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WELL-POSEDNESS FOR THE CAUCHY PROBLEM
TO THE HIROTA EQUATION IN SOBOLEV

SPACES OF NEGATIVE INDICES
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Abstract

The local well-posedness of the Cauchy problem for the Hirota equation is estab-
lished for low regularity data in Sobolev spaces Hs(s ≥ − 1

4
). Moreover, the global

well-posedness for L2 data follows from the local well-posedness and the conserved
quantity. For data in Hs(s > 0), the global well-posedness is also proved. The main
idea is to use the generalized trilinear estimates, associated with the Fourier restriction
norm method.
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§ 1 . Introduction

We study the Cauchy problem for the Hirota equation

∂tu + iα∂2
xu + β∂3

xu + µ∂x(|u|2u) + iγ|u|2u = 0, x, t ∈ R, (1.1)

where α, β (µ, γ) are real (complex) constants and αβ 6= 0, u is complex valued function.
(??) is a typical model in mathematical physics, which encompasses the well-known

nonlinear Schrödinger equation and the modified KdV equation, and especially contains the
nonlinear derivative Schrödinger equation. Hasegawa and Kodama [3, 7] proposed (??) as a
model for propagation of pulse in optical fiber.

The Cauchy problem of (??) changes as follows if µ = 0,

∂tu + iα∂2
xu + β∂3

xu + iγ|u|2u = 0, x, t ∈ R, (1.2)

u(x, 0) = u0(x). (1.3)

Recently, Carvajal [2] has proved that the Cauchy problem (??)–(??) is locally well-posed
in Hs(s > − 1

4 ), and the mapping data-solution u0 → u(t) for the Cauchy problem (??)–(??)
is not C3 at origin in the case s < − 1

4 . Moreover, the local solution for initial data in L2 is
global by using the L2 conservation law of (??). However, he did not answer the question
whether the Cauchy problem (??)–(??) is locally well-posed or not for initial data in space
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H− 1
4 , whether the Cauchy problem (??)–(??) is globally well-posed or not for initial data

in Hs(s > 0).
In this paper, we first prove that the Cauchy Problem (??)–(??) is locally well-posed for

data in Hs(s ≥ − 1
4 ) by the Fourier restriction norm method and the contraction mapping

principle. Compared to the results in [2], our results of the first part on local well-posedness
of the Cauchy problem (??)–(??) in Hs(s ≥ − 1

4 ) seem difficult to be improved.
Then we have the globally well-posed results for data in L2 by using the fact that the

equation (??) preserves L2 norm. For data in Hs(0 < s ≤ 1), we first establish the general-
ized trilinear estimate, which associated with the Fourier restriction norm method, to prove
that the existence time of the solution in Hs(0 < s ≤ 1) only depends on the norm of data
in L2. Therefore, we can prove the global well-posedness of the Cauchy problem (??)–(??)
in Hs(0 < s ≤ 1). Further, as to the initial value in Hs(1 < s ≤ 2), we can establish
the analogous generalized trilinear estimate as above, then we can also obtain the global
well-posedness for data in Hs(1 < s ≤ 2). By using induction, we are able to establish the
global well-posedness of the Cauchy Problem (??)–(??) in Hs(s > 0).

The Fourier restriction norm method was first introduced by J. Bourgain [1] to study the
KdV and Nonlinear Schrödinger equations in the periodic case. It was simplified by Kenig,
Ponce and Vega in dealing with KdV equation in [4, 5].

In order to study the Cauchy problem (??)–(??), we use its equivalent formulation

u(x, t) = S(t)u0 − i

∫ t

0

S1(t− t′)γ|u|2|u|(t′)dt′,

where S(t) = F−1
x eit(αξ2+βξ3)Fx is the unitary operator associated to the corresponding

linear equation. Here the phase function is denoted by φ(ξ) = αξ2 + βξ3.
It is important to point out that the phase function φ(ξ) has non-zero singular points,

which makes difference from the phase functions of the semigroup of the linear KdV equation
and also makes the problem much more difficult. Therefore, we need use Fourier restriction
operators

PNf =
∫

|ξ|≥N

eixξ f̂(ξ)dξ, PNf =
∫

|ξ|≤N

eixξ f̂(ξ)dξ, ∀N > 0 (1.4)

to eliminate the singularity of the phase function.
Moreover, the operators will be used to decompose the nonlinear term |u|2u in (??). To

deal with the term, we first decompose it as the high frequency part and the corresponding
low one as follows

|u|2u = PN{|u|2u}+ PN{|u|2u}. (1.5)

Next, we continue to decompose each term in the right side of (??) as the summation of
those products which consist of each factor acted by the Fourier restriction operators PN or
PN . We will estimate each resulting term with different methods to overcome the obstacles.

Definition 1.1. For s, b ∈ R, the space Xs,b is defined to be the completion of the
Schwartz function space on R2 with respect to the norm

‖u‖Xs,b
= ‖〈ξ〉s〈τ − βξ3 − αξ2〉bFu‖L2

ξL2
τ
, or ‖ū‖Xs,b

= ‖〈ξ〉s〈τ − βξ3 + αξ2〉bF ū‖L2
ξL2

τ
,

where 〈·〉 = (1 + | · |). One can easily prove that

‖u‖Xs,b
= ‖ū‖Xs,b

,

which will be used later without pointing out it.
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We shall use the trivial embedding ‖u‖Xs1,b1
≤ ‖u‖Xs2,b2

, whenever s1 ≤ s2, b1 ≤ b2.
Denote by û = Fu (or F(·)u) the Fourier transform in t and x ( or ( · ), respectively) of u.

Let us introduce some variables for convenience

σ = τ − βξ3 − αξ2, σj = τj − βξ3
j − αξ2

j (j = 1, 2), σ3 = τ3 − βξ3
3 + αξ2

3 . (1.6)

Throughout this paper, we shall denote the following notation
∫

?
·dδ as the convolution

integral ∫

ξ=ξ1+ξ2+ξ3;τ=τ1+τ2+τ3

·dτ1dτ2dτ3dξ1dξ2dξ3.

Let ψ ∈ C∞0 (R) with ψ = 1 on [− 1
2 , 1

2 ] and suppψ ⊂ [−1, 1]. We denote ψδ( · ) =
ψ(δ−1( · )) for some non-zero δ ∈ R.

We use A ∼ B to denote the statement that A ≤ C1B and B ≤ C1A for some constant
C1 > 0, and use A ¿ B to denote the statement A ≤ 1

C2
B for some large enough constant

C2 > 0.
We give our results as follows.

Theorem 1.1. Let s ≥ − 1
4 , 1

2 < b < 7
12 . Then there exists a constant T > 0, such that

(??)–(??) admits a unique local solution u(x, t) ∈ C(0, T ;Hs)
⋂

Xs,b with u0 ∈ Hs. More-
over, given t ∈ (0, T ), the map u0 → u(t) is Lipschitz continuous from Hs to C(0, T ; Hs).

The L2 conservation law can be established easily for smooth solution of the equation
(??),

‖u(x, t)‖L2 = ‖u0(x)‖L2 , ∀ t ∈ R. (1.7)

Then we have the global well-posedness for data in L2, that is

Theorem 1.2. If s = 0, the solution obtained in Theorem 1.1 can be extended for any
T > 0.

Moreover, for data in Hs(s > 0), the solution of (??)–(??) is globally well-posed by the
generalized trilinear estimates (which are proved in Section 3).

Theorem 1.3. The solution of (??)–(??) is globally well-posed in Hs(s > 0).

§ 2 . Preliminary Estimates and Local Results

We can get the following trilinear estimates. It will be proved that the contraction
argument provides the local well-posedness, once the following estimate holds for some
b ∈ R, namely, for some b > 1

2 ,

‖ u1u2ū3 ‖Xs,b−1≤ C ‖ u1 ‖Xs,b
‖ u2 ‖Xs,b

‖ u3 ‖Xs,b
. (2.1)

In fact, we can prove the following more general theorem.

Theorem 2.1. If s ≥ − 1
4 , 1

2 < b < 7
12 , b′ > 1

2 . Then

‖ u1u2ū3 ‖Xs,b−1≤ C ‖ u1 ‖Xs,b′‖ u2 ‖Xs,b′‖ u3 ‖Xs,b′ . (2.2)

Next, we deduce some lemmas which will be used in the proof of Theorem 2.1.
First, we introduce the notations

a = max
(
1,

∣∣∣2α

3β

∣∣∣
)
, FFρ(ξ, τ) =

f(ξ, τ)
(1 + |τ − φ(ξ)|)ρ

,

and list the following notations, which will be used later,

Ds
x = F−1|ξ|sF , ‖f‖Lp

xLq
t

=
( ∫ ∞

−∞

( ∫ ∞

−∞
|f(x, t)|qdt

) p
q

dx
) 1

p

, ‖f‖L∞t Hs
x

= ‖‖f‖Hs
x
‖L∞t .
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Lemma 2.1. The group {S(t)}+∞−∞ satisfies

‖S(t)ϕ‖L8
xL8

t
≤ C‖ϕ‖L2 . (2.3)

We refer to [8] for the proof.

Lemma 2.2. The group {S(t)}+∞−∞ satisfies

‖DxS(t)P 2aϕ‖L∞x L2
t
≤ C‖ϕ‖L2 , (2.4)

‖D− 1
4

x S(t)P aϕ‖L4
xL∞t ≤ C‖ϕ‖L2 , (2.5)

‖D
1
6
x S(t)P 2aϕ‖L6

xL6
t
≤ C‖ϕ‖L2 , (2.6)

‖S(t)P 2aϕ‖L5
xL10

t
≤ C‖ϕ‖L2 . (2.7)

Proof. We prove (??) first. It is clear that φ′(ξ) = 2αξ + 3βξ2 has non-zero singularity,
then φ is invertible if |ξ| ≥ N (here we use N = 2a). Therefore, we have

PNS(t)ϕ =
∫

|ξ|≥N

eixξeitφ(ξ)ϕ̂(ξ)dξ

=
∫

|φ−1|≥N

eixφ−1
eitφϕ̂(φ−1)

1
φ′

dφ = F−1
t

(
eixφ−1

χ{|φ−1|≥N}ϕ̂(φ−1)
1
φ′

)
.

In the following steps, we will use the changed variable ξ = φ−1. It can be proved that

‖PNS(t)ϕ‖2L2
t

=
∥∥∥χ{|φ−1|≥N}ϕ̂(φ−1)

1
φ′

∥∥∥
2

L2
φ

=
∫

|φ−1|≥N

|ϕ̂(φ−1)|2 1
|φ′|2 dφ ≤ C

∫

|ξ|≥N

|ϕ̂(ξ)|2
|ξ|2 dξ ≤ C‖ϕ‖2

Ḣ−1 .

In fact, this implies the estimate (??).
Let us turn to the proof of (??) next. The first inequality as below holds with the help

of Theorem 2.5 in [6]. We show that

‖S(t)P aϕ‖2L4
xL∞t

≤
∫
|FP aϕ(ξ)|2

∣∣∣ φ′(ξ)
φ′′(ξ)

∣∣∣
1
2
dξ

≤
∫
|FP aϕ(ξ)|2

( |3βξ2|(1 + a 1
a )

|6βξ|(1− 1
2a 1

a )

) 1
2
dξ ≤ ‖P aϕ‖2

H
1
4
.

Therefore, we obtain the estimate (??).
Finally, (??) and (??) follow by interpolation between (??) and (??).

Lemma 2.3. If ρ > 1
2 , for any fixed N with 0 < N < +∞, it holds that

‖PNFρ‖L2
xL∞t ≤ C‖f‖L2

ξL2
τ
. (2.8)

The proof is similar to that of Lemma 2.3 in [4], so we omit the details here.

Lemma 2.4. If ρ >
1
2

4(q − 2)
3q

, then for 2 ≤ q ≤ 8,

‖Fρ‖Lq
xLq

t
≤ C‖f‖L2

ξL2
τ
. (2.9)
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Proof. Changing variable τ = λ + φ(ξ), we have

Fρ(x, t) =
∫ ∞

−∞

∫ ∞

−∞
ei(xξ+tτ) f(ξ, τ)

(1 + |τ − φ(ξ)|)ρ
dξdτ

=
∫ ∞

−∞
eitλ

( ∫ ∞

−∞
ei(xξ+tφ(ξ))f(ξ, λ + φ(ξ))dξ

) dλ

(1 + |λ|)ρ
.

Therefore, using (??), Minkowski’s integral inequality and taking ρ > 1
2 , one is able to

show that

‖Fρ‖L8
xL8

t
≤ C

∫ +∞

−∞
‖f(ξ, λ + φ(ξ))‖L2

ξ

dλ

(1 + |λ|)ρ
≤ C‖f‖L2

ξL2
τ
. (2.10)

By interpolation between the inequality (??) and

‖F0‖L2
xL2

t
≤ C‖f‖L2

ξL2
τ
, (2.11)

we have, for ρ >
1
2

4(q − 2)
3q

, that ‖Fρ‖Lq
xLq

t
≤ C‖f‖L2

ξL2
τ
.

Lemma 2.5. Let ρ >
θ

2
with θ ∈ [0, 1]. Then

‖Dθ
xP 2aFρ‖

L
2

1−θ
x L2

t

≤ C‖f‖L2
ξL2

τ
. (2.12)

Proof. The argument in the proof of (??) and the inequality (??) shows that for ρ > 1
2 ,

‖DxP 2aFρ‖L∞x L2
t
≤ C‖f‖L2

ξL2
τ
,

which interpolated with (??) yields (??).

Lemma 2.6. If ρ >
1
2
, then

‖D− 1
4

x P 2aFρ‖L4
xL∞t ≤ C‖f‖L2

ξL2
τ
. (2.13)

Proof. From the argument in (??) and (??), it follows that (??) holds for ρ > 1
2 .

Lemma 2.7. If ρ >
5
12

, then

‖P 2aFρ‖L4
xL6

t
≤ C‖f‖L2

ξL2
τ
. (2.14)

Proof. Similarly to Lemma 2.6, we get the following inequality by (??) and the argument
in (??) for ρ > 1

2 ,

‖P 2aFρ‖L5
xL10

t
≤ C‖f‖L2

ξL2
τ
,

which interpolated with (??) yields (??).

Lemma 2.8. If ρ >
1
3
, then

‖D
1
4
x P 2aFρ‖L4

xL3
t
≤ C‖f‖L2

ξL2
τ
. (2.15)
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Proof. For ρ > 1
2 , similarly with above, from (??) and the argument in (??), we can

obtain
‖D

1
6
x P 2aFρ‖L6

xL6
t
≤ C‖f‖L2

ξL2
τ
, (2.16)

which interpolated with (??) shows that for ρ > 3
8 ,

‖D
1
8
x P 2aFρ‖L4

xL4
t
≤ C‖f‖L2

ξL2
τ
. (2.17)

Then the inequality (??) follows by interpolation between (??) with θ = 1
2 and (??).

Lemma 2.9. Assume that f, f1, f2 and f3 belong to Schwartz space on R2. Then
∫

?

¯̂
f(ξ, τ)f̂1(ξ1, τ1)f̂2(ξ2, τ2)f̂3(ξ3, τ3)dδ =

∫∫
f̄f1f2f3(x, t)dxdt. (2.18)

Proof. For simplicity, we only discuss the case of space variable. In fact, we can obtain
∫

ξ=ξ1+ξ2+ξ3

¯̂
f(ξ)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)dδ

=
∫

ξ=ξ1+ξ2+ξ3

ˆ̄f(−ξ)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)dδ

=
∫

ξ1

∫

ξ′2

∫

ξ′3

ˆ̄f(−ξ3
′)f̂1(ξ1)f̂2(ξ2

′ − ξ1)f̂3(ξ3
′ − ξ2

′)dξ1dξ2
′dξ3

′

= ˆ̄f ∗ f̂1 ∗ f̂2 ∗ f̂3(0) = F f̄f1f2f3(0) =
∫

f̄f1f2f3(x)dx.

Therefore, Lemma 2.9 is proved.

We give the proof of Theorem 2.1 now.
Here we only prove the case s < 0. The case s ≥ 0 is easy to be dealt with. For simplicity,

we let r = −s.
By duality and the Plancheral identity, it suffices to show that for all f̄ ∈ L2, f̄ ≥ 0,

Υ =
∫

?

f̄(τ, ξ)

〈ξ〉r〈σ〉1−b
Fu1(τ1, ξ1)Fu2(τ2, ξ2)F ū3(τ3, ξ3)dδ

=
∫

?

3∏
j=1

〈ξj〉r

〈ξ〉r〈σ〉1−b
3∏

j=1

〈σj〉b
′
f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

≤ C‖f‖L2

3∏

j=1

‖fj‖L2 ,

where

ξ = ξ1 + ξ2 + ξ3, τ = τ1 + τ2 + τ3; fj = 〈ξj〉s〈σj〉b
′
ûj , j = 1, 2; f3 = 〈ξ3〉s〈σ3〉b

′
ˆ̄u3.

It is clear that ‖fj‖L2
ξL2

τ
= ‖uj‖Xs,b′ (j = 1, 2, 3), which will be used later without pointing

out it.
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We may assume fj ≥ 0, j = 1, 2, 3. Let

FF j
ρ (ξ, τ) =

fj(ξ, τ)
(1 + |τ − βξ3 − αξ2|)ρ

, j = 1, 2,

FF 3
ρ (ξ, τ) =

f3(ξ, τ)
(1 + |τ − βξ3 + βξ2|)ρ

.

We can obtain the following identity from (??),

σ − σ1 − σ2 − σ3 = −3β(ξ − ξ1)(ξ − ξ2)
(
ξ − ξ3 +

2α

3β

)
,

which implies that, if |ξ − ξ1| ≥ 2a, |ξ − ξ2| ≥ 2a and |ξ − ξ3| ≥ 2a, we have

max{|σ|, |σ1|, |σ2|, |σ3|} ≥ C|ξ − ξ1||ξ − ξ2||ξ − ξ3|.

Let

K(ξ, ξ1, ξ2, ξ3) =
〈ξ1〉r〈ξ2〉r〈ξ3〉r

〈ξ〉r .

In order to obtain the boundedness of Υ, we split the domain of integration in several
pieces.

Situation I. Assume |ξ| ≤ 6a, |ξ − ξ3| ≤ 2a (it is easy to see that |ξ3| ≤ 8a).
Case 1. If |ξ − ξ1| ≤ 2a or |ξ − ξ2| ≤ 2a, then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).

By (??) and (??), the integral Υ restricted to this domain is bounded by

C

∫

?

f̄(τ, ξ)

〈σ〉1−b

f1(τ1, ξ1)

〈σ1〉b
′

f2(τ2, ξ2)

〈σ2〉b
′

f3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F1−b‖L2
xL2

t
‖F 1

b′‖L6
xL6

t
‖F 2

b′‖L6
xL6

t
‖F 3

b′‖L6
xL6

t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Case 2. |ξ − ξ1| ≥ 2a and |ξ − ξ2| ≥ 2a.
Subcase (1). If |ξ1| ≤ 2a or |ξ2| ≤ 2a, then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).

Therefore, similarly to Case 1, in the region Υ is bounded by

C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Subcase (2). If |ξ1| ≥ 2a and |ξ2| ≥ 2a, we get |ξ1| ∼ |ξ2|, which follows from

|ξ − ξ3| = |ξ1 + ξ2| ≤ 2a.

Then using r ≤ 1
2 , we have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ2|.
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For b < 2
3 , by (??), (??), (??) and (??), Υ restricted to this domain is bounded by

C

∫

?

f̄(τ, ξ)

〈σ〉1−b

f1(τ1, ξ1)

〈σ1〉b
′
|ξ2|χ|ξ2|≥2af2(τ2, ξ2)

〈σ2〉b
′

χ|ξ3|≤8af3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F1−b‖L4
xL4

t
‖F 1

b′‖L4
xL4

t
‖DxP 2aF 2

b′‖L∞x L2
t
‖P8aF 3

b′‖L2
xL∞t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Situation II. |ξ| ≤ 6a, |ξ − ξ3| ≥ 2a.
Case 1. If |ξ − ξ1| ≤ 2a or |ξ − ξ2| ≤ 2a, without loss of generality, we can assume

|ξ − ξ1| ≤ 2a (we have |ξ1| ≤ 8a).
Subcase (1). If |ξ3| ≤ 2a or |ξ2| ≤ 2a, then we can see

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).

Hence, we obtain that the contribution of this region to Υ is bounded by

C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

by an analogous argument to Case 1 in Situation I.
Subcase (2). If |ξ3| ≥ 2a and |ξ2| ≥ 2a, we use |ξ−ξ1| = |ξ2 +ξ3| ≤ 2a to get |ξ2| ∼ |ξ3|.

Then for r ≤ 1
2 , we obtain

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ3|.
By (??), (??), (??) and (??) for b < 2

3 , Υ in this region is bounded by

C

∫

?

f̄(τ, ξ)

〈σ〉1−b

|ξ1|χ|ξ1|≤8af1(τ1, ξ1)

〈σ1〉b
′

f2(τ2, ξ2)

〈σ2〉b
′

χ|ξ3|≥2af3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F1−b‖L4
xL4

t
‖P8aF 1

b′‖L2
xL∞t ‖F 2

b′‖L4
xL4

t
‖DxP 2aF 3

b′‖L∞x L2
t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Case 2. If |ξ − ξ1| ≥ 2a and |ξ − ξ2| ≥ 2a, it follows that 〈ξ − ξ1〉 ∼ 〈ξ1〉, 〈ξ − ξ2〉 ∼
〈ξ2〉, 〈ξ − ξ3〉 ∼ 〈ξ3〉. Then we get, by r ≤ 1− b, that

K(ξ, ξ1, ξ2, ξ3)

〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b〈ξ − ξ3〉1−b
≤ C(a).

If |σ| ≥ C|ξ − ξ1||ξ − ξ2||ξ − ξ3|, by (??) and (??), Υ in this region is bounded by

C

∫

?

f̄(τ, ξ)
f1(τ1, ξ1)

〈σ1〉b
′

f2(τ2, ξ2)

〈σ2〉b
′

f3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F0‖L2
xL2

t
‖F 1

b′‖L6
xL6

t
‖F 2

b′‖L6
xL6

t
‖F 3

b′‖L6
xL6

t
≤ C‖f‖L2

ξL2
τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

If |σ1| ≥ C|ξ− ξ1||ξ− ξ2||ξ− ξ3|, by (??) and (??) for b < 2
3 , Υ in this region is bounded by

C

∫

?

f̄(τ, ξ)

〈σ〉1−b
f1(τ1, ξ1)

f2(τ2, ξ2)

〈σ2〉b
′

f3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F1−b‖L4
xL4

t
‖F 1

0 ‖L2
xL2

t
‖F 2

b′‖L8
xL8

t
‖F 3

b′‖L8
xL8

t
≤ C‖f‖L2

ξL2
τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

For the other cases (|σ2| ≥ C|ξ − ξ1||ξ − ξ2||ξ − ξ3| and |σ3| ≥ C|ξ − ξ1||ξ − ξ2||ξ − ξ3|),
we obtain the desired estimates in an analogous arguments as above.
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Situation III. |ξ| ≥ 6a, |ξ − ξ3| ≤ 2a (we have |ξ3| ≥ 4a).
Case 1. If |ξ − ξ1| ≤ 2a or |ξ − ξ2| ≤ 2a, without loss of generality, we can assume

|ξ − ξ1| ≤ 2a. Hence we obtain that |ξ| ∼ |ξ1|, |ξ1| ≥ 4a. By |ξ − ξ3| = |ξ1 + ξ2| ≤ 2a, we
can get |ξ2| ≥ 2a, |ξ1| ∼ |ξ2|. Then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ2|r|ξ3|r.

For 1− b > 5
12 , r ≤ 1

4 , by (??), (??) and (??), Υ is bounded by

C

∫

?

χ|ξ|≥6af̄(τ, ξ)

〈σ〉1−b

χ|ξ1|≥4af1(τ1, ξ1)

〈σ1〉b
′

|ξ2|rχ|ξ2|≥2af2(τ2, ξ2)

〈σ2〉b
′

|ξ3|rχ|ξ3|≥4af3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖P 6aF1−b‖L4
xL6

t
‖P 4aF 1

b′‖L4
xL6

t
‖D

1
4
x P 2aF 2

b′‖L4
xL3

t
‖D

1
4
x P 4aF 3

b′‖L4
xL3

t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Case 2. If |ξ − ξ1| ≥ 2a and |ξ − ξ2| ≥ 2a, from |ξ − ξ3| ≤ 2a, it is easy to see that
|ξ| ∼ |ξ3|.

Subcase (1). |ξ1| ≤ 2a or |ξ2| ≤ 2a.
If |ξ1| ≤ 2a and |ξ2| ≤ 2a, we have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).

Then we obtain the desired estimate in an analogous argument to Case 1 (Situation I).
If |ξ1| ≤ 2a and |ξ2| ≥ 2a, we have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ2|r.

By (??), (??), (??) and (??), for r ≤ 1, we have the boundedness of Υ as follows:

C

∫

?

f̄(τ, ξ)

〈σ〉1−b

χ|ξ1|≤2af1(τ1, ξ1)

〈σ1〉b
′

|ξ2|rχ|ξ2|≥2af2(τ2, ξ2)

〈σ2〉b
′

f3(τ3, ξ3)

〈σ3〉b
′ dδ

≤ C‖F1−b‖L4
xL4

t
‖P2aF 1

b′‖L2
xL∞t ‖DxP 2aF 2

b′‖L∞x L2
t
‖F 3

b′‖L4
xL4

t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Subcase (2). If |ξ1| ≥ 2a and |ξ2| ≥ 2a, we have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ2|r|ξ2|r.

For 1− b > 5
12 and r ≤ 1

4 , the integral Υ is bounded by

C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

in an analogous to the above Case 1 (Situation III).
Situation IV. |ξ| ≥ 6a, |ξ − ξ3| ≥ 2a.

Case 1. If |ξ − ξ1| ≤ 2a or |ξ − ξ2| ≤ 2a, without loss of generality, we can assume
|ξ − ξ1| ≤ 2a. It is clear that |ξ| ∼ |ξ1|, |ξ1| ≥ 4a.

Subcase (1). If |ξ3| ≤ 4a, we get |ξ2| ≤ 6a by |ξ − ξ1| = |ξ2 + ξ3| ≤ 2a. Then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).
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Hence we obtain the contribution of this region to the integral Υ by

C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

in an analogous to Case 1 in Situation I.
Subcase (2). If |ξ3| ≥ 4a, it follows that |ξ2| ∼ |ξ3|, |ξ2| ≥ 2a from |ξ− ξ1| = |ξ2 + ξ3| ≤

2a. Then
K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ2|r|ξ3|r.

We use 1− b > 5
12 , r ≤ 1

4 to bound the integral Υ by

C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

in an analogous to Case 1 in Situation III.
Case 2. |ξ − ξ1| ≥ 2a and |ξ − ξ2| ≥ 2a.
Subcase (1). |ξ3| ≤ 2a. We can see that 〈ξ − ξ1〉 ∼ 〈ξ2〉, 〈ξ − ξ2〉 ∼ 〈ξ1〉. Then we get

by r ≤ 1− b,
K(ξ, ξ1, ξ2, ξ3)

〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b〈ξ − ξ3〉1−b
≤ C(a).

We can obtain the desired estimate by an analogous argument to Case 2 in Situation II.
Subcase (2). |ξ3| ≥ 2a.

If |ξ3| ≤ C|ξ|, then
K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ1|r|ξ2|r.

In the subdomain of |ξ1| ≤ 2a or |ξ2| ≤ 2a, we can obtain the results in an analogous
argument to Situation III (Case 2, Subcase (1)). In the subcase |ξ1| ≥ 2a and |ξ2| ≥ 2a, we
can obtain the results by an analogous argument to Case 1 in Situation III.

If |ξ| ¿ |ξ3|, we get |ξ| ¿ |ξ3| ∼ |ξ − ξ3| ∼ |ξ1 + ξ2| ≤ C max{|ξ1|, |ξ2|}, which follows
from the fact ξ − ξ3 = ξ1 + ξ2. Hence if |ξ| ¿ |ξ1| or |ξ| ¿ |ξ1| , we have |ξ1| ∼ |ξ − ξ1| or
|ξ1| ∼ |ξ − ξ1| respectively. Using that r ≤ 1− b, we get

K(ξ, ξ1, ξ2, ξ3)

〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b〈ξ − ξ3〉1−b
≤ C(a).

Therefore, we can obtain the desired estimate by an analogous argument to Case 2 in
Situation II. This completes the proof.

Lemma 2.10. Let s ∈ R,
1
2

< b < b′ < 1, 0 < δ ≤ 1. Then we have

‖ψδ(t)S(t)ϕ‖Xs,b
≤ Cδ

1
2−b‖ϕ‖Hs ,

‖ψδ(t)F‖Xs,b−1 ≤ Cδb′−b‖F‖Xs,b′−1

∥∥∥ψδ(t)
∫ t

0

S(t− τ)F (τ)dτ
∥∥∥

Xs,b

≤ Cδ
1
2−b‖F‖Xs,b−1 ,

∥∥∥ψδ(t)
∫ t

0

S(t− τ)F (τ)dτ
∥∥∥

L∞t Hs
x

≤ Cδ
1
2−b‖F‖Xs,b−1 .

The proof can be found in [4, 5].

Now we turn to the proof of Theorem 1.1. For u0 ∈ Hs(s ≥ − 1
4 ), we define the operator

Φ(u) = ψ1(t)S(t)u0 − ψ1(t)i
∫ t

0

S(t− t′)ψδ(t′)γ|u|2u(t′)dt′,
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and the set
B = {u ∈ Xs,b : ‖u‖Xs,b

≤ 2C‖u0‖Hs}.
In order to show that Φ is a contraction on B, we first prove that Φ(B) ⊂ B.
By Theorem 2.1 and Lemma 2.10, we have the next chain of inequalities for b < b′ < 7

12 ,

‖Φ(u)‖Xs,b
≤ C‖u0‖Hs + Cδb′−b|γ|‖u‖2Xs,b

‖u‖Xs,b

≤ C‖u0‖Hs + Cδb′−b‖u0‖2Hs‖u‖Xs,b
.

Therefore, if we fix δ such that Cδb′−b‖u0‖2Hs ≤ 1
2 , then Φ(B) ⊂ B.

Let (u1, u2) ∈ B. In an analogous way as above, we obtain

‖Φ(u1)− Φ(u2)‖Xs,b
≤ 1

2
‖u1 − u2‖Xs,b

.

Therefore, Φ is a contraction map on B. Thus we can obtain a unique fixed point which
solves the Cauchy problem (??)–(??) for T < δ

2 .
The solution obtained above is also in C(0, T ; Hs) due to the inequality ‖u‖L∞Hs ≤

‖u‖Xs,b
.

Moreover, given t ∈ (0, T ), by the definition of Lipschitz continuous and Lemma 2.10,
one can easily prove that the map u0 → u(t) is Lipschitz continuous from Hs to C(0, T ; Hs).

This completes the proof of Theorem 1.1.

§ 3 . Global Well-Posedness in Hs(s > 0)

In this section, we will first prove the generalized trilinear estimate as follows.

Theorem 3.1. Let 0 < s ≤ 1,
1
2

< b <
2
3
, b′ >

1
2
. Then

‖ u1u2ū3 ‖Xs,b−1≤ C ‖ u1 ‖X0,b′‖ u2 ‖X0,b′‖ u3 ‖Xs,b′ . (3.1)

Remark 3.1. One can prove similarly when it also holds that the left side of (??) is
replaced by ‖u1ū2u3‖Xs,b−1 or ‖ū1u2u3‖Xs,b−1 . We only give the proof for the case (??) here.

Proof. By duality and the Plancheral identity, it suffices to show that for all f̄ ∈ L2, f̄ ≥
0, fj = 〈σj〉b

′
ûj , j = 1, 2; f3 = 〈ξ3〉s〈σ3〉b

′
ˆ̄u3, we have

Λ =
∫

?

〈ξ〉sf̄(τ, ξ)

〈σ〉1−b
Fu1(τ1, ξ1)Fu2(τ2, ξ2)F ū3(τ3, ξ3)dδ

=
∫

?

〈ξ〉s

〈ξ3〉s〈σ〉1−b
3∏

j=1

〈σj〉b
′
f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

≤ C‖f‖L2

3∏

j=1

‖fj‖L2 .

We may assume fj ≥ 0, j = 1, 2, 3. Let K(ξ, ξ1, ξ2, ξ3) = 〈ξ〉s/〈ξ3〉s.
We also split the domain of integration similarly as the proof of Theorem 2.1.

Situation I. |ξ| ≤ 6a. We have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).
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By (??) and (??), the contribution of the above region to the integral Λ is bounded by

‖F1−b‖L2
xL2

t
‖F 1

b′‖L6
xL6

t
‖F 2

b′‖L6
xL6

t
‖F 3

b′‖L6
xL6

t
≤ C‖f‖L2

ξL2
τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Situation II. |ξ| ≥ 6a.
Case 1. |ξ| ≤ C|ξ3| for some constants C. We have

K(ξ, ξ1, ξ2, ξ3) ≤ C(a).

Hence we obtain the desired estimate by an analogous argument to Case 1 in Situation I.
Case 2. |ξ3| ¿ |ξ|.
Subcase (1). |ξ3| ≤ 4a. Then |ξ| ≤ 3|ξ1| or |ξ| ≤ 3|ξ2| (without loss of generality, we

can assume 2a ≤ 1
3 |ξ| ≤ 3|ξ1|). By s ≤ 1, we get

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ1|.
Then for b < 2

3 , by (??), (??), (??) and (??), Λ is bounded by

‖F1−b‖L4
xL4

t
‖DxP 2aF 1

b′‖L∞x L2
t
‖F 2

b′‖L4
xL4

t
‖P4aF 3

b′‖L2
xL∞t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

Subcase (2). |ξ3| ≥ 4a. Then |ξ| ≤ 3|ξ1| or |ξ| ≤ 3|ξ2| (without loss of generality, we
assume 2a ≤ 1

3 |ξ| ≤ |ξ1|).
If |ξ2| ≤ 2a, then the integral Λ is bounded by, similarly to the above,

‖F1−b‖L4
xL4

t
‖DxP 2aF 1

b′‖L∞x L2
t
‖P2aF 2

b′‖L2
xL∞t ‖F 3

b′‖L4
xL4

t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

due to (??), (??), (??) and (??), for b < 2
3 and s < 1.

If |ξ2| ≥ 2a, it is easy to see that |ξ − ξ3| ≥ 2a from |ξ3| ¿ |ξ|. we will split this region
into the following two parts.

(i) |ξ − ξ1| ≤ 2a or |ξ − ξ2| ≤ 2a (without loss of generality,we can assume |ξ − ξ1| ≤ 2a,
so we have |ξ| ∼ |ξ1| and |ξ2| ∼ |ξ3|).

If 0 < s ≤ 1
4 , then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ1| 14 |ξ| 14 .

Then, for b < 2
3 , by (??), (??) and (??), the integral Λ is bounded by

‖D
1
4
x P 6aF1−b‖L4

xL3
t
‖D

1
4
x P 4aF 1

b′‖L4
xL3

t
‖P 2aF 2

b′‖L4
xL6

t
‖P 4aF 3

b′‖L4
xL6

t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

If 1
4 < s ≤ 1

2 , then
K(ξ, ξ1, ξ2, ξ3) ≤ C(a)|ξ1| 12 /|ξ3| 14 .

Then we use b < 2
3 to bound the integral Λ by

‖F1−b‖L4
xL4

t
‖D

1
2
x P 4aF 1

b′‖L4
xL2

t
‖F 2

b′‖L4
xL4

t
‖D− 1

4
x P 4aF 3

b′‖L4
xL∞t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,
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due to (??), (??), (??) and (??).
If 1

2 < s ≤ 1, then

K(ξ, ξ1, ξ2, ξ3) ≤ C(a)
|ξ1|

|ξ3| 14 |ξ2| 14
.

Then, for b < 2
3 , by (??), (??), (??) and (??), the integral Λ is bounded by

‖F1−b‖L2
xL2

t
‖DxP 4aF 1

b′‖L∞x L2
t
‖D− 1

4
x P 2aF 2

b′‖L4
xL∞t ‖D

− 1
4

x P 4aF 3
b′‖L4

xL∞t

≤ C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
.

(ii) |ξ − ξ1| ≥ 2a and |ξ − ξ2| ≥ 2a. We get

|ξ3| ¿ |ξ| ∼ |ξ − ξ3| ∼ |ξ1 + ξ2| ≤ C max{|ξ1|, |ξ2|},

which follows from ξ − ξ3 = ξ1 + ξ2 and |ξ3| ¿ |ξ|. Here, A ∼ B means B 9
10 ≤ A ≤ 10

9 B.
Hence, we have |ξ − ξ1| ≥ C|ξ| or |ξ − ξ2| ≥ C|ξ| for some constants C. Then we have

K(ξ, ξ1, ξ2, ξ3)

〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b〈ξ − ξ3〉1−b
≤ C(a)|ξ|s−2(1−b).

Without loss of generality, we can assume |ξ| ≤ 3|ξ1| and |σ| ≥ C|ξ−ξ1||ξ−ξ2||ξ−ξ3|. Then
we use s ≤ 2(1− b) + 1

6 to bound the integral Λ by

‖F0‖L2
xL2

t
‖D

1
6
x P 4aF 1

b′‖L6
xL6

t
‖F 2

b′‖L6
xL6

t
‖F 3

b′‖L6
xL6

t
≤ C‖f‖L2

ξL2
τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
‖f3‖L2

ξL2
τ
,

due to (??), (??) and (??). This completes the proof.

Now we turn to the proof of Theorem 1.3.
We use the contraction mapping principle to prove theorem.
For u0 ∈ Hs(0 < s ≤ 1), we define the operator

Φ(u) = ψ1(t)S(t)u0 − ψ1(t)i
∫ t

0

S(t− t′)ψδ(t′)γ|u|2u(t′)dt′,

and the sets

C = {u ∈ X0,b : ‖u‖X0,b
≤ 2C‖u0‖L2}, D = {u ∈ Xs,b : ‖u‖Xs,b

≤ 2C‖u0‖Hs}.

First, we prove that there exists a unique solution u(t) ∈ C(0, T ;L2) to the Cauchy
problem (??)–(??) for initial data in Hs(s > 0).

By Theorem 2.1 and Lemma 2.10, for b < b′ < 7
12 , we have the next chain of inequalities

‖Φ(u)‖X0,b
≤ C‖u0‖L2 + Cδb′−b|γ|‖u‖2X0,b

‖u‖X0,b
≤ C‖u0‖L2 + Cδb′−b‖u0‖2L2‖u‖X0,b

.

Hence, we fix δ such that Cδb′−b‖u0‖2L2 ≤ 1
2 . We get Φ(C) ⊂ C.

In an analogous way as above, for u1, u2 ∈ C, we obtain

‖Φ(u1)− Φ(u2)‖X0,b
≤ 1

2
‖u1 − u2‖X0,b

.

Then Φ is a contraction map on C. Thus we obtain that there exists a unique solution
u(t) ∈ C(0, T ; L2) for T < δ

2 .
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Next, for the time interval [0, T ], we will prove that the solution u(t) obtained above
belongs to C(0, T ; Hs) for initial data in Hs(0 < s ≤ 1).

In fact, it suffices to prove that the existence time of solution u(t) for data in Hs(0 <
s ≤ 1) only depends on the L2 norm of initial data.

For b < b′ < 7
12 , by Theorem 3.1 and Lemma 2.10, we have the next chain of inequalities

‖Φ(u)‖Xs,b
≤ C‖u0‖Hs + Cδb′−bγ‖u‖2X0,b

‖u‖Xs,b
≤ C‖u0‖Hs + Cδb′−b‖u0‖2L2‖u‖Xs,b

.

Then, we have Cδb′−b‖u0‖2L2 ≤ 1
2 by the above arguments. Therefore, we have Φ(D) ⊂ D.

In an analogous way as above, for u1, u2 ∈ D, we obtain

‖Φ(u1)− Φ(u2)‖Xs,b
≤ 1

2
‖u1 − u2‖Xs,b

.

Then Φ is a contraction map on D. Therefore, there exists a unique solution u(t) of the
Cauchy problem (??)–(??) for T < δ with data in Hs(0 < s ≤ 1).

Furthermore, we take u(T ) as initial value and then obtain that the solution of the Cauchy
problem (??)–(??) exists on t ∈ [T, 2T ] similarly as above arguments. We can continue this
process to obtain the global solution in Hs(0 < s ≤ 1) by L2 conservation law (??).

Remark 3.2. For data in Hs(1 < s ≤ 2), we can obtain the following generalized
trilinear estimate for some b > 1

2 similarly to the above arguments.

‖ u1u2ū3 ‖Xs,b−1≤ C ‖ u1 ‖X1,b′‖ u2 ‖X1,b′‖ u3 ‖Xs,b′ . (3.2)

One can prove similarly that it also holds if the left side of (??) is replaced by
‖u1ū2u3‖Xs,b−1 or ‖ū1u2u3‖Xs,b−1 .

Hence, we can get global well-posedness in Hs(1 < s ≤ 2) (??)–(??) by global well-
posedness in H1. By using induction, we can prove the global well-posedness in Hs(s > 0)
for Cauchy problem (??)–(??).
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