preliminary application, the author discusses the rela-
tion with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles,
and proves an R refinement in the case where the Dirac operator is replaced by the
Signature operator.
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§ 1 . Introduction

The η invariant of Atiyah-Patodi-Singer was introduced in [3] as the correction term on
the boundary of the index theorem for Dirac operators on manifolds with boundary. Since
then it has appeared in many parts of geometry, topology as well as physics. We first recall
the definition of this η invariant.

Let M be an odd dimensional closed oriented spin Riemannian manifold. Let S(TM)
be the associated bundle of spinors. Let E be a Hermitian vector bundle over M carrying
with a Hermitian connection. Then one can define canonically a Dirac operator DE :
Γ(S(TM)⊗E) → Γ(S(TM)⊗E). It is a formally self-adjoint first order elliptic differential
operator.

Let s ∈ C with Re(s) > dim M
2 . Following [3], one defines the η function of DE by

η(DE , s) =
∑

λ∈Spec(DE)\{0}

sgn(λ)
|λ|s . (1.1)

It is shown in [3] that η(DE , s) is a holomorphic function for Re(s) > dim M
2 , and can be

extended to a meromorphic function on C. Moreover, it is holomorphic at s = 0. The value
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of η(DE , s) at s = 0 is called the η invariant of DE and is denoted by η(DE). Let η̄(DE)
be the reduced η invariant of DE which is also defined in [3]:

η̄(DE) =
dim(kerDE) + η(DE)

2
. (1.2)

It turns out that this analytically defined invariant may jump by integers as the metrics
and connections on TM and E change. These jumps can be detected by spectral flows
introduced in [5]. On the other hand, the mod Z component of η̄(DE) is smooth with
respect to the involved metrics and connections, and its variation can be expressed through
Chern-Simons forms. However, whether η̄(DE) mod Z itself can be expressed geometrically,
without passing to the spectral set of DE , remains a question for long time. Here we only
mention that such a formula for η̄(DE) mod Q was proved in [15, Theorem 9.1], expressing
the R/Q component of η̄(DE) through the Cheeger-Simons differential characters.

The purpose of this short article is to show that there is indeed a purely geometric
formula for η̄(DE) mod Z. More precisely, if we embed M into a higher odd dimensional
sphere, then η̄(DE) mod Z can be expressed through a Chern-Simons current on the sphere.
Comparing with Cheeger-Simons’ mod Q one, such a formula is more of K-theoretic nature,
and should be viewed as an index theorem in some geometric K-theory (compare with [6]
and [18]).

In fact, this formula, which will be stated in its precise form in Theorem 2.3, can be
obtained as an immediate application of a localization formula for η invariants proved by
Bismut and Zhang in [14]. Our simple observation is that if one applies the Bismut-Zhang
formula to an embedding into a higher dimensional sphere, then a simple application of the
Bott periodicity will lead us to a geometric formula for the R/Z component of η̄(DE).

Thus we will first recall in the next section the Bismut-Zhang localization formula for η

invariants and prove the geometric formula for η̄(DE) mod Z.
Also recall that the proof given by Bismut-Zhang in [14] for their localization formula

relies heavily on the difficult paper of Bismut-Lebeau [12], and might not be easy to follow.
So in Section 3 we will give an alternate proof of this localization formula by making use of
the Freed-Melrose index theorem for Z/k manifolds [17] instead.

In Section 4, we present some preliminary applications of our formula to the case of flat
vector bundles. In particular, we show that our formula leads to an alternate formulation
of the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles [5, Theorem
5.3]. Moreover, we show that when considering the Signature operator instead of the Dirac
operator, one can refine the above index theorem to an R valued one.

§ 2 . A Geometric Formula for η Invariants

In this section, we recall the localization formula for η invariants of Bismut-Zhang [14]
and use it to deduce a geometric formula for η invariants.

This section is organized as follows. In (a), we recall the direct image construction of
Atiyah-Hirzebruch [2] under real embeddings in a geometrical form. In (b), we recall from
[8] and [14] the construction of the Chern-Simons current associated to the geometric direct
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image constructed in (a). In (c), we state the localization formula from [14]. In (d), we
apply this localization formula to getting a geometric formula expressing the η invariants
through Chern-Simons currents on spheres.

(a) A geometric construction of direct images

Let i : Y ↪→ X be an embedding between two smooth oriented manifolds. We make the
assumption that dim X − dim Y is even and that if N denotes the normal bundle to Y in
X, then N is orientable, spin and carries an induced orientation as well as a (fixed) spin
structure.

Let µ be a complex vector bundle over Y .
Atiyah and Hirzebruch have constructed in [2] an element i!µ ∈ K̃(X), called the direct

image of µ under i. We here recall this construction in a geometric form.
Let gN be a Euclidean metric on N and ∇N a Euclidean connection on N preserving gN .

Let S(N) be the vector bundle of spinors associated to (N, gN ). Then S(N) = S+(N) ⊕
S−(N) (resp. its dual S∗(N) = S∗+(N) ⊕ S∗−(N)) is a Z2-graded complex vector bundle
over Y carrying an induced Hermitian metric gS(N) = gS+(N) ⊕ gS−(N) (resp. gS∗(N) =
gS∗+(N) ⊕ gS∗−(N)) from gN , as well as a Hermitian connection ∇S(N) = ∇S+(N) ⊕ ∇S−(N)

(resp. ∇S∗(N) = ∇S∗+(N) ⊕∇S∗−(N)) induced from ∇N .
Let gµ be a Hermitian metric on µ and ∇µ a Hermitian connection on µ preserving gµ.
For any r > 0, set Nr = {Z ∈ N : |Z| < r}. We make the assumption that there is ε0 > 0

such that N2ε0 is diffeomorphic to an open neighborhood of Y in X. Without confusion we
now view directly N2ε0 as an open neighborhood of Y in X.

Let π : N → Y denote the projection of the normal bundle N over Y .
If Z ∈ N , let c̃(Z) ∈ End(S∗(N)) be the transpose of c(Z) acting on S(N). Let τN∗ ∈

End(S∗(N)) be the transpose of τN defining the Z2-grading of S(N) = S+(N)⊕ S−(N).
Let π∗(S∗(N)) be the pull back bundle of S∗(N) over N . For any Z ∈ N with Z 6= 0, let

τN∗c̃(Z) : π∗(S∗±(N))|Z → π∗(S∗∓(N))|Z denote the corresponding pull back isomorphisms
at Z.

Let F be a complex vector bundle over Y such that S∗−(N)⊗ µ⊕ F is a trivial complex
vector bundle over Y (cf. [1]). Then

τN∗c̃(Z)⊕ π∗IdF : π∗(S∗+(N)⊗ µ⊕ F ) → π∗(S∗−(N)⊗ µ⊕ F ) (2.1)

induces an isomorphism between two trivial vector bundles over N2ε0 \ Y .
Let F admit a Hermitian metric gF and a Hermitian connection ∇F .
Clearly, π∗(S∗±(N)⊗µ⊕F )|∂N2ε0

extend smoothly to two trivial complex vector bundles
over X \N2ε0 . Moreover, the isomorphism τN∗c̃(Z) ⊕ π∗IdF over ∂N2ε0 extends smoothly
to an isomorphism between these two trivial vector bundles over X \N2ε0 .

In summary, what we get is a Z2-graded Hermitian vector bundle

ξ = ξ+ ⊕ ξ−, gξ = gξ+ ⊕ gξ− (2.2)

over X such that

ξ±|Nε0
= π∗(S∗±(N)⊗ µ⊕ F )|Nε0

, gξ±|Nε0 = π∗(gS∗±(N)⊗µ ⊕ gF )|Nε0
, (2.3)
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where gS∗±(N)⊗µ is the tensor product Hermitian metric on S∗±(N)⊗µ induced from gS∗±(N)

and gµ. It is easy to see that there exists an odd self-adjoint endomorphism V of ξ such
that it is invertible on X \ Y , and that

V |Nε0
= τN∗c̃(Z)⊕ π∗IdF . (2.4)

Moreover, there is a Z2-graded Hermitian connection ∇ξ = ∇ξ+ ⊕∇ξ− on ξ = ξ+⊕ ξ− over
X such that

∇ξ± |Nε0
= π∗(∇S∗±(N)⊗µ ⊕∇F ), (2.5)

where∇S∗±(N)⊗µ is the Hermitian connection on∇S∗±(N)⊗µ defined by∇S∗±(N)⊗µ = ∇S∗±(N)⊗
Idµ + IdS∗±(N) ⊗∇µ.

Clearly, ξ+ − ξ− ∈ K̃(X) is exactly the Atiyah-Hirzebruch direct image i!µ of µ con-
structed in [2]. We call (ξ,∇ξ, V ) constructed above a geometric direct image of (µ, ∇µ).

Remark 2.1. Note that here we have used the dual of spinor bundle of N , instead of
spinor bundle of N as in [2], to construct the direct image. This is done for the reason of
fixing the sign convention in (2.10) below.

(b) A Chern-Simons current associated to a geometric direct image

We make the same assumptions and use the same notations as in (a).
If E is a real vector bundle carrying a connection ∇E , we denote by Â(E,∇E) the

Hirzebruch characteristic form defined by

Â(E,∇E) = det1/2

( √−1
4π RE

sinh
(√−1

4π RE
)
)

, (2.6)

where RE = ∇E,2 is the curvature of ∇E . While if E′ is a complex vector bundle carrying a
connection ∇E′ , we denote by ch(E′,∇E′) the Chern character form associated to (E′,∇E′)
(cf. [22, Section 1]).

Let i1/2 be a fixed square root of i =
√−1. The objects which will be considered in the

sequel do not depend on this square root. Let ϕ be the map α ∈ Λ∗(T ∗X) → (2πi)−
deg α

2 α ∈
Λ∗(T ∗X).

We now use Quillen’s superconnection formalism [20]. For T ≥ 0, let CT be the super-
connection on the Z2-graded vector bundle ξ defined by

CT = ∇ξ +
√

TV. (2.7)

The curvature C2
T of CT is a smooth section of (Λ∗(T ∗M)⊗̂End(ξ))even. By [Q], we know

that for any T > 0,

∂

∂T
Trs[exp(−C2

T )] = − d

2
√

T
Trs[V exp(−C2

T )], (2.8)

where “Trs” is the supertrace in the sense of Quillen [20] associated to the Z2-grading of ξ.



η-INVARIANT AND CHERN-SIMONS CURRENT 49

Clearly, the technical assumptions in [14, (1.10)–(1.12)] hold for our constructions in (a).
Thus one can proceed as in [7], [8] and [14, Definition 1.3] to construct the Chern-Simons
current γξ,V as

γξ,V =
1√
2πi

∫ +∞

0

ϕTrs[V exp(−C2
T )]

dT

2
√

T
. (2.9)

Let δY denote the current of integration over the oriented submanifold Y of X. Then by
[14, Theorem 1.4], we have

dγξ,V = ch(ξ+,∇ξ+)− ch(ξ−,∇ξ−)− Â−1(N,∇N )ch(µ,∇µ)δY . (2.10)

Moreover, as indicated in [14, Remark 1.5], by proceeding as in [11, Theorem 3.3], one can
prove that γξ,V is a locally integrable current.

(c) A localization formula for η invariants

We assume in this subsection that i : Y ↪→ X is an embedding between two odd di-
mensional closed oriented spin manifolds. Then the normal bundle N to Y in X is even
dimensional and carries a canonically induced orientation and spin structure. Let gTX be a
Riemannian metric on TX. Let gTY be the restricted Riemannian metric on TY . Let ∇TX

(resp. ∇TY ) denote the Levi-Civita connection associated to gTX (resp. gTY ).
Without loss of generality we may and we will make the assumption that the embedding

(Y, gTY ) ↪→ (X, gTX) is totally geodesic. Let N carry the canonically induced Euclidean
metric as well as the Euclidean connection.

Thus, we may and we will make the same construction as in (a), (b).
Recall that the definition of the reduced η invariant for a (twisted) Dirac operator on an

odd dimensional spin Riemannian manifold has been recalled in Section 1.
Under our assumptions, we see easily that the localization formula for η invariants proved

in [14] holds in a slightly simplified form. We recall it as follows.

Theorem 2.1. (cf. [14, Theorem 2.2]) The following identity holds,

η̄(Dξ+)− η̄(Dξ−) ≡ η̄(Dµ) +
∫

X

Â(TX,∇TX)γξ,V mod Z. (2.11)

Remark 2.2. The extra Chern-Simons form in [14, Theorem 2.2] disappears here simply
because we have made the simplifying assumption that the isometric embedding (Y, gTY ) ↪→
(X, gTX) is totally geodesic. Indeed, in view of [14, Remark 2.3], Theorem 2.1 is equivalent
to [14, Theorem 2.2].

(d) A geometric formula for η̄(Dµ)

We continue the discussion in (c) and assume that X = S2n−1, a higher odd dimensional
sphere (but we do not assume that it admits the standard metric, this makes the isometric
embedding i : (Y, gTY ) ↪→ (S2n−1, gTS2n−1

) to be totally geodesic possible).
Now recall that by the Bott periodicity (cf. [1]), one has K̃(S2n−1) = {0}. Thus, in our

case, we have i!µ = 0. This means that there is a trivial complex vector bundle θ over S2n−1

such that θ ⊕ ξ+ is isomorphic to θ ⊕ ξ−.
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We equip θ with a Hermitian metric as well as a Hermitian connection ∇θ.
Let ξ′ = ξ′+⊕ξ′− be the Z2-graded Hermitian vector bundle over S2n−1 with ξ′± = θ⊕ξ±.

Then ξ′± and ξ′ carry canonically induced Hermitian connections ∇ξ′± and ∇ξ′ respectively
through direct sums.

Let W be an odd self-adjoint automorphism of ξ′, which clearly exists by the above
discussion.

For any T ≥ 0, set
C ′T = ∇ξ′ +

√
TW. (2.12)

Similarly as in (2.9), we define the Chern-Simons form γξ′,W as

γξ′,W =
1√
2πi

∫ +∞

0

ϕTrs[W exp(−(C ′T )2)]
dT

2
√

T
. (2.13)

Since W is invertible, one has the following formula due to Bismut-Cheeger [10, Theorem
2.28], which corresponds to the case with Y = ∅ in (2.11),

η̄(Dξ′+)− η̄(Dξ′−) ≡
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γξ′,W mod Z. (2.14)

On the other hand, one clearly has

η̄(Dξ′±) = η̄(Dξ±) + η̄(Dθ). (2.15)

From (2.11), (2.14) and (2.15), one gets

η̄(Dµ) ≡
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γξ′,W−
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γξ,V mod Z. (2.16)

We can re-formulate (2.16) as follows.
Let ξ̃ = ξ̃+ ⊕ ξ̃− be the Z2-graded Hermitian vector bundle over S2n−1 defined by

ξ̃+ = ξ+ ⊕ ξ′−, ξ̃− = ξ− ⊕ ξ′+, (2.17)

carrying the canonically induced Hermitian connection ∇ξ̃ through direct sums. Let Ṽ =
V ⊕WT , where WT is the transpose of W , be the odd self-adjoint endomorphism of ξ̃. Then
(ξ̃,∇ξ̃, Ṽ ) forms a geometric direct image of µ in the sense of Section 2(a).

Let γ ξ̃,eV be the associated Chern-Simons current defined by (2.9). By (2.10) and the
construction of (ξ̃,∇ξ̃, Ṽ ), one verifies easily that

dγ ξ̃,eV = −Â−1(N,∇N )ch(µ,∇µ)δY . (2.18)

We can now state the main result of this section as follows, which is simply a re-
formulation of (2.16).

Theorem 2.2. The following identity holds,

η̄(Dµ) ≡ −
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γ ξ̃,eV mod Z. (2.19)
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Remark 2.3. If the embedding Y ↪→ S2n−1 is not totally geodesic, then the right hand
side of (2.19) will contain an extra Chern-Simons term involving the second fundamental
form of this embedding. With this extra term involved, one can then assume that S2n−1

carries the standard metric.

Remark 2.4. It is interesting that the right hand side of (2.19) does not involve any
spectral information of Dµ. It is purely geometric/topological and resembles well the K-
theoretic proof of the Atiyah-Singer index theorem [6]. On the other hand, the different
choice of W may cause the right hand side of (2.19) an integer jump. This partly explains
that (2.19) is in general a mod Z formula. While conversely, one can always find a W to
make (2.19) a purely equality in R. This may sound few sense as when gTY , gµ and ∇µ

vary, dim(kerDµ) may jump. However, if we take µ = S(TY ), then DS(TY ) is equivalent to
the Signature operator of (Y, gTY ) and thus η̄(Dµ) becomes a smooth invariant. Moreover,
since K1(S2n−1) = Z, one can choose W so that (2.19) is an equality without mod Z. In
such a form (2.19) becomes an equality in R not depending on the variation of gTY .

Remark 2.5. If dim Y ≡ 3 mod 8Z and µ is a complexification of a Euclidean vector
bundle carrying a Euclidean connection, then one can embed Y into a higher 8l + 3 dimen-
sional manifold and proceed as in [21, Section 3] to improve (2.19) to a mod 2Z formula.

Remark 2.6. As have been mentioned in Section 1, the proof of Theorem 2.1 given in
[14] relies heavily on the difficult paper of Bismut-Lebeau [12]. So in the next section, we
will give an alternate proof of Theorem 2.1 for the case where X is a higher dimensional
sphere.

§ 3 . An Alternate Proof of Theorem 2.1 when X = S2n�1

As in Section 2, let Y be an odd dimensional closed oriented spin manifold carrying a
Riemannian metric gTY and the associated Levi-Civita connection ∇TY . Let µ be a complex
vector bundle over Y carrying a Hermitian metric gµ and a Hermitian connection ∇µ.

In case when there will be no confusion, we will use the notations in Section 2 without
further explanation.

Since dim Y is odd, by a well-known result in bordism/cobordism theory, there is a
positive integer k such that the k disjoint copies of Y bound a compact oriented spin manifold
Ŷ of dimension dim Y + 1 such that the boundary ∂Ŷ does not contain other components.
Moreover, there is a complex vector bundle µ̂ over Ŷ such that when restricted to boundary,
it is just µ on each copy of Y (We thank Fuquan Fang for confirming this to us).

Clearly, (Ŷ , Y ) is a Z/k manifold in the sense of Sullivan (cf. [17, 21]).
Let g

bY be a Riemannian metric on T Ŷ which is of product nature near ∂Ŷ and which
on ∂Ŷ is exactly gTY on each copy of the boundary. Let ∇bY be the associated Levi-Civita
connection. Similarly, let gµ̂ (resp. ∇µ̂) be a Hermitian metric on µ̂ such that it is of product
nature near ∂Ŷ and that on ∂Ŷ it is exactly gµ (resp. ∇µ) on µ over each copy of Y .

Let S2n,k be the Z/k manifold obtained by removing k balls D2n from the 2n-sphere.
Then the boundary ∂S2n,k consists of k disjoint copies of S2n−1. Let i : Ŷ ↪→ S2n,k be a Z/k
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embedding (cf. [17, 21]). The existence of such an embedding is clear when n is sufficiently
large.

Let gTS2n,k

be a Z/k metric on TS2n,k which is of product nature near ∂S2n,k, such
that gTS2n,k |T bY = gT bY and that the isometric embedding i : (Ŷ , gT bY ) ↪→ (S2n,k, gTS2n,k

) is
totally geodesic. Let ∇TS2n,k

be the associated Levi-Civita connection.
Let N̂ denote the normal bundle to Ŷ in S2n,k. Then N̂ carries an induced orientation

and spin structure, as well as a Z/k Euclidean metric (resp. connection) g
bN (resp. ∇ bN ).

We can then apply the constructions in Sections 2(a), (b) to the embedding i : (Ŷ , gT bY ) ↪→
(S2n,k, gTS2n,k

) in a Z/k manner (that is, preserving all the Z/k structures), such that all
the metrics, connections and maps involved are of product nature near boundary.

We denote the resulting Z/k geometric direct image of (µ̂,∇µ̂) by (ξ̂ = ξ̂+ ⊕ ξ̂−,∇ξ̂, V̂ ).
When restrict to each copy of the boundary, we denote the restricted geometric direct image
of (µ,∇µ) by (ξ = ξ+ ⊕ ξ−,∇ξ, V ).

Let indk(Dξ̂±), indk(Dµ̂) be the mod k indices defined by (cf. [17, (5.2), and 21]),

indk(Dξ̂±) ≡
∫

S2n,k

Â(TS2n,k,∇TS2n,k

)ch(ξ̂±,∇ξ̂±)− k η̄(Dξ±) mod kZ, (3.1)

indk(Dµ̂) ≡
∫
bY Â(T Ŷ ,∇bY )ch(µ̂,∇µ̂)− k η̄(Dµ) mod kZ. (3.2)

By the mod k index theorem of Freed and Melrose [17, (5.5)], one knows that

indk(Dξ̂+)− indk(Dξ̂−) = indk(Dµ̂) (3.3)

in Z/kZ.
Now if we denote γ ξ̂,bV the Chern-Simons current constructed in Section 2(b), then its

restriction to the boundary consists of k copies of the Chern-Simons current γξ,V .
By applying the transgression formula (2.10) to γ ξ̂,bV and integrate over S2n,k, one gets

∫

S2n,k

Â(TS2n,k,∇TS2n,k

)ch(ξ̂+,∇ξ̂+)−
∫

S2n,k

Â(TS2n,k,∇TS2n,k

)ch(ξ̂−,∇ξ̂−)

−
∫
bY Â(T Ŷ ,∇bY )ch(µ̂,∇µ̂) = k

∫

S2n−1
Â(TY,∇TY )γξ,V . (3.4)

From (3.1)–(3.4), one deduces that

η̄(Dξ+)− η̄(Dξ−) ≡ η̄(Dµ) +
∫

S2n−1
Â(TY,∇TY )γξ,V mod Z, (3.5)

which is exactly the Bismut-Zhang formula (2.11) in the case where X = S2n−1.

Remark 3.1. The relation between the Bismut-Zhang formula (2.11) and the Freed-
Melrose mod k index theorem [17] was exploited in [21] where (2.11) is used to give an
alternate proof of a mod k equality between the right hand sides of (3.1) and (3.2). Now
such an equality can be proved directly by applying the Riemann-Roch property for Dirac
operators on manifolds with boundary proved by Dai and Zhang in [16], without using the
results in [14]. In fact, this can be done by first applying [16, Theorem 1.2 and Lemma 4.6]
to get (3.3). The mod k equality between the right hand sides of (3.1) and (3.2) is then an
easy consequence of the Atiyah-Patodi-Singer index theorem [3] (This observation grew out
of discussions with Xianzhe Dai).
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Remark 3.2. One should also note that the proof of (3.5) given in this section holds only
for those embeddings which can be obtained through an embedding between Z/k manifolds,
while (2.11) is much more general. Still we hope the simplified proof in this section would
be helpful for a good feeling of (2.11). In fact, for many applications, the existence for such
an embedding is suffice, as our main result (2.19) holds for it. While on the other hand, one
should be able to apply (3.5) to give a proof of (2.11) by embedding X there into a higher
dimensional sphere. This will be discussed elsewhere.

§ 4 . Some Applications

In this section, we discuss some immediate applications of formula (2.19).
This section is organized as follows. In (a), we discuss briefly the relationship between the

Chern-Simons current and the Cheeger-Simons differential character [15]. In (b), we discuss
the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles [5] from the
point of view of (2.19). In (c), we show that by replacing the Dirac operator by the Signature
operator, one may refine the above R/Z formula to an R valued one.

We make the same assumptions and use the same notation as in Section 2.

(a) Chern-Simons current and the Cheeger-Simons differential character

As was indicated by Bismut in [8], the Chern-Simons currents constructed in Section 2
are closely related to the differential characters introduced by Cheeger and Simons in [15].
This becomes clearer if we compare the transgression formula (2.18) with the one in [15,
(4.3)]. The difference is that in [15, (4.3)], the transgression formula holds on different Stiefel
manifolds, while our formula holds universally on a single sphere. Moreover, the differential
characters for Chern character forms in [15] are defined mod Q, while our formula is clearly
of an R/Z nature (as the construction of the Chern-Simons current γ ξ̃,eV in Section 2(d)
depends on the choice of an automorphism W ).

More precisely, if we denote by ̂̂
A (TY,∇TY ) (resp. ĉh(µ,∇µ)) the Cheeger-Simons dif-

ferential character associated to Â(TY,∇TY ) (resp. ch(µ,∇µ)) constructed in [15], then by
[15, Theorem 9.1], one has, in using the product notation as in [15],

η̄(Dµ) ≡ 〈 ̂̂A (TY,∇TY ) ∗ ĉh(µ,∇µ), [Y ]〉 mod Q. (4.1)

From (2.19) and (4.1), one gets
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γ ξ̃,eV + 〈 ̂̂A (TY,∇TY ) ∗ ĉh(µ,∇µ), [Y ]〉 ≡ 0 mod Q. (4.2)

(b) The Atiyah-Patodi-Singer index theorem for flat bundles revisited

In this section, we replace the Hermitian vector bundle µ in Section 2 by µ ⊗ ρ, where
ρ is a unitary flat vector bundle with the flat connection denoted by ∇ρ. We equip µ ⊗ ρ

with the induced tensor product Hermitian metric as well as the tensor product Hermitian
connection ∇µ⊗ρ = ∇µ ⊗ Idρ + Idµ ⊗∇ρ.
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By [5],
η̄µ,ρ := η̄(Dµ⊗ρ)− rk(ρ)η̄(Dµ) mod Z (4.3)

is a smooth invariant with respect to (gTM , gµ,∇µ). Moreover, [5, Theorem 5.3] provides a
topological interpretation for this invariant.

We now examine this invariant by using (2.19).
Let (ξ̃ρ,∇ξ̃ρ , Ṽρ) be a geometric direct image of (µ ⊗ ρ,∇µ⊗ρ) constructed similarly as

that for (µ,∇µ) in Section 2(d). Let γ ξ̃ρ,eVρ be the associated Chern-Simons current defined
in (2.9). By (2.18), γ ξ̃ρ,eVρ verifies the transgression formula

dγ ξ̃ρ,eVρ = −Â−1(N,∇N )ch(µ,∇µ)rk(ρ)δY , (4.4)

as ρ is a flat bundle.
By (2.19), one also has

η̄(Dµ⊗ρ) ≡ −
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γ ξ̃ρ,eVρ mod Z. (4.5)

From (2.19), (4.3) and (4.5), one gets

η̄µ,ρ ≡
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)(rk(ρ)γ ξ̃,eV − γ ξ̃ρ,eVρ) mod Z. (4.6)

On the other hand, from (2.18) and (4.4), one finds

d(rk(ρ)γ ξ̃,eV − γ ξ̃ρ,eVρ) = 0. (4.7)

Thus, rk(ρ)γ ξ̃,eV − γ ξ̃ρ,eVρ determines a cohomology class in Hodd
dR (S2n−1,R). One verifies

easily that this cohomology class does not depend on the choice of ∇µ. It only depends on
the choices of the automorphisms W and Wρ appearing in the construction of the geometric
direct images of (ξ̃,∇ξ̃, Ṽ ) and (ξ̃ρ,∇ξ̃ρ , Ṽρ). The different choices of W and Wρ cause a
(possible) integer jump in integration term in the right hand side of (4.6).

Thus, (4.6) may be thought of in some sense as an alternate version of the Atiyah-Patodi-
Singer index theorem for flat vector bundles stated in [5, Theorem 5.3]. Its conceptual
novelty is that one need not divide the topological index into two parts (that is, a Q/Z part
plus an R part).

We believe that formulas (4.2) and (4.6) could be used to give a (possibly) alternate
understanding of the Grothendieck-Riemann-Roch type formulas for flat vector bundles
studied in [9, 13, 19, 23].

(c) Signature operator and an R valued index theorem for flat vector bundles

Now we set µ = S(TY ) in the above subsection. In this case, Dµ is the Signature
operator associated to (TY, gTY ), denoted by DSign, while Dµ⊗ρ is now denoted by Dρ

Sign.
Set

η̄Sign,ρ = η̄(Dρ
Sign)− rk(ρ)η̄(DSign). (4.8)

Then η̄Sign,ρ is a smooth invariant equivalent to what defined in [4, Theorem 2.4].
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On the other hand, as indicated in Remark 2.4, one can choose the automorphisms W

and Wρ in the construction of the Chern-Simons current so that

η̄(Dρ
Sign) =

∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γ ξ̃ρ,eVρ , (4.9)

η̄(DSign) =
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)γ ξ̃,eV . (4.10)

It is clear that (4.9), (4.10) are actually equalities not depending on the choice of gTM .
Moreover, since K1(S2n−1) = Z, one sees that the choice of W and Wρ is canonical (up to
stable homotopy).

By (4.7), one also sees that γ ξ̃ρ,eVρ − rk(ρ)γ ξ̃,eV determines canonically an element in
Hodd

dR (Y,R).
We can state our R valued refinement of (4.6) as follows.

Theorem 4.1. The following K-theoretic formula for η̄Sign,ρ holds,

η̄Sign,ρ =
∫

S2n−1
Â(TS2n−1,∇TS2n−1

)(rk(ρ)γ ξ̃,eV − γ ξ̃ρ,eVρ). (4.11)

Remark 4.1. Theorem 4.1 was proved for unitary flat vector bundles over spin man-
ifolds. It is natural to ask whether there is still such a kind of formulas without the spin
condition.

Remark 4.2. If one could find a purely topological way to identify the automorphisms
W and Wρ (or the difference element of rk(ρ)W and Wρ in K1(S2n−1)), then one would
provide a positive answer to a question of Atiyah-Patodi-Singer stated implicitly in [4, p.406].
On the other hand, for any choice of W and Wρ, the right hand side of (4.11) provides a
smooth invariant of Y . So in some sense, η̄Sign,ρ becomes one example of a series of smooth
invariants associated to the unitary flat vector bundle ρ over Y .

Remark 4.3. Clearly, all the results of this paper can be extended to the case of spinc

manifolds. We leave this to the interested reader.
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