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GLOBAL EXISTENCE AND ASYMPTOTICS
BEHAVIOR OF SOLUTIONS FOR A RESONANT

KLEIN-GORDON SYSTEM IN TWO
SPACE DIMENSIONS∗∗∗

XUE Ruying∗ FANG Daoyuan∗∗

Abstract

The authors study a resonant Klein-Gordon system with convenient nonlinearities in
two space dimensions, prove that such a system has global solutions for small, smooth,
compactly supported Cauchy data, and find that the asymptotic profile of the solution
is quite different from that of the free solution.
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§ 1 . Introduction

This paper deals with the problem of global existence and asymptotic behavior for a class
of Klein-Gordon systems in two space dimensions, j = 1, 2,

¤u1 + m2
1u1 = F1(u, ∂tu, ∂xu, ∂t∂xu, ∂2

xu),

¤u2 + m2
2u2 = F2(u, ∂tu, ∂xu, ∂t∂xu, ∂2

xu)
(1.1)

with small, smooth, compactly supported Cauchy data, where (t, x) denotes coordinates on
R × R2, u = (u1, u2), ¤ = ∂2

t −∆ is the wave operator defined on R × R2, F1 and F2 are
nonlinearities vanishing at order 2 at the origin. We say (??) is a resonant Klein-Gordon
system if m1 = 2m2 or 2m1 = m2.

The problem of global existence for quasi-linear Klein-Gordon equations in two space
dimensions with small, smooth Cauchy data has been considered by many authors. For the
scalar Klein-Gordon equation the global existence has been proved by Ozawa, Tsutaya and
Tsutsumi [7] in the semi-linear case and Ozawa, Tsutaya and Tsutsumi [8] in the quasi-
linear case, after partial results of Georgiev and Popivanov [2], Kosecki [4] and Simon and
Taflin [9]. Under a non resonance assumption on the masses, Sunagawa [?] studied systems
of Klein-Gordon equations for quadratic nonlinearities in two space dimensions and got the
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global existence for small data. He found that the global solution tends to a free solution as
t →∞. In [?], Delort, Fang and Xue considered the resonant case, gave the global existence
for quasi-linear systems when the nonlinearity satisfies a convenient structure condition (i.e.
a null condition), and found that the solution have a linear behavior at infinity. Is there a
global solution for the resonant Klein-Gordon equations if the nonlinearity does not satisfy
the null condition? How does the solution behave as t → +∞? The only result due to
Sunagawa [?] said that the behave of the solution for the following special case

¤u1 + u1 = 0,

¤u2 + u2 = 0,

¤u3 + 4u3 = u1u2

(1.2)

with small, smooth, compactly supported Cauchy data, is quite different from that of a free
solution, and said that the energy of the solution of (??) behaves like C ln t as t → +∞. In
this paper we consider the global existence and asymptotic behavior of the solution for the
resonant Klein-Gordon system whose nonlinearity does not satisfy the null condition. We
consider the following special Klein-Gordon system:

¤u1 + 4u1 = Q1(u2, ∂u2) + P1((∂αu1)|α|≤1, (∂βu2)|β|≤1),

¤u2 + u2 = Q2(u2, ∂u2) + P2((∂αu1)|α|≤1, (∂βu2)|β|≤1),

(u1, u2)|t=0 = ε(f1, f2),

(∂tu1, ∂tu2)|t=0 = ε(g1, g2),

(1.3)

where α = (α0, α
′) ∈ N × N2 with α′ = (α1, α2) denotes a multi-index in N3, Qi(u2, ∂u2)

and Pi((∂αu1)|α|≤1, (∂βu2)|β|≤1) denote, respectively, a real quadratic form and a real cubic
form depending on the derivatives up to order 1, fi and gi are two C∞0 functions defined on
R2, and ε > 0 small. We will prove that the system (??) possesses a global solution, whose
large time asymptotic profile is modulated in the logarithmic order. Our main results are

Theorem 1.1. Fix B > 0. There is σ0 ∈ N and for any integer σ ≥ σ0, there is
ε0 > 0 such that for any ε ∈]0, ε0[, any (f, g) in the unit ball of Hσ(R2) × Hσ−1(R2), R2

valued, supported inside {x ∈ R2; |x| ≤ B}, the problem (??) has a unique global solution
(u1, u2) ∈ C0(R,Hσ(R2)) ∩ C1(R, Hσ−1(R2)).

For (t, x) satisfying |x| ≤ t, write ϕ(t, x) =
√

t2 − x2.

Theorem 1.2. In Theorem ?? assume that f and g are in C∞0 . There are C∞ functions
y → aε,j(y), j = 1, 2, 3 defined on R2, supported inside the unit ball, such that if we set

u1,ε(t, x) =
1
t
Re (aε,1(x/t) ln t + aε,2(x/t))e2iϕ,

u2,ε(t, x) =
1
t
Re aε,3(x/t)eiϕ,

(1.4)
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then there is, for any p > 0, a constant Cp such that

|u1(t, x)− u1,ε(t, x)| ≤ Cp
ε ln t

t2

[(
1− |x|

t

)
+

+
1
t

]p

,

|u2(t, x)− u2,ε(t, x)| ≤ Cp
ε

t2

[(
1− |x|

t

)
+

+
1
t

]p

.

(1.5)

Remark 1.1. When Q1 = u2
2, we have

|aε,1(y)| = 1
64

l1 |y|<1(|DT w2 + 2w2|2 − |DT w2 − 2w2|2)T=T0(cosh(κ|X|))−1,

where X = 1
2y ln 1+|y|

1−|y| , w2, T and T0 are defined in (??) and (??). Moreover, (|DT w2 +
2w2|2− |DT w2− 2w2|2)T=T0 depends only on the restriction of u2 and its derivatives to the
hyperboloid HT0 = {(t, x) : (t + 2B)2 − x2 = T 2

0 }, and we can choose f2 and g2 such that
(|DT w2 + 2w2|2 − |DT w2 − 2w2|2)T=T0 6= 0.

Remark 1.2. Let m1 = 2 and m2 = 1 and consider the equation (??) with the special
nonlinearity Fj(u) which is dependent only on u. Note that Fj(u) satisfies the “null condi-
tion” if and only if F1(u) is independent of the term u2

1 and F2(u) independent of the term
u1u2. In [?] we proved that the equation (??) with small, smooth, compactly supported
Cauchy data has a global solution if Fj(u) satisfies the “null condition”. The nonlinearity
we consider in this paper is the special form F1(u) = u2

2 and F2(u) = 0, which does not
satisfy the “null condition”. However, our approach used in this paper is not suitable for one
to obtain the asymptotic profile of the solution to the equation (??) with the nonlinearity
such as F1(u) = 0 and F2(u) = u1u2 or F1(u) = u2

2 and F2(u) = u1u2.

§ 2 . Reduction of the Problem

Let u3 be the solution satisfying the following Cauchy problem

¤u3 + 4u3 = Q1(u2, ∂u2),

u3|t=0 = 0, ∂tu3|t=0 = 0.
(2.1)

Denote v = (v1, v2, v3) = (u1 − u3, u2, u3), and

Gi((∂αv)|α|≤1) = Pi((∂α(v1 + v3))|α|≤1, ((∂αv2)|α|≤1)).

Then the following system is equivalent to the system (??):

¤v1 + 4v1 = G1((∂αv)|α|≤1),

¤v2 + v2 = Q2(v2, ∂v2) + G2((∂αv)|α|≤1),

¤v3 + 4v3 = Q1(v2, ∂v2),

(v1, v2, v3)|t=0 = ε(f1, f2, 0),

(∂tv1, ∂tv2, ∂tv3)|t=0 = ε(g1, g2, 0).

(2.2)
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As in [?], it is sufficient to study the problem (??) in the domain {(t, x) ∈ [0,+∞)×R2 :
(t + 2B)2 − |x|2 ≥ T 2

0 } with the data defined on {(t + 2B)2 − |x|2 = T 2
0 }, where T0 is a

positive constant. We introduce new coordinates (T,X) defined by

t + 2B = T cosh |X|, x = TX
sinh |X|
|X| , (2.3)

and a new function w associated with a solution v of (??)

v`(t, x) =
1
T

(cosh(κ|X|))−1w`(T, X), (2.4)

where κ is a positive number to be chosen later. Denote Dt = 1
i

∂
∂t , Dxj = 1

i
∂

∂xj
, j = 1, 2

and let (m1,m2,m3) = (2, 1, 2). By (??) and (??) we have

(D2
t −D2

x −m`
2)v` =

1
T

(cosh(κ|X|))−1(P `
κw`), (2.5)

while Ξκ(ρ) = κ2(1− 2(tanh(κρ))2) + κ tanh(κρ)
tanh ρ ,

P `
κ = P ` − 2i

T
κ tanh(κ|X|)

( X

|X| ·
DX

T

)
− 1

T 2
Ξκ(|X|), (2.6)

P ` = D2
T −

∑

1≤i,j≤2

aij(X)
DXi

T

DXj

T
− i

T

ψ(|X|)
sinh |X|

(
X · DX

T

)
−m2

` (2.7)

with (aij(X))i,j the coefficients of the matrix defined by

A(X) =

[
1−X2

2φ(|X|) X1X2φ(|X|)
X1X2φ(|X|) 1−X2

1φ(|X|)

]
(2.8)

and
φ(ρ) =

1
ρ2
− 1

sinh2 ρ
, ψ(ρ) =

1
sinh ρ

− cosh ρ

ρ
. (2.9)

Let us define the Klainerman vector fields

Z0 = X1∂X2 −X2∂X1 ,

Z1 =
( X2

1

|X|2 +
X2

2

|X|
cosh |X|
sinh |X|

)
∂X1 +

X1X2

|X|2
(
1− |X| cosh |X|

sinh |X|
)
∂X2 ,

Z2 =
X1X2

|X|2
(
1− |X| cosh |X|

sinh |X|
)
∂X1 +

( X2
2

|X|2 +
X2

1

|X|
cosh |X|
sinh |X|

)
∂X2 ,

Z3 = ∂T .

(2.10)

If I = {i1, · · · , iN} is a family of indices between 0 and 3, we set |I| = N and denote
ZI = Zi1 · · ·ZiN .

Definition 2.1. For r ∈ R we denote by Er the space of C∞ functions (T, X) → a(T,X)
defined on [T0,+∞[×R2, such that for any family I of indices between 0 and 2, and for any
m ∈ N, there is CI,m > 0 with

|∂m
T ZIa(T,X)| ≤ CI,mT−mer|X|

for any X ∈ R2, T ≥ T0.
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Using a similar argument as that of Proposition 1.2.4 in [?], we deduce the following
proposition.

Proposition 2.1. ( i ) There are two quadratic polynomials
(
w2, DT w2,

DX

T
w2

)
→ Q̃j

(
T,X, w2, DT w2,

DX

T
w2

)
, j = 2, 3 (2.11)

which are, for real w2, valued in R, with E−κ+3 dependence in (T,X). There are two cubic
polynomials

(
w, DT w,

DX

T
w

)
→ P̃j

(
T,X, w,DT w,

DX

T
w

)
, j = 1, 2 (2.12)

which are, for real w = (w1, w2, w3), valued in R, with E−2κ+3 dependence in (T, X), such
that v = (v1, v2, v3) is a solution to the equation (??), defined on a domain T0 ≤ T ≤ T1, if
and only if w given by (??) satisfies

P 1
κw1 =

1
T 2

P̃1

(
T, X,w, DT w,

DX

T
w

)
,

P 2
κw2 =

1
T

Q̃2

(
T, X, w2, DT w2,

DX

T
w2

)
+

1
T 2

P̃2

(
T,X, w, DT w,

DX

T
w

)
,

P 3
κw3 =

1
T

Q̃3

(
T, X, w2, DT w2,

DX

T
w2

)
.

(2.13)

(ii) Denote by Q̃0
j , j = 2, 3 the expressions obtained when one replaces DX

T w2 by 0 in Q̃j.
Then Q̃0

j may be written as

qj(X, w2, DT w2) +
1
T

rj(T, X,w2, DT w2),

where qj is defined by

(q2, q3) = (cosh κ|X|)−1(Q2(w2, (ωαDT w2)|α|=1), Q1(w2, (ωαDT w2)|α|=1)), (2.14)

ω(y) = (ω0(y), ω1(y), ω2(y)) is the function defined by

ω0(y) =
1√

1− y2
, ωj(y) =

−yj√
1− y2

, j = 1, 2, (2.15)

qj and rj are quadratic forms in (w2, DT w2) with coefficients in E−κ+3.

Proposition ?? implies that Theorem ?? follows from

Theorem 2.1. Let A > 0, B > 0 be given constants. There is σ0 ∈ N such that for any
σ ∈ N, σ ≥ σ0, there is ε0 > 0 and for any ε ∈]0, ε0[, any couple (w0, w1) ∈ Hσ × Hσ−1,
real valued, supported inside {|x| ≤ B}, satisfying ‖w0‖Hσ + ‖w1‖Hσ−1 ≤ Aε, the system

P 1
κw1 =

1
T 2

P̃1

(
T, X,w, DT w,

DX

T
w

)
,

P 2
κw2 =

1
T

Q̃2

(
T, X, w2, DT w2,

DX

T
w2

)
+

1
T 2

P̃2

(
T,X, w, DT w,

DX

T
w

)
,

P 3
κw3 =

1
T

Q̃3

(
T, X, w2, DT w2,

DX

T
w2

)
,

(w1, w2, w3)|T=T0 = w0,

∂T (w1, w2, w3)|T=T0 = w1

(2.16)
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has a unique global solution w ∈ C0([T0, +∞[,Hσ) ∩ C1([T0,+∞[,Hσ−1).

§ 3 . Global Existence

Let (m1,m2,m3) = (2, 1, 2). Introduce the energy at time T ,

E(T, w) = E1(T, w1) + E2(T,w2) + E3(T, w3) (3.1)

with

E`(T, w`) =
∫

R2

[
|∂T w`(T, X)|2 + t

(∇Xw`

T

)
A(X)

(∇Xw`

T

)
+ m2

` |w`|2
] sinh |X|

|X| dX.

We take κ ≥ 5 and κ ∈ 1
8 +N. Denote by j0(κ) the integer defined by j0(κ) < 2κ < j0(κ)+1,

and denote by N ′ the largest integer smaller or equal to min(N, N/2 + 1). Fix N ∈ N so
large that N − j0(κ) ≥ N ′ + 6 (i.e. N ≥ 14 + 2j0(κ)). For any q ∈ N, q ≤ N we introduce
the following notation with w = (w1, w2, w3),

W q
j (T, X) = (ZIwj(T, X))|I|≤q ∈ (R)q,

W q(T, X) = (ZIw(T, X))|I|≤q ∈ (R3)q,

E(Ŵ q, T ) =
∑

|I|≤q,j=1,2,3

E(ZIwj , T ).
(3.2)

Set σ = N + 1 in Theorem ??. We have to find a global solution to (??) when the Cauchy
data

(w1, w2, w3)|T=T0 = w0, (∂T w1, ∂T w2, ∂T w3)|T=T0 = w1

satisfy
‖w0‖HN+1 + ‖w1‖HN ≤ Aε (3.3)

for some ε > 0 small enough. Since w0 and w1 are compactly supported, there is a constant
Ã depending only on A such that

E(ZIw0, T0) + E(ZIw1, T0) < Ã2ε2 < +∞, |I| ≤ N. (3.4)

Using a similar argument as that of Lemma 2.2.1 in [?], we obtain

Lemma 3.1. For any set of indices I with |I| ≤ N , there is a bilinear map (p, p′) →
Bj

I(T, X, p, p′) (j = 2, 3), defined on C8|I| × C8|I′|, with values in C2, with coefficients
in E−κ+3; there is a trilinear map (p, p′, p′′) → Cj

I (T,X, p, p′, p′′) (j = 1, 2), defined on
C8|I| × C8|I′| × C8|I′′|, with values in C2, with coefficients in E−2κ+3; there is a linear map
p → Lj

I(T, X, p), defined on C8|I|, with values in C2, with coefficients belonging to E−κ+3,
such that

P 1
κZIw1 =

1
T 2

C1
I (T, X, D̂|I|W, D̂|I′|W, D̂|I′′|W )) +

1
T 2

L1
I(T, X, D̂|I|W1),

P 2
κZIw2 =

1
T

B2
I (T,X, D̂|I|W2) +

1
T 2

C2
I (T, X, D̂|I|W, D̂|I′|W, D̂|I′′|W ))

+
1

T 2
L2

I(T, X, D̂|I|W2),

P 3
κZIw3 =

1
T

B3
I (T,X, D̂|I|W2) +

1
T 2

L3
I(T,X, D̂|I|W3),

(3.5)
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where |I ′|+ |I ′′| ≤ |I|
2 , and

D̂|I|W =
(
W |I|, DT W |I|,

DX

T
W |I|

)
,

D̂|I|Wj =
(
W
|I|
j , DT W

|I|
j ,

DX

T
W
|I|
j

)
.

Moreover the terms in the right hand side of (??) are real valued when W |I| is.

We shall assume from now on that we have a solution w to (??), defined on some interval
[T0, T

∗[, and that w satisfies with a fixed constant µ′ > 0, for T ∈ [T0, T
∗[, an estimate

2∑

j=1

‖WN ′+1
j (T, ·)‖L∞ ≤ µ′ε, ‖WN ′+1

3 (T, ·)‖L∞ ≤ µ′ε ln T. (3.6)

Our objective is to push forward this estimate to get a global solution. In the sequel we
denote by C(µ′) the different constants depending on µ′, and any constant that does not

depend on µ′ is called absolute constant. Denote E(T, WN−`) =
3∑

j=1

E(T,WN−`
j ).

Proposition 3.1. There are constants C(µ′), ε0 = ε0(µ′) depending on µ′, and for
` = 0, · · · , j0(κ) + 1, absolute constants ν` such that, for any w satisfying (??), we have
inequalities

E(T, WN−`) ≤ ν`E(T0, W
N )Tκ+C(µ′)ε−`/2, ` = 0, · · · , j0(κ), (3.7)

E(T, WN−`) ≤ ν`E(T0, W
N )TC(µ′)ε, ` = j0(κ) + 1. (3.8)

Proof. We deduce from (??) and (??) the estimate

|P j
κ(ZIwj)| ≤ δ2j

C(µ′)ε
T

|D̂|I|Wj(T, X)|+
{C(µ′)ε ln3 T

T 2
+

C

T 2

}
|D̂|I|W (T, X)|

≤
{C(µ′)ε

T
+

C

T 3/2

}
|D̂|I|W (T, X)|

when |I| ≤ N . Choosing ε so small that C(µ′)ε ≤ 1, we get

E(T, ZIw) ≤ E(T0, Z
Iw) + 2κ

∫ T

T0

∫

R2
|∂T ZIw|

∣∣∣ X

|X| ·
∇X

τ
(ZIw)

∣∣∣(τ,X)
sinh |X|
|X| dX

dτ

τ

+ C(µ′)ε
∫ T

T0

E(τ,W |I|)
dτ

τ
+ C

∫ T

T0

E(τ, W |I|)
dτ

τ3/2
(3.9)

for an absolute constant C > 0 and a constant C(µ′) > 0 depending on µ′. If we bound in
the right hand side of (??) the second term by κ

∫ T

T0
E(τ, ZIw) dτ

τ , using Cauchy-Schwarz
inequality, and summing (??) for |I| ≤ N , we get

E(T, WN ) ≤ E(T0,W
N ) + (κ + C(µ′)ε)

∫ T

T0

E(τ, WN )
dτ

τ
+ C

∫ T

T0

E(τ,WN )
dτ

τ3/2
. (3.10)
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Next we use (??) for |I| ≤ q ≤ N − 1. To bound the second term in the right hand side, we
write, using the fact that ∇X can be expressed in terms of the family Zk,

∫
|∂T ZIw|

∣∣∣ X

|X| ·
∇X

τ
(ZIw)

∣∣∣(τ,X)
sinh |X|
|X| dX

≤ 1
τ

∫
|∂T ZIw||∇XZIw| sinh |X|

|X| dX ≤ C

τ
E(W q+1, τ).

Summing for |I| ≤ q, one has

E(T, W q) ≤ E(T0,W
q) + C(µ′)ε

∫ T

T0

E(τ, W q)
dτ

τ
+ C

∫ T

T0

E(τ, W q+1)
dτ

τ3/2
. (3.11)

Using the Gronwall’s inequality we get from (??) that, K = κ + C(µ′)ε,

E(T, WN ) ≤ E(T0,W
N )

(
1 + C

∫ T

T0

( C

s3/2
+

K

s

)(T

s

)K

ds
)

≤ ν0E(T0,W
N )TK

for an absolute constant ν0, since K > 0, T0 ≥ 1. This gives (??) at rank ` = 0.
We shall assume from now on that ε ∈ (0, ε0(µ′)) with ε0(µ′) so small that C(µ′)ε < 1/8.

Let us assume that we have proved (??) for some index ` with ` < j0(κ). Apply (??) with
q = N − `− 1. We deduce from this inequality and the induction hypothesis

E(T, WN−`−1) ≤ E(T0,W
N−`−1) + C(µ′)ε

∫ T

T0

E(τ, WN−`−1)
dτ

τ

+ C

∫ T

T0

ν`E(T0,W
N )τK−`/2−3/2 dτ.

(3.12)

The fact that ` + 1 ≤ j0(κ) < 2κ and κ ∈ N + 1/8 implies K = κ + C(µ′)ε ≥ `/2 + 1/2.
Applying the Gronwall’s inequality, we get

E(T, WN−`−1) ≤ C ′E(T0, W
N )

[
TK−`/2−1/2 +

∫ T

T0

C(µ′)εsK−`/2−3/2(T/s)C(µ′)εds
]
.

Since we assumed C(µ′)ε < 1/8, K − `/2− 3/2− C(µ′)ε ≥ −1, whence we get an estimate

E(T, WN−`−1) ≤ 2C ′E(T0,W
N )TK−`/2−1/2,

which gives (??) at rank ` + 1.
We are left with proving the inequality (??). We have proved (??) when ` = j0(κ). Since

then κ < j0(κ)+1 = `+1, we have 2κ = j(κ0)+ 1
4 and K−`/2−3/2 = κ+C(µ′)ε−`/2−3/2 ≤

−5/4. Then (??) gives

E(T,WN−`−1) ≤ C ′E(T0,W
N ) + C(µ′)ε

∫ T

T0

E(τ,WN−`−1)
dτ

τ

for some absolute constant C ′ > 0. The Gronwall’s inequality implies that

E(T, WN−`−1) ≤ C ′E(T0,W
N )

[
1 + C(µ′)ε

∫ T

T0

(T/s)C(µ′)ε ds

s

]

≤ C ′E(T0,W
N )[1 + (T/T0)C(µ′)ε],

which gives (??) since T0 ≥ 1.
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Corollary 3.1. Let δ > 0. There is an absolute constant C > 0 and ε0(µ′) > 0 such
that for any w satisfying (??) and any ε ∈]0, ε0(µ′)[, we have

‖WN−j0(κ)−3(T, ·)‖L∞ ≤ CE(T0,W
N )1/2T δ, T ∈ [T0, T

∗[. (3.13)

Proof. By (??), we have for any j, k ∈ {0, 1, 2}, since sinh |X|/|X| ≥ 1,

‖ZjZkWN−j0(κ)−3(T, ·)‖2L2(dX) ≤ ν`E(T0,W
N )TC(µ′)ε.

If we take ε0(µ′) such that C(µ′)ε < δ, (??) follows from this inequality and Sobolev em-
bedding.

To obtain a uniform L∞ estimate for the solution to (??) and its derivatives, we need
the following lemma.

Lemma 3.2. Let w be a solution to (??) satisfying (??). There is ε0(µ′) > 0, depending
on µ′, a quadratic map (w2, DT w2) → q(T, X, w2, DT w2) = (q2, q3) whose coefficients belong
to E−κ+3, and a function (T,X) → R(T,X) = (R1, R2, R3) satisfying

∑

|I|≤N ′+1

‖ZIR(T, ·)‖2L∞ ≤ CE(T0, W
N )(1 + E2(T0,W

N )) (3.14)

for an absolute constant C, such that, for ε ∈]0, ε0(µ′)[, w = (w1, w2, w3) satisfies the
ordinary differential equation

(D2
T − 4)w1 =

1
T 3/2

R1,

(D2
T − 1)w2 =

1
T

q2(X, w2, DT w2) +
1

T 3/2
R2,

(D2
T − 4)w3 =

1
T

q3(X, w2, DT w2) +
1

T 3/2
R3.

(3.15)

Proof. By (??) we have, for |I| ≤ N ′ + 1 ≤ N − j0(κ)− 5,

∣∣∣ZI
( 1

T 2
Pj

(
T, X, w,DT w,

DX

T
w

))∣∣∣

≤ CT−2+3δE(T0,W
N )3/2 ≤ CT−3/2E(T0,W

N )3/2,

(3.16)

which implies that 1
T 2 Pj

(
T,X, w,DT w, DX

T w
)

is of form 1
T 3/2 Rj with Rj satisfying (??). By

Corollary ?? we have for any index I with |I| ≤ N − j0(κ)− 5,

‖ZIDα0
T (DX/T )α′w‖L∞ ≤ C

T |α′|
E(T0,W

N )1/2T δ (3.17)

when α0 + |α′| ≤ 2. Consequently

1
T

[Qj(T, X, w2, DT w2, (DX/T )w2)−Q(T, X,w2, DT w2, 0)]

and
(
P j

κ − (D2
T −m2

j )
)
wj are of form CT−2+2δRj , with Rj satisfying (??).
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Let us introduce some more notations. Set

u±j = (DT ±mj)wj , u± = (u±1 , u±2 , u±3 ). (3.18)

Denote by H(T,X, u+, u−) = (0,H2,H3) the quadratic term q = (0, q2, q3) of the right
hand side of (??) in which we substitute

wj =
u+

j − u−j
2mj

, DT wj =
u+

j + u−j
2

(3.19)

with (m1,m2,m3) = (2, 1, 2). Then H is a quadratic expression in u+, u−, with coefficients
in E−κ+3, and we can write (??) as

(DT ∓ 2)u±1 =
1

T 3/2
R1,

(DT ∓ 1)u±2 =
1
T

H2(X,u+
2 , u−2 ) +

1
T 3/2

R2,

(DT ∓ 2)u±3 =
1
T

H3(X,u+
2 , u−2 ) +

1
T 3/2

R3,

(3.20)

where H3 is given by q3
(
X, (u+

2 − u−2 )/2, (u+
2 + u−2 )/2

)
with coefficients in E−κ+3, the coef-

ficients of (u+
2 )2 and (u−2 )2 in H3 are given by 1

4q3(X, 1, 1) and 1
4q3(X, 1,−1), q3 is defined

in (??). Remember that by (??) we have an estimate E(ZIw, T0)1/2 ≤ Ãε. The main
remaining step to prove global existence will be

Proposition 3.2. There is an absolute constant C1 > 0, and for any µ′ > 0, there is
ε0(µ′) ∈ (0, 1) such that for any ε ∈ (0, ε0(µ′)), any solution w to (??) satisfying (??) at
T = T0 and the estimate (??) on an interval [T0, T

∗[, we have, for any T ∈ [T0, T
∗[,

2∑

j=1

‖WN ′+1
j (T, ·)‖L∞ ≤ C1Ãε, ‖WN ′+1

3 (T, ·)‖L∞ ≤ C1Ãε log T. (3.21)

Proof. By (??) it is enough to control ‖ZIu±j (T, ·)‖L∞ for j = 1, 2, 3, |I| ≤ N ′ + 1.
Define

g(T ) =
∑

|I|≤N ′+1

2∑

k=1

(‖ZIu+
k (T, ·)‖L∞ + ‖ZIu−k (T, ·)‖L∞). (3.22)

We shall denote
Ẽ0 = E(T0,W

N )1/2(1 + E2(T0,W
N ))1/2. (3.23)

Denote (m1,m2,m3) = (2, 1, 2). Consider a quadratic polynomial Q̃(Y +
2 , Y −

2 ) in 2q indeter-
minates Y +

2 , Y −
2 and consider for k = 2, 3 the map Ik

∓ sending Q̃ to

[Y +
2 (∂Q̃/∂Y +

2 )− Y −
2 (∂Q̃/∂Y −

2 )]∓mkQ̃. (3.24)

The action of Ik
δ′′ (δ′′ = ∓) on a monomial Y δ

2,a · Y δ′
2,a′ with δ, δ′ ∈ {+,−}, a, a′ denoting the

indices of the coordinates of Y δ
2 , Y δ′

j2 , is given by

(δm2 + δ′m2 + δ′′mk)Y δ
2,aY δ′

2,a′ . (3.25)
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When k = 2, one checks immediately that the coefficient in (??) never vanishes. This means
that in this case the map is surjective on the space of quadratic polynomials. When k = 3,
the coefficient δm2 +δ′m′

2 +δ′′m3 vanishes only if δ = δ′ = −δ′′. So the range of I3
∓ contains

all monomials except Y δ
2,aY δ

2,a′ with δ = ±.
We now take Y ±

j = (ZJu±j )|J|≤|I|, j = 1, 2. By the above properties of I2
∓, we can choose

H̃2,±
I such that I2

∓H̃2,±
I = H2

I . Moreover, the coefficients of H̃2,±
I belong to E0 since the

coefficients of H2
I are of E0. Then we have

(DT ∓ 1)
[
ZIu±2 −

1
T

H̃2,±
I (T,X, (ZJu±2 )|J|≤|I|)

]

=
1

iT 2
H̃2,±

I (T, X, (ZJu±2 )|J|≤|I|)

− 1
T 2

(∂H̃2
∓

∂Y +
2

+
∂H̃2

∓
∂Y −

2

)
(H2 + T−1/2R±,2

I ) +
1

T 3/2
R±,2

I

=
1

T 2
S∓,2

I +
1

T 3/2
R±,2

I ,

(3.26)

where R±,2
I satisfies (??), S∓,2

I satisfies

|S∓,2
I | ≤ Cg(T )(Ẽ0 + g(T ) + g2(T )). (3.27)

Now we rewrite H3 as

ZIH3 = H3
+(T,X, (ZJu+

2 )|J|≤|I|) + H3
−(T,X, (ZJu+

2 )|J|≤|I|)

+ Ĥ3(T, X, (ZJu+
2 , ZJ ′u+

2 )|J|+|J′|≤|I|).

As above, there exists H̃3,±
I (T,X, (ZJu±2 )|J|≤|I|) such that

(DT ∓ 2)
[
ZIu±3 −

1
T

H̃3,±
I (T,X, (ZJu±2 )|J|≤|I|)

]

=
1
T

H3,±
I (T, X, (ZJu±2 )|J|≤|I|) +

1
T 2

S∓,3
I +

1
T 3/2

R±,3
I ,

(3.28)

where R±,3
I satisfies (??), S∓,3

I satisfies (??). Obviously we have

(DT ∓ 2)[ZIu±1 ] =
1

T 3/2
R±,1

I , (3.29)

where R±,1
I satisfies (??).

If we conjugate (??) with e∓iT , (??) with e∓2iT , and integrate, we get the estimate

|ZIu±1 − e∓2i(T−T0)(ZIu±1 )T=T0 | ≤
∫ T

T0

|R±,1
I | dτ

τ3/2
≤ Ẽ0, (3.30)

∣∣∣
(
ZIu±2 −

1
T

H̃2
±

)
− e∓2i(T−T0)

(
ZIu±2 −

1
T

H̃2
±

)
T=T0

∣∣∣

≤
∫ T

T0

|R±,2
I | dτ

τ3/2
+

∫ T

T0

|S±,2
I |dτ

τ2

≤ Ẽ0 +
∫ T

T=T0

g(τ)(Ẽ0 + g(τ) + g2(τ))
dτ

τ2
. (3.31)
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Note that H̃2
± is controlled by g(T ). We deduce from (??) and (??) that

g(T ) ≤ C
[
Ẽ0 + g(T0) + g2(T0) + g2(T ) +

∫ T

T0

(Ẽ0 + g(τ) + g2(τ))
dτ

τ2

]
. (3.32)

To estimate g(T ) in the right hand side of (??), we make use of the estimates deduced
from the energy inequality in Corollary ??: taking δ ≤ 1/4 we have for |I| ≤ N − j0(κ)− 3,

‖ZIw(T, ·)‖L∞ ≤ CE(T0,W
N )1/4T 1/2. (3.33)

If we take N ′ + 2 ≤ N − j0(κ) − 3, we have a similar estimate for ‖ZIu±k (T, ·)‖L∞ when
|I| ≤ N ′+1, and thus of g(T ). We use this inequality to control the term (Ẽ0+1)

∫ T

T0
g(τ) dτ

τ3/2

in the right hand side of (??). We get

g(T ) ≤ C
[
g(T0) + g(T0)2 + g(T )2 + sup

[T0,T ]

g(τ)3 + Ẽ0(Ẽ0 + 1)
]
. (3.34)

By (??), Ẽ0 ≤ Ãε(1 + Ãε), and by (??) at time T = T0, g(T0) ≤ CÃε for an absolute
constant C > 0. We deduce from (??) that there is a new absolute constant C such that
when ε ∈ (0, ε0(µ′)),

g(T ) ≤ C
[
Ãε + g(T )2 + sup

[T0,T ]

g(τ)3
]

for any T ∈ [T0, T
∗[. This implies, taking ε0(µ′) small enough and C1 large enough with

respect to C, that the first inequality in (??) is satisfied.
Denote A±I (X, T0) = e∓iT0

(
ZIu±2 − 1

T H̃2
±

)
T=T0

. Then |A±I (X, T0)| ≤ Ãε(1 + Ãε). (??),
(??) and the first inequality in (??) imply that

|ZIu±2 − e∓iT A±I (X, T0)| ≤ C1Ãε,

and

∣∣∣ZIu±3 −
1
T

H̃3,±
I (T,X, (ZJu±2 )|J|≤|I|)−

∫ T

T0

H3,±
I (τ, X, (A±J (X, T0))|J|≤|I|)

dτ

τ

∣∣∣ ≤ C1Ãε

for some positive constant C1 large enough. Using the fact that the coefficients of H̃3,±
I

belong to E0, we deduce that

|ZIu±3 | ≤ g(T ) + C

∫ T

T0

dτ

τ
+ C1Ãε ≤ C1Ãε ln T

for |I| ≤ N ′ + 1. This completes the proof of the second inequality in (??).

Proof of Theorem ??. The constants C1 and Ã of Proposition ?? are independent of
µ′ of estimate (??). Consequently we may fix µ′ = 2C1Ã. Then Proposition ?? asserts that
if ε is small enough and if we have on some interval [T0, T

∗[,
∑

j=1,2

‖WN ′+1
j (T, ·)‖L∞ ≤ 2C1Ãε, ‖WN ′+1

3 (T, ·)‖L∞ ≤ 2C1Ãε ln T, (3.35)
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we get, on the same interval,
∑

j=1,2

‖WN ′+1
j (T, ·)‖L∞ ≤ C1Ãε, ‖WN ′+1

3 (T, ·)‖L∞ ≤ C1Ãε ln T. (3.36)

Since, by (??), (??) can be assumed to be valid at T = T0 if C1 has been fixed large enough,
we deduce from the above property that (??) holds true on the whole interval of existence of
the solution. Since N ′+1 ≥ 2, the classical blowing up criterion for solutions to quasi-linear
wave equations implies the global existence.

§ 4 . Asymptotic Behavior

In this section we shall prove Theorem ??. We assume here that the Cauchy data are
in C∞0 (R2). Consequently, we can define v = (v1, v2, v3) in terms of (u1, u2) and define w

in terms of v by (??) using a κ as large as we want. We go back to the equation (??). We
remark that we have now a uniform estimate for g(T ) in (??). This shows that (??) is true
with the remainders T−3/2Rj with Rj = O(ε) in L∞. (??), (??) and (??) can be written
now as ∣∣∣(DT ∓ 1)

[
u±2 −

1
T

H̃2,±
0

]∣∣∣ ≤ C

T 3/2
ε,

|(DT ∓ 2)u±1 | ≤
C

T 3/2
ε,

∣∣∣(DT ∓ 2)
[
u±3 −

1
T

H̃3,±
0 (X, u±2 )

]
− 1

T
H3,±(X,u±2 )

∣∣∣ ≤ C

T 3/2
ε.

(4.1)

The first two equations in (??) imply that

∣∣∣∂T

[
e∓iT

(
u±2 −

1
T

H̃±,2
0

)]∣∣∣ ≤ C

T 3/2
ε, |∂T (e∓2iT u±1 )| ≤ C

T 3/2
ε,

which show that there are L∞ functions a±1 (X) and a±2 (X) such that

‖u±2 (T, X)− e±iT a±2 (X)‖L∞(dX) = O
( ε

T 1/2

)
, T → +∞, (4.2)

‖u±1 (T, X)− e±2iT a±1 (X)‖L∞(dX) = O
( ε

T 1/2

)
, T → +∞. (4.3)

The last equation in (??) can be written as

∣∣∣∂T

[
e∓2iT

(
u±3 −

1
T

H̃±,3
0 (X, u±2 )

)]
− 1

4T
e∓2iT q3(X, 1,±1)(u±2 )2

∣∣∣ ≤ C

T 3/2
ε. (4.4)

Combining (??) with (??) and (??) implies that there is an L∞ function a±3 (X) such that,
as T → +∞,

∥∥∥u±3 (T, X)− e±2iT a±3 (X) +
1
4
e±2iT q3(X, 1,±1)[a±2 (X)]2 ln T

∥∥∥
L∞(dX)

= O
( ε

T 1/2

)
. (4.5)

Reasoning in the same way on derivatives, we get that a±j , j = 1, 2, 3 are C∞ with bounded
derivatives. The conclusion will follow from the expression (??) of v in terms of w and so
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in terms of u, if we can write

1
T

eimT b±(X)(cosh(κ|X|))−1 ln T

=
ln t

t
eim

√
t2−x2

b̃±1 (x/t) +
1
t
eim

√
t2−x2

b̃±2 (x/t) +
ε ln t

t2
ρ(t, x)

(4.6)

and
1
T

eimT a±(X)(cosh(κ|X|))−1 =
1
t
eim

√
t2−x2

ã±(x/t) +
ε

t2
ρ(t, x) (4.7)

with ã±, b̃±1 and b̃±2 being C∞ supported inside the closed unit ball and ρ(t, x) satisfying

|ρ(t, x)| ≤ C
[(

1− |x|
t

)
+

+
1
t

]p

,

where b̃±1 (x/t) = l1 |x|<tb
±(Y )(cosh(κ|Y |))−1C(x/t), |C(x/t)| = 1, Y = t

|x| ln
t+|x|
t−|x| .

Remember that our change of coordinates is

t + 2B = T cosh |X|, x = TX
sinh |X|
|X| ,

whence
T =

√
(t + 2B)2 − |x|2, X =

x

t
g
(x

t
,
2B

t

)

with

g(y, s) =
1

2|y| ln
1 + s + |y|
1 + s− |y| .

Moreover our solution v is supported for |x| ≤ t + B, i.e. |y| ≤ 1 + s
2 if y = x/t, s = 2B/t.

It follows that on the support

T

t
= [(1 + s)2 − y2]1/2 ∼ [(1− |y|)+ + s]1/2, (4.8)

so

cosh(κ|X|)−1 ≤ C
[(

1− |x|
t

)
+

+
1
t

]κ/2

. (4.9)

This shows that the contribution 1
T eimT b±(X)(ln T )(cosh(κ|X|))−1l1 |x|>t to the left hand

side of (??) can be incorporated to ε ln t
t2 ρ, if κ is large enough with respect to p. The fact

that
|yg(y, s)− yg(y, 0)| ≤ Cs[(1− |y|)+ + s]−1

when |y| ≤ 1 + s/2 and

|∇θ[a±(θ)(cosh(κ|θ|))−1]| ≤ Cε(cosh(κ|θ|))−1 ≤ Cε
[(

1− |x|
t

)
+

+
1
t

]κ/2

when θ ∈ [x
t g(x

t , 0), x
t g(x

t , 2B
t )] implies that

l1 |x|<t

∣∣∣b±(X)(cosh(κ|X|))−1 − b±
(x

t
g
(x

t
, 0

))(
cosh

(
κ
∣∣∣x
t

∣∣∣
∣∣∣g

(x

t
, 0

)∣∣∣
))−1∣∣∣

≤ Cε

t

[(
1− |x|

t

)
+

+
1
t

]−1+κ/2

. (4.10)
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Using the expression

ln T

T

t

ln t
∼

[(
1− |x|

t

)
+

+
1
t

]−1/2{
1− 1

ln t
ln

[(
1− |x|

t

)
+

+
1
t

]}

we deduce from (??) that the term

ln T

T
l1 |x|<t

∣∣∣b±(X)(cosh(κ|X|))−1 − b±
(x

t
g
(x

t
, 0

))(
cosh

(
κ
∣∣∣x
t

∣∣∣
∣∣∣g

(x

t
, 0

)∣∣∣
))−1∣∣∣

gives also a contribution to the remainder in (??). If we set

b± = b±(X)(cosh(κ|X|))−1|X= x
t g( x

t ,0),

we are thus left with the term

ln T

T
eimT l1 |x|<tb

±(x/t). (4.11)

Write, when |y| < 1,

T = t
√

1− y2 + 2s + s2 = t
[√

1− y2 +
s√

1− y2
+ s2h(s, y)

]

with |h(s, y)| ≤ C(1− |y|)−3/2. We thus write (??) as

ln t

t
eim

√
t2−|x|2

[
l1 |x|<tb

±(x/t)e
im 2B√

1−(|x|/t)2
] t ln T

T ln t
ei 4B2

t h(2B/t,x/t). (4.12)

The term between brackets is by definition of b± smaller than Cε(1 − |x|
t )κ/2

+ . The last
exponential may be written as 1 + O

(
1
t (1− |x|

t )−3/2
+

)
. We also have

ln T

T

t

ln t
=

1√
1− (|x|/t)2

{
1 +

1
ln t

ln
√

1− (|x|/t)2
}

+ O
(1

t
(1− |x|/t)−5/2

)
.

Plugging these expressions in (??) we get the principal part in the right hand side of (??)
plus a contribution to the remainder. Using the similar approach we can prove (??).
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