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THE FUNCTIONAL DIMENSION OF
SOME CLASSES OF SPACES∗∗∗

LIU Shangping∗ LI Bingren∗∗

Abstract

The functional dimension of countable Hilbert spaces has been discussed by some
authors. They showed that every countable Hilbert space with finite functional di-
mension is nuclear. In this paper the authors do further research on the functional
dimension, and obtain the following results: (1) They construct a countable Hilbert
space, which is nuclear, but its functional dimension is infinite. (2) The functional
dimension of a Banach space is finite if and only if this space is finite dimensional. (3)
Let B be a Banach space, B∗ be its dual, and denote the weak ∗ topology of B∗ by
σ(B∗, B). Then the functional dimension of (B∗, σ(B∗, B)) is 1. By the third result, a
class of topological linear spaces with finite functional dimension is presented.
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§ 1 . The Functional Dimension for a Class of
Countable Hilbert Spaces

In [1] the calculation formula of the functional dimension of perfect countable Hilbert
spaces was given. Let Φ be a countable Hilbert space. According to the definition (see [1]),
there are countable inner products {〈 , 〉,m ∈ N} in Φ, such that ‖φ‖1 ≤ ‖φ‖2 ≤ · · · , and Φ =
+∞⋂
m=1

Φm, where Φm is a Hilbert space as the completion of {Φ, 〈 , 〉m}, and Φ1 ⊃ Φ2 ⊃ · · · .
Suppose that Φ is perfect. Then the imbedding operator Im

k from Φm to Φk is a compact
operator for m > k ≥ 1. Let the sequence of eigenvalues of

√
Im∗
k Im

k be {a(km)
n , n ∈ N} with

a
(km)
n ↓ 0. Then the functional dimension dfΦ can be calculated as follows (see [1]):

dfΦ = 1 + sup
k

inf
m>k

τkm, (1.1)

where τkm = inf
{

µ
∣∣∣ ∑

a
(k,m)
n <1

(
ln 1

a
(km)
n

)−µ

< +∞
}

is just the exponent of convergence of

the sequence {ln(1/a
(km)
n )|n=1,2,···}.
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Now we give a concreate class of perfect countable Hilbert spaces, and obtain the calcu-
lation formula of their functional dimensions.

Let H be a Hilbert space, A be a self-adjoint operator on H, and DAk be the domain of

Ak (k = 0, 1, 2, · · · ). Obviously, ΦA =
+∞⋂
k=0

DAk is a linear subspace of H. On ΦA we can

define countable inner products as follows:

〈x, y〉m =
m∑

k=0

(Akx,Aky), m ∈ N, x, y ∈ ΦA,

where (· , ·) is the inner product on H. Since H is complete and Ak (k = 0, 1, 2, · · · ) is
closed, it is clear that the completion of {ΦA, 〈 , 〉m} is just DAm . It is denoted by Φm. From

ΦA =
+∞⋂
m=1

Φm it follows that ΦA is a countable Hilbert space. Furthermore, suppose that A

has spectral property C. By the definition (see [3]), we have σ(A) = Pσ(A) = {λn |n ∈ N},
|λn| ↑ +∞, and also the multiplicity of each eigenvalue in Pσ(A) is finite and is exactly the
number of times the eigenvalue is repeated in the sequence {λn}. In this case ΦA is a perfect
countable Hilbert space by [3, Theorem 2.2].

Now we start to set up the formula about calculating dfΦA. By the spectrum analysis
there exists an orthonormal basis {φn; n ∈ N} in H, such that Aφn = λnφn, n ∈ N. Noticing
that {φn} ⊂ ΦA, we have

〈φi, φj〉m =
m∑

p=0

λ2p
j δij , i, j ∈ N.

Let ψ
(m)
n = φn

/‖φn‖m = φn

/( m∑
p=0

λ2p
n

)1/2

, n ∈ N. Then

〈ψ(m)
i , ψ

(m)
j 〉m = δij , i, j ∈ N.

This means that {ψ(m)
n , n ∈ N} is an orthonormal basis in Φm. Suppose that k < m, x ∈ Φm.

We have x =
+∞∑
n=1

〈x, ψ
(m)
n 〉mψ

(m)
n =

+∞∑
n=1

〈x, ψ
(m)
n 〉‖φn‖k

/‖φn‖mψ
(k)
n . Therefore

Im
k x =

+∞∑
n=1

‖φn‖k

/‖φn‖m〈x, ψ(m)
n 〉mψ(k)

n .

From [1, I.2] it follows that Im
k is a self-adjoint operator, and σ(Im

k ) = Pσ(Im
k ) = {a(km)

n =
‖φn‖k

/‖φn‖m, n ∈ N}. Furthermore

a(km)
n =

( k∑
p=0

λ2p
n

)1/2/( m∑
p=0

λ2p
n

)1/2

=
( λ

2(k+1)
n − 1

λ
2(m+1)
n − 1

)1/2

∼ 1
|λn|m−k

↓ 0, n → +∞.

By this we have

τkm = inf
{

µ
∣∣∣

∑

a
(km)
n <1

(
ln

1

a
(km)
n

)−µ

< +∞
}

= inf
{

µ
∣∣∣

∑
n

(1/ ln |λn|)µ < +∞
}

= τA,
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where τA is independent of k, m. From the formula (1.1) it follows that

dfΦA = 1 + τA. (1.2)

In [1, I.3.8] there was an assertion: Every countable Hilbert space with finite functional
dimension is nuclear. Now we want to show that its converse is not true. For example, let
A0 be a self-adjoint operator on H with σ(A0) = Pσ(A0) = {λn = 2n + 1, n ∈ N}, the
multiplicity of each λn being 1. It is easy to see that

a(k,k+2)
n ∼ 1/|λn|2 = 1/(2n + 1)2, n, k ∈ N.

Since
+∞∑
n=1

a
(k,k+2)
n < +∞, it follows that Ik+2

k is a nuclear operator for k ∈ N. Then ΦA0 is

a nuclear space (see [1]). On the other hand,

τA0 = inf
{

µ
∣∣∣

+∞∑
n=1

[1/ ln(2n + 1)]µ < +∞
}

= +∞.

So dfΦA0 = 1 + τA0 = +∞.

Remark 1.1. From the above example we can see that for countable Hilbert spaces
the property finite functional dimension is definitely a more restrictive topological character
than the property nuclearity.

§ 2 . The Functional Dimension of Banach Spaces

In [1] the functional dimension of topological linear spaces was defined as follows.

Let Φ be a topological linear space, U be a neighborhood of zero in Φ, and M be a set
in Φ. A set G in Φ is called an ε-set for M relative to U , if M ⊂ ⋃

x∈G

(x + εU). Denote

N(ε,M, U) = min
{

rG

∣∣∣ G runs through the collection of
all ε-sets for M relative to U

}
, (2.1)

where rG denotes the number of elements in G.
Let U(0) be the neighborhood system of zero in Φ. This means that U(0) is the

family of all neighborhoods of zero in Φ. Suppose that U, V ∈ U(0). Denote σUV =
lim

ε→0+
ln ln N(ε, V, U)/ ln ln ε−1, where N(ε, V, U) is as in (2.1). Let

dfΦ = sup
U

inf
V
{σUV |U, V ∈ U(0)}. (2.2)

The number dfΦ is called the functional dimension of the space Φ.

We have the following propositions on the function N . It is easy to prove them by a
simple analysis.

Proposition 2.1.
If M1 ⊃ M2, then N(ε,M1, U) ≥ N(ε,M2, U);
If U1 ⊃ U2, then N(ε,M, U1) ≤ N(ε, M, U2);
If ε1 ≥ ε2, then N(ε1,M, U) ≤ N(ε2,M, U).
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Proposition 2.2. Let α > 0. We have

N(ε, M, αU) = N(εα,M,U),

N(αε, αM, U) = N(ε, M, U).

Lemma 2.1. Let Φ be a topological linear space, B(0) be a base for the neighborhood
system of zero in Φ, and σUV be as above. We have

dfΦ = sup
U

inf
V⊂U

{σUV |U, V ∈ B(0)},

and also dfΦ is independent of the choice of B(0).

Proof. By Proposition 2.1, σUV is monotonously decreasing when V is descending. So
it is easy to see that

inf
V ∈U(0)

σUV = inf
V ∈B(0)

σUV = inf
V⊂U

V ∈B(0)

σUV .

Here the second equality holds for each fixed U ∈ B(0).
On the other hand, by Proposition 2.1, σUV is monotonously increasing when U is

descending, and so does inf
V ∈U(0)

σUV . Therefore we have

sup
U∈U(0)

{
inf

V ∈U(0)
σUV

}
= sup

U∈B(0)

{
inf

V ∈U(0)
σUV

}
= sup

U∈B(0)

{
inf

V⊂U
V ∈B(0)

σUV

}
.

Then dfΦ = sup
U

inf
V⊂U

{σUV |U, V ∈ B(0)}.
From the above argument we can see that dfΦ is independent of the choice of B(0).

Lemma 2.2. Let Φ be a topological linear space, which satisfies the first axiom of count-
ability. Suppose that B(0) = {Uk | k ∈ N}, where U1 ⊃ U2 ⊃ · · · . Then

dfΦ = sup
k

inf
m>k

σUkUm ,

and also dfΦ is independent of the choice of {Uk | k ∈ N}.
Proof. By Lemma 2.1, it is obvious.

Lemma 2.3. Let B be a Banach space, and S be the unit ball of B. Then

dfB = lim
ε→0+

ln ln N(ε, S, S)/ ln ln ε−1,

and also dfB is independent of the choice of S.

Proof. Take Uk = 1
kS, k = 1, 2, · · · . By Proposition 2.2, we have N(ε, Uk, Um) =

N( k
mε, S, S). Furthermore

σUkUm = lim
ε→0+

ln ln N
( k

m
ε, S, S

)/
ln ln ε−1

= lim
ε→0+

ln ln N(ε, S, S)/ ln ln ε−1 for m, k,∈ N.

From Lemma 2.2 it follows that dfB = lim
ε→0+

ln ln N(ε, S, S)/ ln ln ε−1.

Now we study the functional dimension of Banach spaces.
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Theorem 2.1. The functional dimension of finite dimensional Banach spaces is 1. And
the functional dimension of infinite dimensional Banach spaces is +∞.

Proof. Suppose B is an n-dimensional real linear space. Take

S =
{

max
1≤j≤n

|xj | < 1
∣∣∣ (x1, x2, · · · , xn) ∈ B, xj (1 ≤ j ≤ n) ∈ R

}
,

where R denotes the real field. Then

N(ε, S, S) ∼ Kn(1/ε)n,

and Kn is independent of ε (see [2, Formula (48)]). By Lemma 2.3, we have dfB = 1.
Suppose B is an n-dimensional complex linear space. We can define an inner product

as its topology. And also B with this inner product is a 2n-dimensional real linear space.
Denote it by Br, and the natural map from B to Br by J. Let SB be the unit ball of B.
Then JSB = SBr

is exactly the unit ball of Br. Obviously G is an ε-set for SB relative to
SB if and only if JG is an ε-set for SBr relative to SBr . So N(ε, SB , SB) = N(ε, SBr , SBr ) ∼
K2n(1/ε)2n, where K2n is independent of ε. By Lemma 2.3, we have dfB = 1.

Suppose B is an infinite dimensional Banach space. It is known that the unit ball of
an infinite dimensional Banach space must not be countably compact. Moreover, a set in a
complete metric space is countably compact if and only if it is totally bounded (see [4, II, 4]).
Then S = {x |x ∈ B, ‖x‖ < 1} must not be totally bounded. So there exists some ε0 > 0,
such that any ε0-set for S relative to S must not be finite set. That is, N(ε0, S, S) = +∞.
By Proposition 2.1, we have N(ε, S, S) = +∞ for any ε < ε0. Then dfB = +∞.

Remark 2.1. From Section 1 and Section 2 we can see that the property finite functional
dimension implies a very deep topological character. In the next section we will give a class
of topological linear spaces, whose functional dimensions are finite.

§ 3 . The Functional Dimension of (B�, σ(B�, B))

In the title of this section, B∗ denotes the dual space of a Banach space B and σ(B∗, B)
is the weak-star topology for B∗. It is known that a base for the neigbborhood system of
zero in (B∗, σ(B∗, B)) is as follows:

B1(0) = {U(0; y1, y2, · · · , ym; ε) |m ∈ N, y1, y2, · · · ym ∈ B, ε > 0},
where U(0; y1, y2, · · · , ym; ε) = {f | f ∈ B∗, |f(yi)| < ε, 1 ≤ i ≤ m}.

Lemma 3.1. Another base for the neighborhood system of zero in (B∗, σ(B∗, B)) is as
follows:

B2(0) =
{

U(0; x1, x2, · · · , xn; 1)
∣∣∣ n ∈ N, x1, x2, · · ·xn are linearly
independent elements in B

}
,

where U(0; x1, x2, · · · , xn; 1) = {f | f ∈ B∗, |f(xj)| < 1, 1 ≤ j ≤ n}.
Proof. Suppose that W is a neighborhood of zero in (B∗, σ(B∗, B)). Then we can find

a neighborhood V = U(0; y1, y2, · · · , ym; ε) ∈ B1(0), such that W ⊃ V . If y1, y2, · · · , ym are
linearly independent, letting xj = yj/ε, 1 ≤ j ≤ m, we have V = U(0; x1, x2, · · · , xm; 1) ∈
B2(0). Otherwise, there exists n < m, such that y1, y2, · · · , yn are linearly independent

and yk =
n∑

j=1

αkjyj , n + 1 ≤ k ≤ m. Let ηk =
n∑

j=1

|αkj |, n + 1 ≤ k ≤ m, and δ =

min(ε, ε/ηn+1, · · · ε/ηm). It is clear that V ⊃ V0 = {f | f ∈ B∗, |f(yj)| < δ, 1 ≤ j ≤ n}. By
the above analysis we have V0 ∈ B2(0). This comes to the conclusion.
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Lemma 3.2. Let U, V ∈ B2(0). Suppose that

V = {f | f ∈ B∗, |f(xj)| < 1, 1 ≤ j ≤ n},

where x1, x2, · · ·xn are linearly independent elements in B;

U = {f | f ∈ B∗, |f(yj)| < 1, 1 ≤ i ≤ m},

where y1, y2, · · · ym are linearly independent elements in B. If V ⊂ U , then y1, y2, · · · ym

belong to the linear span of x1, x2, · · · , xn.

Proof. Denote the linear span of x1, x2, · · · , xn by E. Without loss of generality, we
assume that y1 6∈ E. Denote the (n + 1)-dimensional linear span of x1, · · · , xn, y1 by E1.
Define a linear functional f0 on E1 as follows:

f0(xj) = 0, 1 ≤ j ≤ n,

f0(y1) = 1.

Obviously f0 is a bounded linear functional on E1. By the Hahn-Banach Theorem we can
find a bounded linear functional f on B, such that f |E1 = f0, ‖f‖ = ‖f0‖. The facts f ∈ V
and f 6∈ U contradict the given condition V ⊂ U . Hence it must be that y1, y2, · · · ym ∈ E.

Theorem 3.1. The functional dimension of (B∗, σ(B∗, B)) is 1.

Proof. Take U, V as in Lemma 3.2. Suppose that V ⊂ U . By Lemma 3.2, we can write

yi =
n∑

j=1

βijxj , 1 ≤ i ≤ m,

where βij is a constant for each (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Denote the linear span of x1, x2, · · ·xn by E. Let E⊥ = {f | f ∈ B∗, f |E = 0}, and

τ : B∗ → B∗/E⊥ be the quotient map. That is, τf = f + E⊥ = f̂ for every f ∈ B∗, where
f̂ denotes the equivalence class containing f . It is known that B∗/E⊥ = E∗ ∼= Fn, where
either F = R if Banach space B is over the real field, or F = C if B is over the complex field.
Thus we can regard τf as an element (f(x1), f(x2), · · · f(xn)) in Fn. Moreover, it is easy to
see that ker τ = {f | f ∈ B∗, τf = 0} = E⊥, and ran τ = {f | f ∈ B∗} = Fn.

Write V̂ = τV, Û = τU . We have

V̂ = {τf | f ∈ V } = {ζ | ζ ∈ Fn, |ζj | < 1, 1 ≤ j ≤ n},

Û = {τf | f ∈ U} =
{

ζ
∣∣∣ ζ ∈ Fn,

∣∣∣
n∑

j=1

βijζj

∣∣∣ < 1, 1 ≤ i ≤ m
}

,

and also V̂ ⊂ Û .
Note the following claim: For any ζ ∈ V̂ (or ζ ∈ Û), it must be that

−1
τ ζ ⊂ V (or

−1
τ ζ ⊂ U). This is because of E⊥ ⊂ V (or E⊥ ⊂ U).

Now we start to show NB∗(ε, V, U) = NFn(ε, V̂ , Û), where functions N are defined as in
Section 2.

First we point out a fact: If G is an ε-set for V relative to U , then Ĝ is an ε-set for V̂
relative to Û .
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Let ζ ∈ V̂ . If f ∈−1
τ ζ ⊂ V , then there exists g ∈ G, such that f ∈ g + εU . Hence

f̂ − ĝ ∈ εÛ and ζ ∈ ĝ + εÛ . So V̂ ⊂ ⋃
ξ∈ bG(ξ + εÛ), and the fact is true.

From the definition of functions r in Section 2, it is obvious that rG ≥ r bG. By this it
follows that

NB∗(ε, V, U) = min{rG |G is any one ε-set for V relative to U}
≥ min{r bG |G is as above}
≥ min{rQ |Q is any one ε-set for V̂ relative to Û}
= NFn(ε, V̂ , Û). (3.1)

Next we point out the second fact: If Q is an ε-set for V̂ relative to Û , then we can find
a set GQ which is an ε-set for V relative to U , such that ĜQ = Q with rGQ

= rQ.

Let GQ = {gζ | arbitrarily take an element gζ ∈−1
τ ζ for every ζ ∈ Q}. It is obvious

that ĜQ = Q, rGQ
= rQ. If f ∈ V , then there exists ζ ∈ Q, such that f̂ ∈ ζ + εÛ . Hence

τ [(f−gζ)/ε] ∈ Û . By the previous claim, it follows that (f−gζ)/ε ∈ U . That is, f ∈ gζ +εU
and GQ is an ε-set for V relative to U .

From the second fact we have

NFn(ε, V̂ , Û) = min{rQ |Q is any one ε-set for V̂ relative to Û}
= min{rGQ |Q is as above}
≥ min{rG |G is any one ε-set for V relative to U}
= NB∗(ε, V, U). (3.2)

By (3.1) and (3.2) it is true that NB∗(ε, V, U) = NFn(ε, V̂ , Û). Here we recall that the
number n is just defined by V .

After this we calculate NFn(ε, V̂ , Û). Let

S = Sn =
{

ζ
∣∣∣ ζ ∈ Fn, |ζ| =

( n∑

j=1

| ζj |2
)1/2

< 1
}

,

the unit ball in Fn. Since S ⊂ V̂ ⊂ √
nS and S ⊂ V̂ ⊂ Û , from Propositions 2.1 and 2.2 it

follows that

NFn(ε, V̂ , Û) ≤ NFn(ε,
√

nS, Û) ≤ NFn(ε,
√

nS, S) = NFn(n−1/2ε, S, S).

By the argument in Theorem 2.1,

NFn(n−1/2ε, S, S) ∼
{

Kn(n1/2ε−1)n for F = R,

K2n(n1/2ε−1)2n for F = C,

where either Kn or K2n is independent of ε.
On the other hand, let

Û1 =
{

ζ
∣∣∣ ζ ∈ Fn,

∣∣∣
n∑

j=1

β1jζj

∣∣∣ < 1
}

= {ζ | ζ ∈ Fn, |〈ζ, β〉| < ω−1},
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where ω =
( n∑

j=1

|β1j |2
)1/2

, and β = (β̄11/ω, β̄12/ω, · · · , β̄1n/ω) is a unit vector in Fn. Since

Û ⊂ Û1, from Proposition 2.1 it follows that

NFn(ε, V̂ , Û) ≥ NFn(ε, V̂ , Û1) ≥ NFn(ε, S, Û1).

From the definition εÛ1 is a region between the two parallel planes: 〈ζ, β〉 = ε/ω, and
〈ζ, β〉 = −ε/ω with a normal vector β. In addition, the distance between the two planes is
2ε/ω. Translating εÛ1, we can take a cover for S, such that the number of regions in the
cover is the smallest. Obviously, the smallest number is exactly 1+ [ω/ε], where [ω/ε] is the
greatest integer in ω/ε. And also, the smallest number is just equal to NFn(ε, S, Û1). Then
we have NFn(ε, S, Û1) > [ω/ε]. Taking ε < ω/2, we have

NFn(ε, S, Û1) > ω/ε− 1 = (ω − ε)ε−1 > (ω/2)ε−1.

By the above analysis we get the following estimation

c0ε
−1 ≤ NB∗(ε, V, U) ≤ c(n1/2ε−1)2n, (3.3)

where n = n(V ), c = c(n), c0 = c0(V,U), and they are all independent of ε. By a simple
calculation, σUV = 1 and furthermore dfB∗ = 1.
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