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WELL-POSEDNESS FOR THE CAUCHY PROBLEM
TO THE HIROTA EQUATION IN SOBOLEV
SPACES OF NEGATIVE INDICES

HUO ZuAoHUT* JIA YUELING**

Abstract

The local well-posedness of the Cauchy problem for the Hirota equation is estab-
lished for low regularity data in Sobolev spaces H®(s > —1). Moreover, the global
well-posedness for L? data follows from the local well-posedness and the conserved
quantity. For data in H°(s > 0), the global well-posedness is also proved. The main
idea is to use the generalized trilinear estimates, associated with the Fourier restriction
norm method.
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§1. Introduction

We study the Cauchy problem for the Hirota equation
Opu + iad?u + BOPu + pd, (|u)®u) + iylul*u =0, x,t € R, (1.1)

where «, 8 (u, ) are real (complex) constants and o8 # 0, u is complex valued function.
(??) is a typical model in mathematical physics, which encompasses the well-known
nonlinear Schrodinger equation and the modified KdV equation, and especially contains the
nonlinear derivative Schréodinger equation. Hasegawa and Kodama [3, 7] proposed (?7) as a
model for propagation of pulse in optical fiber.
The Cauchy problem of (??) changes as follows if u =0,

v+ id?u + BO3u + iy|ul*u = 0, z,t € R, (1.2)

u(z,0) = up(x). (1.3)

Recently, Carvajal [2] has proved that the Cauchy problem (??)—(??) is locally well-posed

in H*(s > —1), and the mapping data-solution uy — u(t) for the Cauchy problem (??)~(??)
is not C? at origin in the case s < —i. Moreover, the local solution for initial data in L? is

global by using the L? conservation law of (??). However, he did not answer the question
whether the Cauchy problem (?7?)—(??) is locally well-posed or not for initial data in space
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H~%, whether the Cauchy problem (??)-(??) is globally well-posed or not for initial data
in H%(s > 0).

In this paper, we first prove that the Cauchy Problem (??)—(??) is locally well-posed for
data in H*(s > —i) by the Fourier restriction norm method and the contraction mapping
principle. Compared to the results in [2], our results of the first part on local well-posedness
of the Cauchy problem (??)~(??) in H*(s > —1) seem difficult to be improved.

Then we have the globally well-posed results for data in L? by using the fact that the
equation (??) preserves L? norm. For data in H*(0 < s < 1), we first establish the general-
ized trilinear estimate, which associated with the Fourier restriction norm method, to prove
that the existence time of the solution in H*(0 < s < 1) only depends on the norm of data
in L?. Therefore, we can prove the global well-posedness of the Cauchy problem (??)—(??)
in H°(0 < s < 1). Further, as to the initial value in H*(1 < s < 2), we can establish
the analogous generalized trilinear estimate as above, then we can also obtain the global
well-posedness for data in H*(1 < s < 2). By using induction, we are able to establish the
global well-posedness of the Cauchy Problem (??)—(?7?) in H*(s > 0).

The Fourier restriction norm method was first introduced by J. Bourgain [1] to study the
KdV and Nonlinear Schrédinger equations in the periodic case. It was simplified by Kenig,
Ponce and Vega in dealing with KdV equation in [4, 5].

In order to study the Cauchy problem (??)—(??), we use its equivalent formulation

u(z,t) = S(t)ug — z/ Sy (t — ) y|ul?|ul(t")at’,

0

where S(t) = _7_-;16#((152-4-553)]_—30 is the unitary operator associated to the corresponding
linear equation. Here the phase function is denoted by ¢(£) = ag&? + B€3.

It is important to point out that the phase function ¢(£) has non-zero singular points,
which makes difference from the phase functions of the semigroup of the linear KdV equation
and also makes the problem much more difficult. Therefore, we need use Fourier restriction
operators

PNf= e f(&)de, Pnf = e f()de, VN >0 (1.4)
[EI>N [£I<N

to eliminate the singularity of the phase function.

Moreover, the operators will be used to decompose the nonlinear term |u|?u in (??). To
deal with the term, we first decompose it as the high frequency part and the corresponding
low one as follows

ul*u = P {[uu} + Py {|ul*u}. (1.5)

Next, we continue to decompose each term in the right side of (??) as the summation of
those products which consist of each factor acted by the Fourier restriction operators P or
Pr. We will estimate each resulting term with different methods to overcome the obstacles.

Definition 1.1. For s,b € R, the space X, is defined to be the completion of the
Schwartz function space on R? with respect to the norm

s b _ s b~
lullx,., = I1€)"(r — 86" — ag Fullyzra, or Nz, , = &) ( — 8" + a€®) " Fal 212,
where (-) = (14 -1]). One can easily prove that
lullx.., = llalx,,

which will be used later without pointing out it.



WELL-POSEDNESS FOR THE CAUCHY PROBLEM TO THE HIROTA EQUATION 7

We shall use the trivial embedding [ullx, , < [lulx.,,,, whenever s1 < s2, b1 < ba.

Denote by @ = Fu (or F(.yu) the Fourier transform in ¢ and x ( or (-), respectively) of .
Let us introduce some variables for convenience

o=1— B — a?, U]-:Tj—ﬂgg—asz (1=1,2), o3=r13—B& + atl. (1.6)

Throughout this paper, we shall denote the following notation | . 'dd as the convolution

integral
/ 'dTldTQdngfldfgd&;.
§=61+8&+E&sm="1+72+T3

Let 1 € C§°(R) with ¢ = 1 on [—1, 1] and suppyy C [~1,1]. We denote ts(-) =
Y(671(+)) for some non-zero § € R.

We use A ~ B to denote the statement that A < C1B and B < C; A for some constant
C1 > 0, and use A < B to denote the statement A < C%B for some large enough constant
Cy > 0.

We give our results as follows.

Theorem 1.1. Let s > f%, % <b< 1—72 Then there exists a constant T > 0, such that

(??7)—(??) admits a unique local solution u(x,t) € C(0,T; H®) (| Xsp with ug € H®. More-
over, gwen t € (0,T), the map ug — u(t) is Lipschitz continuous from H® to C(0,T; H?).

The L? conservation law can be established easily for smooth solution of the equation

(77),
lu(z, )2 = lluo()llL2,  VEieR. (1.7)

Then we have the global well-posedness for data in L?, that is

Theorem 1.2. If s = 0, the solution obtained in Theorem 1.1 can be extended for any
T>0.

Moreover, for data in H*(s > 0), the solution of (??)—(??) is globally well-posed by the
generalized trilinear estimates (which are proved in Section 3).

Theorem 1.3. The solution of (??)—(??) is globally well-posed in H*(s > 0).

§ 2. Preliminary Estimates and Local Results

We can get the following trilinear estimates. It will be proved that the contraction
argument provides the local well-posedness, once the following estimate holds for some
b € R, namely, for some b > %,

[ urugtis [|x, o, < C flun [lx, ol ue llx. 0 us llx., - (2.1)

In fact, we can prove the following more general theorem.

11 7 1
Theorem 2.1. Ifs > —3, 5 <b< {5,V > 5. Then

| wruatis [|x,, < C' [l ua | X,y - (2.2)

Next, we deduce some lemmas which will be used in the proof of Theorem 2.1.
First, we introduce the notations

Xs,b’ || U2 |Xs,bl || us |

f(&7)
(1+|r =&’
and list the following notations, which will be used later,

D5 = FUEPF ey = ([ ([ 1fG@oar) dz) " e = 11l

—00 —00

azmax(l,‘g—g), pr(f,T):
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Lemma 2.1. The group {S(t)}T satisfies

1S@ellrs s < Cllgll L2 (2.3)
We refer to [8] for the proof.
Lemma 2.2. The group {S(t)}T% satisfies

1D.S() Pl e 12 < Clloll e, (2.4)

105 ¥ S Pl 1 < Cllellre, (2.5)
IDE S(6) P20 o 1o < Cllgl 12, (2.6)

1@ P2 @l s 100 < Clglze. (2.7)

Proof. We prove (??) first. It is clear that ¢'(£) = 2a€ + 33£2 has non-zero singularity,
then ¢ is invertible if |§] > N (here we use N = 2a). Therefore, we have

PYS(t)p = / £ ) () d
[€|>N

. -1 —1 1
= [ e S = 7 (0 e 867 5 ).
612N ¢

¢/
In the following steps, we will use the changed variable £ = ¢~!. It can be proved that
N 2 oy )7
IPYS()el3s = [|xo-1 120800 >g -

%) |@(£)|2 2
d d C .
/¢1|2N [2te™F |<z5’|2 = /mzN €2 & < Cllell -

In fact, this implies the estimate (77?).
Let us turn to the proof of (??) next. The first inequality as below holds with the help
of Theorem 2.5 in [6]. We show that

IS@P el < [ IJ-‘P%(Qz’;’H(S) e
’ I3B£2I(1+ ! o
/'fp \655\( i)) d§ < [Pl 1

Therefore, we obtain the estimate (?7)
Finally, (??) and (??) follow by interpolation between (??) and (77?).

Lemma 2.3. Ifp > %, for any fired N with 0 < N < 400, it holds that
1PN Fpllzzree < Cllfllzzre- (2.8)

The proof is similar to that of Lemma 2.3 in [4], so we omit the details here.

14(q—2)

Lemma 2.4. Ifp > 37 3 , then for 2 < q <8,
q

[Fpllzazy < Clifllpzre- (2.9)
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Proof. Changing variable 7 = A + ¢(£), we have

_ [T e E&T)
Fp(m,t)—[m[me DD e

= [T e ([ et e a+ o(e)ae)

— o0

X
(14 AD?

Therefore, using (?7?), Minkowski’s integral inequality and taking p > %, one is able to

show that

Feo dA
1Plesrs <€ [ I5EA+ 6y < Ol ez (2.10)
By interpolation between the inequality (??7) and
[Follzzrz < Cllfllzzre, (2.11)
14(q—2)
we ha,Ve7 for 1% > 5377 that ||Fp||Lqu S C”f”LgLZ
q t T
0
Lemma 2.5. Let p > 3 with 6 € [0,1]. Then
1Dy < Clflzzas. (2.12)

Proof. The argument in the proof of (??) and the inequality (??) shows that for p > 1,
D2 P2 F[| poe 2 < Clifllezee,
which interpolated with (??) yields (77?).

1
Lemma 2.6. Ifp > 2’ then

_1
1D P2, g < Cllflliane. (2.13)
Proof. From the argument in (??) and (??), it follows that (??) holds for p > 1.

Lemma 2.7. Ifp > %, then

|P?*F,||Lazs < C||f||L§Lz- (2.14)
Proof. Similarly to Lemma 2.6, we get the following inequality by (??) and the argument
Yy
in (77) for p > 1,
2 2
I1P™Fyllpszio < Cllfllzzre,

which interpolated with (??) yields (?7?).

1
Lemma 2.8. Ifp > 3’ then

1
|DZ P?*F|| a3 < CHf”Lng- (2.15)
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Proof. For p > 1, similarly with above, from (??) and the argument in (??), we can
obtain

|DE P?*F|| s s < Cllfllzzrz, (2.16)

. . . 3
which interpolated with (??) shows that for p > £
1
|Dg P?*F|paps < CHfHLng' (2.17)

Then the inequality (??) follows by interpolation between (??) with 6 = § and (?7?).

Lemma 2.9. Assume that f, f1, fo and fs belong to Schwartz space on R?. Then

/ (&) Fa (€0 m0) FolEa,m2) fa s, 7a)d6 = // Fufofs (e t)dudt. (2.18)

Proof. For simplicity, we only discuss the case of space variable. In fact, we can obtain

‘/551 +&2+E3
/f E1+€21+E3

- / / (&) Fu€) o€ — €0)f(€s' — &) derdes'dey’

(&) f1(&1) f2(&2) f3(€3)do

s

(=) f1(&1) f2(&2) f3(€3)do

0

= ffox far B0 = FIRSSl0) = [ Fhifafa(a)d
Therefore, Lemma 2.9 is proved.

We give the proof of Theorem 2.1 now.

Here we only prove the case s < 0. The case s > 0 is easy to be dealt with. For simplicity,
we let r = —s.

By duality and the Plancheral identity, it suffices to show that for all f € Lo, f > 0,

T = /* M}'ul(n,fl)}—uz(ﬁa52)}-173(73753)‘15

Y (o)
-

3 T
11 (&)
Jj=1
3

< ClIfll [T £ Lo

j=1

3 [T, 1(71,€0) fo(72, €2) f (75, €5)do
S »1;[1 (o)

where

§=6+8&+E, T=T1+T+ T3 fj—<§y><7> “Jy F=1,2  f3= () (o3)" .

It is clear that Hfj||L§L3 = |lyjllx,,, (j =1,2,3), which will be used later without pointing

out it.

s,b’
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We may assume f; >0, j =1,2,3. Let

f](& )

(14 |7 = B — ag?|)P’
f3(&,7)

(14 |7 = B& + )7

We can obtain the following identity from (?7?),

Fi(&m) =

J=12,

FF)(&T) =

701 02— 0a = =306 ~ )€~ &) (€~ &+ 33,
which implies that, if |£ — &1| > 2a, |€ — &] > 2a and [ — &3] > 2a, we have

max{|o], [o1], [o2], o3[} = ClE = &u|§ — &|I€ — &l

Let
(&1)" <§2>T<§3>r.

K(&,61,8,83) = ©

In order to obtain the boundedness of T, we split the domain of integration in several

pieces.

Situation I. Assume [¢]| < 6a, |£ — &3] < 2a (it is easy to see that |3] < 8a).
Case 1. If |£ — &| < 2a or |€ — & < 2a, then

K(Ev&laﬁ%&fﬁ) < C(a)

By (??) and (?7?), the integral Y restricted to this domain is bounded by

/f 7, &) f1 T17§1)f2(72,§2)f3(73,§3)
(02)"  (o3)"

< C||F1—b||LngIIFb/IILng||F3\|L3Lg\|F3||LgL§

< Clfllczrzlfillzzez [ follzez 1 fsll 2 e

Case 2. [ — &1| > 2a and |€ — & > 2a.
Subcase (1). If |£1] < 2a or |&2| < 2a, then

K(€,61,6,8) < Cl(a).

Therefore, similarly to Case 1, in the region Y is bounded by
Ol fllgzalfillzzee I fell zaa N ol e
Subcase (2). If [&1| > 2a and |€2] > 2a, we get |£1] ~ |€2], which follows from

1€ — &l =& + & < 2a.

Then using r < %, we have

K(£7£1a€2,§3) < C(a)‘€2|
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For b < 2, by (??), (??), (??) and (??), T restricted to this domain is bounded by

dé

/f 7,8) f 71,51) 162X ea1>2af2(T2, §2) X|gs<8af3(T3,E3)
(o2)” (o3)”

< C”Fl—bHLgLf||Fb’HL§L‘t‘HDGJPQan%||Lg°L?||P8aF173’||L§L?°
< Clfllzezlfillzzez I f2ll 2z fsll 2 re-

Situation II. [¢]| < 6a, |§ — &3] > 2a.

Case 1. If [€ — & | < 2a or € — & < 2a, without loss of generality, we can assume
|€ — &1] < 2a (we have |&1] < 8a).

Subcase (1). If |3] < 2a or |&3] < 2a, then we can see

K(§,61,82,83) < Cla).

Hence, we obtain that the contribution of this region to T is bounded by
Ollfllzzra lfallzzce I fell zas N ol z e,

by an analogous argument to Case 1 in Situation I.
Subcase (2). If [¢5] > 2a and |&2| > 2a, we use £ —&1| = [E&2+ &3] < 2a to get [&2] ~ |&5).

Then for r < %, we obtain
K(Ea 517 527 53) < C(a’)‘§3|
By (??), (??), (??) and (??) for b < 2, T in this region is bounded by

dé

o f T§ ) [€11X)er1<8af1(T1,€1) fa(T2,&2) X|es|>24.f3(T3,63)
o b b
(o1) (02) (03)
< C||F1—b||L§L;1||P8an1/||L§L§°||Fb2f||L3L;%||Dxp2an3/||LgoL§
< Clfllezeallfillzzezllfallzez (| fsll 2 e -

Case 2. If |€ — &| > 2a and |€ — &| > 2a, it follows that (£ — &) ~ (§1),{(E — &) ~
(€2), (€ — &) ~ (€s). Then we get, by r < 1 — b, that
K(£,61,62,83)
(€ —&)' e - &) e - )
If |o| > C|€ — &1|€ — &21|1€ — &3], by (?7) and (?7?), T in this region is bounded by
f1 7‘1751) f2(72,82) f3(73,&3)
C . =2 do
i ) (o)

= CllFolngLgIIbeIILQLgllFﬁHLnglIF?/IILng < Clifllezeallfillzzrzll fall 22 (| fsll 2 e -

— < C(a).

If |o1] > Cl€ = &1||€ — &]]€ — &3], by (27) and (?7?) for b < %, T in this region is bounded by
C/ f(T{i)) (r 51)f2(7'2,§2) f3(T37f3) s

(02)”  {o3)”

< ClFr—bll s s 1Fo 2 o2 |1 EG s ps 1o s s < Clfllczre I fill ez I foll 2oz ll f3ll ez e

For the other cases (|o2| > C|§ — &1|§ — &[l€ — & and |os| > C1€ — &€ — &2[1§ — &),
we obtain the desired estimates in an analogous arguments as above.
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Situation III. |£| > 6a, |€ — &| < 2a (we have |£3] > 4a).

Case 1. If |€¢ — &| < 2a or |€ — &| < 2a, without loss of generality, we can assume
|€ — &1| < 2a. Hence we obtain that |§] ~ |&1], |&1] > 4a. By € — &| = &1 + &2] < 2a, we
can get |£2] > 2a, |&1] ~ |&2]. Then

K(§,61,62,83) < C(a)|&|"[&3]"

For 1—b> 3,7 <% by (??),(??) and (??), T is bounded by

dé

C/ X\g\>6af T§ Xle1 1240 S1(T1,€1) [§2]"Xea 220 2 (T2, &2) €3] X g5 >4a.f3 (T3, &3)
(o) (o) (o3)”

<C PGaF P4aF1 D% P2¢1F2 D% P4aF3
< 1—b||Lng|| wllarell Dz v llzarsl|Da pllzars
< Clfllzezlfillzzezf2ll 2z fsll 2 re-

Case 2. If | — &| > 2a and [€ — &] > 2a, from |§ — &3] < 2a, it is easy to see that

€] ~ [€]-
Subcase (1). |£1]| < 2a or |&] < 2a.

If |&] < 2a and |&2]| < 2a, we have

K(£,61,62,&3) < C(a).

Then we obtain the desired estimate in an analogous argument to Case 1 (Situation I).
If |€1| < 2a and &3] > 2a, we have

K(§,61,6,63) < Cla)|&|".

By (?7?), (??), (??) and (?7), for r < 1, we have the boundedness of T as follows:

do

/f 7,€) Xje1|<2aJ1(71,61) [€2]"Xen 1224 f2(T2, €2) f35(73,&3)
o o o
(01) (02) (03)
< CHFl*b”LﬁL;‘HP%Fbl’HL?ELfO||D1P2anz’HLZOLfHFl?'HLﬁ,L;‘
< Ol fllzas I filzee | oll e N foll g
Subcase (2). If [£1| > 2a and |£3] > 2a, we have
K(&,61,6,83) < C(a)|&e]"|&|"

For1—-b> 1—52 and r < %, the integral Y is bounded by
Cllfllezzzlfillzzez  f2llzze 1 fsll 2 e,

in an analogous to the above Case 1 (Situation III).
Situation IV. [¢]| > 6a, |£ — &3] > 2a.

Case 1. If |€ — &| < 2a or |§ — &| < 2a, without loss of generality, we can assume
|€ — &1| < 2a. Tt is clear that || ~ [&1],|&1| > 4a.

Subcase (1). If |£3] < 4a, we get |2] < 6a by |€ —&1| = [&2 + &3] < 2a. Then

K(&v&la&%&%) < C(a)
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Hence we obtain the contribution of this region to the integral T by
Ol fllzzel fullzzee l follace  fllzace.

in an analogous to Case 1 in Situation I.
Subcase (2). If &3] > 4a, it follows that |&2| ~ [€5], |E2] > 2a from |€ — &1| = &2+ &3] <

2a. Then
K(€7£17£2a€3) S C(a)|£2‘r‘€3|r'

Weuse 1 —b> 2 r < % to bound the integral T by

127
Ollfllzzra Il czce I fell o N sl z e
in an analogous to Case 1 in Situation III.

Case 2. |£ — &| > 2a and [ — &| > 2a.
Subcase (1). [&5] < 2a. We can see that (£ — &) ~ (£2), (£ — &) ~ (&1). Then we get

by r <1-—0b, ( )
K 5751752763 <C
e e e e e =

We can obtain the desired estimate by an analogous argument to Case 2 in Situation II.
Subcase (2). |¢35] > 2a.

If |&5] < C€|, then

K(€7£1a§2553) < O(a)|§1‘r‘§2|r.

In the subdomain of |£;| < 2a or |£3] < 2a, we can obtain the results in an analogous
argument to Situation IIT (Case 2, Subcase (1)). In the subcase |£1]| > 2a and [£2] > 2a, we
can obtain the results by an analogous argument to Case 1 in Situation III.

If €] < [&5], we get [€] < [&3] ~ [€ = &3] ~ & + & < Cmax{|&1],|&2|}, which follows
from the fact £ — &3 = &1 + &o. Hence if |§] < |&1] or |€] < [&1] , we have [&1]| ~ [§ — &1 | or
|€1] ~ |€ — &1 respectively. Using that r < 1 — b, we get

K(&aglag%gi’)) <
- e—e) ey T

Therefore, we can obtain the desired estimate by an analogous argument to Case 2 in
Situation II. This completes the proof.

C(a).

1
Lemma 2.10. Let s € R, 3 <b<bd <1,0<6<1. Then we have

05 (6)S®)¢llx., < CO2 || -,
5 (&) F | x,, , < C8" | F|x

st /Ot S(t — ) F(r)dr]

s,b/ —1

< C5%7b||F‘ Xs,b—17
b

X,
H%(t) /Ot St — T)F(T)dTHL?OH; < Co Y Px., .

The proof can be found in [4, 5].

Now we turn to the proof of Theorem 1.1. For ug € H*(s > —7), we define the operator

D(u) = 1 (t)S(t)uo — 1/11(15)@'/0 St — )5t ylulPu(t’)dt,
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and the set
B={u€e Xsp:|lulx,, <2C[uol n-}.

In order to show that ® is a contraction on B, we first prove that ®(B) C B.

By Theorem 2.1 and Lemma 2.10, we have the next chain of inequalities for b < b’ < 12,

1®(u)x.., < Clluollms + C8" ~*hlullk, , lullx. .

< Clluoll - + C8”"[luo|3-

Therefore, if we fix § such that C6% ~?||ugl/%. < < 1 then ®(B) C B.

Let (uq, uz) € B. In an analogous way as above, we obtain

[(u1) = @(u2)|x,, < IIU1 — ualx, ;-

Therefore, ® is a contraction map on B. Thus we can obtain a unique fixed point which
solves the Cauchy problem (??)-(?7?) for T < g.
The solution obtained above is also in C(0,T; H®) due to the inequality ||u|peps <

Moreover, given ¢t € (0,7), by the definition of Lipschitz continuous and Lemma 2.10,
one can easily prove that the map ug — w(t) is Lipschitz continuous from H* to C(0,T; H?).
This completes the proof of Theorem 1.1.

§ 3. Global Well-Posedness in H?(s > 0)

In this section, we will first prove the generalized trilinear estimate as follows.

1 1
Theorem 3.1. Let 0 < s <1, <b<f b'>§. Then

[ wrugts fx,, < C [ un fxg w2 llx 0 11 us llx,, - (3.1)

Remark 3.1. One can prove similarly when it also holds that the left side of (??) is
replaced by ([uitiousl|x, ,_, or [|[@1usus||x We only give the proof for the case (??) here.

Proof. By duality and the Plancheral identity, it suffices to show that for all f € Lo, f >
0, f; = (o) @y, 5 =1, 2 fs = (&)"(03)" fis, we have

s,b—1"

A= / ful(Th51)7:U2(72,§2)-7u3(73,§3)

b

3 f(7'7f)fl(ﬁ,51)f2(7‘2,€2)f3(7’37§3)d5
(&) (o)' I;H a;)"

< C|lfllz H 1l

j=1

We may assume f; >0, j =1,2,3. Let K(&,&1,62,83) = (§)°/(&)°-
We also split the domain of integration similarly as the proof of Theorem 2.1.

Situation I. |¢]| < 6a. We have

K(£7£1352,§3) < C(a)
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By (??) and (??), the contribution of the above region to the integral A is bounded by

IFPr-sllz 21 F lps o 1 E e o I Fo e s < ClLf N pzre | full ez L foll 2oz ll f3ll e

Situation II. |£] > 6a.
Case 1. [£| < C|&3] for some constants C. We have

K(&v&la&%&%) < C(a)

Hence we obtain the desired estimate by an analogous argument to Case 1 in Situation I.
Case 2. || < [¢].

Subcase (1). |&]| < 4a. Then [£| < 3|&;1| or [¢] < 3|&2| (without loss of generality, we
can assume 2a < 1[¢] < 3[1]). By s < 1, we get

K(£7€1a€2,§3) < C(a)‘€1|
Then for b < 2, by (??), (??), (??) and (??), A is bounded by

VFbllgs £ 1De P B e 12 1F s 3 | Paa 2 e
< Ollfllczaa il ze | el zea | ol ous

Subcase (2). |&5]| > 4a. Then [£| < 3|&;1| or |€] < 3|&2| (without loss of generality, we
assume 2a < x|¢] < [&1]).

If |€&5| < 2a, then the integral A is bounded by, similarly to the above,

1F1-bll 2 28| DaP?* Fy || e 12 | Poa B 2 £ |1 B | 1 1t
< Ol lzee Il zzne ellzns N ol

due to (??), (??), (??) and (??), for b < 2 and s < 1.

If |€o] > 2a, it is easy to see that |€ — &3] > 2a from [€5| < |€|. we will split this region
into the following two parts.

(i) |€ — &1] < 2a or [€ — &] < 2a (without loss of generality,we can assume |§ — &;| < 2a,

so we have [£| ~ [&1] and [§2] ~ [€3]).
If0<s§%,then

K(&,61,6,&) < Clo)laal ¥lg]*.
Then, for b < %, by (?7?), (??) and (?7), the integral A is bounded by

1 1
1D PO Pyl 1 3| D P Fyp || pa 13 | PP Fi | pa o | P2 || g
< Clfllezezfillzzrz I f2ll ez ez f3ll ez re-

If%<s§%,then
1 1
K(§7£17§2a§3) < C(a)|£1| 2 /|£3|4 .
Then we use b < % to bound the integral A by

3 pda 1 2 — pda 3
[Fi—pllpspa| D2 PP Fy || papz | Fyll apal| Da * P Fy [ Lapee

< Clfllzzezfillzzrz I f2llzz ez f3ll 2 e,
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due to (?7?), (77?), (??) and (?7).
If%<s§1,then

€1
K ) ) ) SC T 1,. 1°
(€,61,82,83) (a)\§3|2\§2|1

Then, for b < 2, by (??), (??), (??) and (??), the integral A is bounded by
1Fuoll 223 1D P Fl o0 107 ¥ P2 B 3 1e 1D P F
< CNfllzra M illzas el aze I sz o
(i) |€ = &1| = 2a and [§ — &2 = 2a. We get

€3] < €] ~ [€ = &] ~ &1 + &2f < Cmax{|&], [£2]},

which follows from & — & = &1 + & and |&5| < [¢|. Here, A ~ B means B35 < A < ¥B.
Hence, we have [£ — &1| > C|€] or |€ — &| > C|€] for some constants C. Then we have

K(€7£1a§27£3) < 3—2(1_b).
<£*§1>1ib<57§2>171’<§7£3>17b < Cla)l¢]

Without loss of generality, we can assume |£| < 3|&1| and |o| > C|€ — & ||€ — &2]|€ — &3] Then
we use s < 2(1 —b) + & to bound the integral A by

1
1Foll 2 2 1D2 P Fy ll g o | B9 | o o 1Fii e oo < CllFllzrz I full 2zl f2ll 2z 1 sl 2 e,

due to (?7?), (??) and (??). This completes the proof.

Now we turn to the proof of Theorem 1.3.
We use the contraction mapping principle to prove theorem.
For ug € H*(0 < s < 1), we define the operator

t
®(u) = 1 (t)S(t)uo — wl(t)i/ S(t =) s () ylul*u(t)dt',
0
and the sets
C={ueXop:|ulxe, <2Cluoll2}, D={ueXsp:|ulx., <2C|uoln-}
First, we prove that there exists a unique solution u(t) € C(0,T;L?) to the Cauchy

problem (??)—-(??) for initial data in H*(s > 0).
By Theorem 2.1 and Lemma 2.10, for b < b’ < 1—72, we have the next chain of inequalities
12(u)llxo,, < Clluollze +C8" ~*lllullk, , lullxo, < Clluollzz + C8” ~*uol|Zz llull xo,-

Hence, we fix 0 such that Céb/_b||u0||2L2 < 1. We get (C) C C.
In an analogous way as above, for uy,us € C, we obtain

1
12(u1) = (u2)lixo, < 5llur — uzllxo,-

Then & is a contraction map on C. Thus we obtain that there exists a unique solution
u(t) € C(0,T;L?) for T < 3.
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Next, for the time interval [0,7], we will prove that the solution u(¢) obtained above
belongs to C'(0,T; H?®) for initial data in H*(0 < s < 1).

In fact, it suffices to prove that the existence time of solution u(t) for data in H*(0 <
5 < 1) only depends on the L? norm of initial data.

For b < b < 1—72, by Theorem 3.1 and Lemma 2.10, we have the next chain of inequalities

1®(u)x.., < Clluollas + C8" ~*yllullk, , lullx. ., < Clluollzs + C8" ~*uollz: lullx. ,-

Then, we have C’(Sb/_b||uo||2L2 < 1 by the above arguments. Therefore, we have ®(D) C D.
In an analogous way as above, for uy,us € D, we obtain

1® (1) — B(uz)x,, < &

P — 2||u1 - UQHXS,E,'

Then @ is a contraction map on D. Therefore, there exists a unique solution u(t) of the
Cauchy problem (??)—(??) for T' < ¢ with data in H*(0 < s < 1).

Furthermore, we take u(T") as initial value and then obtain that the solution of the Cauchy
problem (??)—(??) exists on ¢t € [T, 27T similarly as above arguments. We can continue this
process to obtain the global solution in H*(0 < s < 1) by L? conservation law (?7).

Remark 3.2. For data in H*(1 < s < 2), we can obtain the following generalized
trilinear estimate for some b > % similarly to the above arguments.

| uruatis [ x, , < C [l llx, 0l w2 x, 0 us llx,, - (3.2)

One can prove similarly that it also holds if the left side of (??) is replaced by
lurtgusllx, ,, or [aiugus|x, ,_, -
Hence, we can get global well-posedness in H*(1 < s < 2) (??)—(??) by global well-

posedness in H'. By using induction, we can prove the global well-posedness in H*(s > 0)
for Cauchy problem (?7)—(77?).
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