SELF-CANCELLATION OF MODULES HAVING THE FINITE EXCHANGE PROPERTY

CHEN HUANYIN*

Abstract

Self-cancellation of modules having the finite exchange property is introduced. If a right *R*-module *M* has the finite exchange property, it is shown that *M* has selfcancellation if and only if $\operatorname{End}_R(M)$ is a strongly separative ring. Using this result, some new characterizations of strong separativity are obtained.

Keywords Self-cancellation, Strong separativity 2000 MR Subject Classification 16E50, 16U99

§1. Introduction

A right *R*-module *M* has the finite exchange property if for every right *R*-module *A* and any decompositions $A = M' \oplus N = \bigoplus_{i \in I} A_i$, where $M' \cong M$ and the index set *I* is finite, there exist submodules $A'_i \subseteq A_i$ such that $A = M' \oplus \left(\bigoplus_{i \in I} A'_i\right)$. If a ring *R* as a right *R*-module has the finite exchange property, we say that *R* is an exchange ring (see [10]). It is well known that a right *R*-module *M* has the finite exchange property if and only if $\operatorname{End}_R(M)$ is an exchange ring. Following Ara et al. (see [3]), a ring *R* is said to be strongly separative if for all finitely generated projective right *R*-modules *A*, *B* we have $A \oplus A \cong A \oplus B \Longrightarrow A \cong B$. Strong separativity is very useful in a number of various cancellation problems for modules over exchange rings.

An abelian group A has self-cancellation if $A \oplus A \cong A \oplus B$ implies that $A \cong B$ (see [5]). By [5, Corollary 8.19], every almost completely decomposable torsion free group of finite rank has self-cancellation. In this paper, we extend this concept to modules and introduce self-cancellation for modules having the finite exchange property. If a right *R*-module *M* has the finite exchange property, it is shown that *M* has self-cancellation if and only if $\operatorname{End}_R(M)$ is a strongly separative ring. Using this fact, we get some new characterizations of strong separativity.

Throughout, all rings are associative with identity and all modules are unitary right modules. The symbol $M \leq^{\oplus} N$ means that M is isomorphic to a direct summand of a module N and nM means that the direct sum of n copies of the R-module M. Let $\operatorname{add}(M_R)$ denote the full subcategory of Mod-R whose objects are all the modules isomorphic to direct summands of direct sums nM for a finite number of copies of M.

Manuscript received October 13, 2003.

^{*}Department of Mathematics, Hunan Normal University, Changsha 410006, China.

E-mail: chyzxl@sparc2.hunnu.edu.cn

§2. Self-cancellation of Modules

In [4], Ara et al. investigated regular rings having small projectives. Let R be a regular ring. We say that R has cancellation of small projectives if for all finitely generated projective right R-modules $A, B, C, A \oplus C \cong B \oplus C$ and $C \leq^{\oplus} nA$ for some $n \in \mathbb{N} \Longrightarrow A \cong B$. By [3, Lemma 5.1], a regular ring R has cancellation of small projectives if and only if it is an strongly separative ring. We now extend this concept to modules having the finite exchange property.

Definition 2.1. Let M be a right R-module with the finite exchange property. We say that M has self-cancellation if for all $A, B, C \in \operatorname{add}_R(M), A \oplus C \cong B \oplus C$ and $C \leq^{\oplus} nA$ for some $n \in \mathbb{N} \Longrightarrow A \cong B$.

Clearly, an exchange ring R is an strongly separative ring if and only if it has self-cancellation as a right R-module.

Lemma 2.1. Let M be a right R-module with the finite exchange property. For any right R-modules B and C, if $\psi : M \oplus B \cong M \oplus C$, then we have a refinement matrix

$$\begin{array}{ccc} M & B \\ M & \left(\begin{array}{cc} M_1 & B_1 \\ C_1 & D_1 \end{array}\right). \end{array}$$

That is, $M \cong M_1 \oplus C_1 \cong M_1 \oplus B_1$, $B \cong B_1 \oplus D_1$ and $C \cong C_1 \oplus D_1$.

Proof. The result follows analogously to [14, Theorem 3.1].

Theorem 2.1. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

- (1) M has self-cancellation.
- (2) For any $A, B, C \in \operatorname{add}_R(M), A \oplus C \cong B \oplus C$ with $C \leq^{\oplus} A \Longrightarrow A \cong B$.
- (3) For any $A, B \in \operatorname{add}_R(M), A \oplus A \cong A \oplus B \Longrightarrow A \cong B$.

Proof. $(1) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (2)$. Suppose that $A \oplus C \cong B \oplus C$, $C \leq^{\oplus} A$ and $A, B \in \operatorname{add}_R(M)$. Then we have $A \cong C \oplus D$ for a right *R*-module *D*. Hence

$$2(C \oplus D) \cong (A \oplus C) \oplus D \cong B \oplus (C \oplus D),$$

and then $A \cong C \oplus D \cong B$.

 $(2) \Rightarrow (1)$. Suppose that $A \oplus C \cong B \oplus C$ and $C \leq^{\oplus} nA$ $(n \in \mathbb{N})$, $A, B \in \operatorname{add}_R(M)$. Since M is a right R-module with the finite exchange property, so is C. From $C \leq^{\oplus} nA$, there exists a right R-module D such that $C \oplus D \cong A \oplus (n-1)A$. By Lemma 2.1, we have a refinement matrix

$$\begin{array}{ccc} & C & D \\ A & \begin{pmatrix} C_1 & D_1 \\ B_1 & E_1 \end{pmatrix}. \end{array}$$

So we have $B_1 \oplus E_1 \cong A \oplus (n-2)A$. Similarly, we have a refinement matrix

$$\begin{array}{ccc} & & B_1 & E_1 \\ A & \begin{pmatrix} C_2 & D_2 \\ B_2 & E_2 \end{pmatrix} \\ \end{array}$$

Furthermore, we get a refinement matrix

$$\begin{array}{ccc} & & B_{n-2} & E_{n-2} \\ A & & \left(\begin{array}{ccc} C_{n-1} & D_{n-1} \\ B_{n-1} & E_{n-1} \end{array} \right). \end{array}$$

From these refinement matrices, it follows that

$$C \cong C_1 \oplus B_1 \cong C_1 \oplus (C_2 \oplus B_2) \cong \cdots \cong C_1 \oplus C_2 \oplus \cdots \oplus C_{n-1} \oplus B_{n-1}$$

Set $C_n = B_{n-1}$. So $C = C_1 \oplus C_2 \oplus \cdots \oplus C_n$ with $C_1, \cdots, C_n \leq^{\oplus} A$; hence

$$C_1 \oplus \cdots \oplus C_n \oplus A \cong C_1 \oplus \cdots \oplus C_n \oplus B.$$

As $C_1 \leq^{\oplus} A$, we deduce that

$$C_2 \oplus \cdots \oplus C_n \oplus A \cong C_2 \oplus \cdots \oplus C_n \oplus B.$$

Furthermore, we get $A \cong B$, as required.

Lemma 2.2. Let M be a right R-module with the finite exchange property. For any right R-modules B and C, if $M \oplus B \cong M \oplus C$ with $M \leq^{\oplus} B$ then we have a refinement matrix

$$\begin{array}{ccc} M & B \\ M & \left(\begin{array}{cc} M_1 & B_1 \\ C_1 & D_1 \end{array} \right) \end{array}$$

with $M_1 \leq^{\oplus} B_1$.

Proof. Suppose that $M \oplus B \cong M \oplus C$ with $M \leq^{\oplus} B$. By Lemma 2.1, we have a refinement matrix

$$\begin{array}{ccc} M & B \\ M & \left(\begin{array}{ccc} M_1 & B_1 \\ C_1 & D_1 \end{array} \right). \end{array}$$

Clearly

$$M_1 \lesssim^{\oplus} M \lesssim^{\oplus} B \cong B_1 \oplus D_1.$$

So M_1 has the finite exchange property, and $M_1 \oplus D \cong B_1 \oplus D_1$ for a right *R*-module *D*. By Lemma 2.1 again, we have a refinement matrix

$$\begin{array}{ccc}
 & M_1 & D \\
B_1 & \left(\begin{array}{cc}
 M_2 & B_1' \\
 M_2' & D_1'
\end{array} \right).
\end{array}$$

Hence $M_1 \cong M_2 \oplus M'_2$ with $M_2 \leq^{\oplus} B_1$ and $M'_2 \leq^{\oplus} D_1$. So we have a right *R*-module D_2 such that $D_1 \cong M'_2 \oplus D_2$. Thus we have a new refinement matrix

$$\begin{array}{ccc} M & B \\ M & \left(\begin{array}{ccc} M_2 & B_2 \\ C_2 & D_2 \end{array} \right), \end{array}$$

where $B_2 = M'_2 \oplus B_1$ and $C_2 = M'_2 \oplus C_1$. In addition, $M_2 \leq^{\oplus} B_1 \leq^{\oplus} B_2$, as asserted.

Lemma 2.3. Let M be a right R-module with the finite exchange property. If $A \in add_R(M)$, then there exist idempotents $e_1, \dots, e_n \in End_R(M)$ such that $A \cong e_1M \oplus \dots \oplus e_nM$.

Proof. Since $A \in \operatorname{add}(M_R)$, we can find a right *R*-module *B* such that $A \oplus B \cong nM$ for some $n \in \mathbb{N}$. Clearly, *A* also has the finite exchange property. Similarly to Lemma 2.1, we have decompositions $A = A_1 \oplus \cdots \oplus A_n$, $B = B_1 \oplus \cdots \oplus B_n$ and $A_i \oplus B_i \cong M$ for $i = 1, \dots, n$. Thus, there exists $e_i = e_i^2 \in \operatorname{End}_R(M)$ such that $A_i \cong e_i M$ for $i = 1, \dots, n$. Hence $A \cong e_1 M \oplus \cdots \oplus e_n M$, as asserted.

Theorem 2.2. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

(1) *M* has self-cancellation.

(2) For any $C \in \operatorname{add}_R(M)$, $A \oplus C \cong B \oplus C$ with $C \leq^{\oplus} A \Longrightarrow A \cong B$ for any right *R*-modules A and B.

Proof. $(2) \Rightarrow (1)$ is clear by Theorem 2.1.

(1) \Rightarrow (2). Suppose that $C \in \operatorname{add}_R(M)$ and $C \oplus A \cong C \oplus B$ with $C \leq^{\oplus} A$. In view of Lemma 2.3, we have idempotents $e_1, \dots, e_n \in \operatorname{End}_R(M)$ such that $C \cong e_1 M \oplus \dots \oplus e_n M$. So

$$e_1M \oplus (e_2M \oplus \cdots \oplus e_nM \oplus A) \cong e_1M \oplus (e_2M \oplus \cdots \oplus e_nM \oplus B).$$

Set

$$A_1 = e_2 M \oplus \cdots \oplus e_n M \oplus A$$
 and $B_1 = e_2 M \oplus \cdots \oplus e_n M \oplus B$

Then

$$e_1 M \oplus A_1 \cong e_1 M \oplus B_1$$

with $e_1M \leq^{\oplus} A_1$. Clearly, e_1M has the finite exchange property. Using Lemma 2.2, we have a refinement matrix

with $M_2 \leq^{\oplus} A_2$. Clearly

$$M_2 \oplus A_2 \cong M_2 \oplus B_2 \cong e_1 M \lesssim^{\oplus} M.$$

It follows by Theorem 2.1 that $A_2 \cong B_2$, hence $A_1 \cong A_2 \oplus C_2 \cong B_2 \oplus C_2 \cong B_1$. That is,

$$e_2M \oplus \cdots \oplus e_nM \oplus A \cong e_2M \oplus \cdots \oplus e_nM \oplus B.$$

Likewise, we claim that

$$e_3M \oplus \cdots \oplus e_nM \oplus A \cong e_3M \oplus \cdots \oplus e_nM \oplus B.$$

Furthermore, we conclude that $A \cong B$, as required.

Corollary 2.1. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

(1) M has self-cancellation.

(2) For any $C \in \operatorname{add}(M_R)$, $C \oplus A \cong C \oplus B$ and $C \leq^{\oplus} nA$ for some $n \in \mathbb{N} \Longrightarrow A \cong B$ for any right *R*-modules *A* and *B*.

Proof. $(2) \Rightarrow (1)$ is trivial.

 $(1) \Rightarrow (2)$. Suppose that $A \in \operatorname{add}_R(M)$ and $C \oplus A \cong C \oplus B$ and $C \leq^{\oplus} nA$ for some $n \in \mathbb{N}$. Clearly, $C \in \operatorname{add}_R(A)$. By virtue of Lemma 2.3, there exists a decomposition $C \cong C_1 \oplus \cdots \oplus C_m$ with all $C_i \leq^{\oplus} A$. Therefore

$$\left(\bigoplus_{1\leq i\leq m} C_i\right)\oplus A\cong \left(\bigoplus_{1\leq i\leq m} C_i\right)\oplus B$$

with all $C_i \leq^{\oplus} A$. By applying Theorem 2.2, we conclude that $A \cong B$.

Let M have the finite exchange property. It follows from Corollary 2.1 that if M has self-cancellation then $M \oplus M \cong M \oplus B \Longrightarrow M \cong B$ for any right R-module B.

Corollary 2.2. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

(1) M has self-cancellation.

(2) For any right R-modules A and B, $A \oplus C \cong B \oplus C \leq^{\oplus} M$ with $C \leq^{\oplus} A \Longrightarrow A \cong B$.

Proof. $(1) \Rightarrow (2)$ is trivial by Theorem 2.2.

 $(2) \Rightarrow (1)$. Suppose that $A \oplus C \cong B \oplus C$ and $C \leq^{\oplus} mA \ (m \in \mathbb{N}), A, B \in \operatorname{add}_R(M)$. Clearly, C is a right R-module with the finite exchange property. From $C \leq^{\oplus} mA$, there exists a right R-module D such that $C \oplus D \cong mA$. Analogously to Theorem 2.1, we get $C = C_1 \oplus C_2 \oplus \cdots \oplus C_m$ with $C_1, \cdots, C_m \leq^{\oplus} A$. Hence

$$C_1 \oplus \cdots \oplus C_n \oplus A \cong C_1 \oplus \cdots \oplus C_n \oplus B.$$

As $C_1 \leq^{\oplus} A$ and $A \in \operatorname{add}_R(M)$, we have $C_1 \leq^{\oplus} n_1 M$. Similarly, we have $C_{11}, \cdots, C_{1n_1} \leq^{\oplus} M$ such that $C_1 \cong \bigoplus_{j=1}^{n_1} C_{1j}$. Likewise, we have $C_i \cong \bigoplus_{j=1}^{n_i} C_{ij}$ for $i = 2, \cdots, m$. Therefore

$$\left(\bigoplus_{1\leq i\leq m, 1\leq j\leq n_i} C_{ij}\right)\oplus B\cong \left(\bigoplus_{1\leq i\leq m, 1\leq j\leq n_i} C_{ij}\right)\oplus C$$

with all $C_{ij} \leq^{\oplus} A, M$. Set

$$A_1 = \left(\bigoplus_{\substack{1 \le i \le m, 1 \le j \le n_i \\ i \ne 1 \text{ or } j \ne 1}} C_{ij}\right) \oplus A, \qquad B_1 = \left(\bigoplus_{\substack{1 \le i \le m, 1 \le j \le n_i \\ i \ne 1 \text{ or } j \ne 1}} C_{ij}\right) \oplus B.$$

Then $C_{11} \oplus A_1 \cong C_{11} \oplus B_2$ with $C_{11} \leq^{\oplus} A_1$. Clearly, C_{11} has the finite exchange property as well. According to Lemma 2.2, there exists a refinement matrix

$$\begin{array}{ccc} & & C_{11} & A_1 \\ C_{11} & \left(\begin{array}{cc} C_2 & A_2 \\ B_1 & \left(\begin{array}{cc} B_2 & D_2 \end{array} \right) \end{array} \right)$$

with $C_2 \leq^{\oplus} A_2$. Hence, $C_2 \oplus A_2 \cong C_2 \oplus B_2 \cong C_{11} \leq^{\oplus} M$. So we get $A_2 \cong B_2$; whence, $A_1 \cong B_1$. Analogously, we deduce that $A \cong B$, as required.

Theorem 2.3. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

(1) M has self-cancellation.

(2) For any right R-modules A and B, $A \oplus A \cong A \oplus B \lesssim^{\oplus} M \Longrightarrow A \lesssim^{\oplus} B$.

Proof. $(1) \Rightarrow (2)$ is obvious by Corollary 2.2.

 $(2) \Rightarrow (1)$. Suppose that $A \oplus C \cong B \oplus C \lesssim^{\oplus} M$ with $C \lesssim^{\oplus} A$. By Lemma 2.2, we have a refinement matrix

$$\begin{array}{ccc} & A & C \\ B & \left(\begin{array}{cc} D_1 & B_1 \\ A_1 & C_1 \end{array} \right) \end{array}$$

with $C_1 \leq^{\oplus} A_1$. Hence $A_1 \oplus C_1 \cong C \cong B_1 \oplus C_1 \leq^{\oplus} M$. we may assume that $A_1 \cong C_1 \oplus D$ for a right R-module D. One checks that

$$2(C_1 \oplus D) \cong A_1 \oplus C_1 \oplus D \cong (C_1 \oplus D) \oplus B_1 \cong A_1 \oplus B_1 \lesssim^{\oplus} C \oplus B \lesssim^{\oplus} M.$$

Thus, we get $A_1 \cong C_1 \oplus D \lesssim^{\oplus} B_1$. Since $A_1 \oplus C_1 \cong B_1 \oplus C_1 \lesssim^{\oplus} M$ with $C_1 \lesssim^{\oplus} A_1$, by Lemma 2.2 again, we have a refinement matrix

$$\begin{array}{ccc}
 & A_1 & C_1 \\
B_1 & \left(\begin{array}{ccc}
 D_2 & B_2 \\
 A_2 & C_2
\end{array}\right)
\end{array}$$

with $C_2 \leq^{\oplus} A_2$. By the consideration above, we have $A_2 \leq^{\oplus} B_2$. Assume now that $B_2 \cong$ $A_2 \oplus E$ for a right *R*-module *E*. It is easy to check that $B_1 \cong B_2 \oplus D_2 \cong A_2 \oplus D_2 \oplus E \cong A_1 \oplus E$. This infers that $C \cong B_1 \oplus C_1 \cong A_1 \oplus E \oplus C_1 \cong C \oplus E$. As $C \leq^{\oplus} A$, we have a right *R*module F such that $A \cong C \oplus F$. Thus $A \oplus E \cong C \oplus F \oplus E \cong C \oplus F \cong A$. Therefore $B \cong D_1 \oplus B_1 \cong D_1 \oplus A_1 \oplus E \cong A \oplus E \cong A$. So the result follows by Corollary 2.2.

Let M be a right R-module with the finite exchange property. We say that M satisfies general comparability in case that for any $N \leq^{\oplus} M$, if $N \cong N_1 \oplus N_2$ then either $N_1 \leq^{\oplus} N_2$ or $N_2 \leq^{\oplus} N_1$.

Corollary 2.3. Let M be a directly finite right R-module with the finite exchange property. If M satisfies general comparability, then it has self-cancellation.

Proof. Suppose that $A \oplus A \cong A \oplus B \lesssim^{\oplus} M$. Since M satisfies general comparability, we have either $A \leq^{\oplus} B$ or $B \leq^{\oplus} A$. If $B \approx^{\oplus} A$, then $A \cong B \oplus C$ for a right *R*-module *C*. Hence $2A \oplus C \cong A \oplus B \oplus C \cong 2A$. Since *M* is directly finite and $2A \leq^{\oplus} M$, 2*A* is directly finite. So we deduce that C = 0, and then $A \cong B$. Therefore we conclude that $A \leq^{\oplus} B$. In view of Theorem 2.3, we complete the proof.

Theorem 2.4. Let M be a right R-module with the finite exchange property. Then the following statements are equivalent:

- (1) M has self-cancellation.
- (2) $\operatorname{End}_R(M)$ is a strongly separative ring.
- (3) Every $N \leq^{\oplus} M$ has self-cancellation.

Proof. (1) \Rightarrow (2). By Corollary 2.1 and [14, Lemma 3.3], M is a strongly separative right *R*-module. It follows from [14, Lemma 3.1] that $\operatorname{End}_R(M)$ is a strongly separative ring.

(2) \Rightarrow (3). For any $N \leq^{\oplus} M$, we have an idempotent $e \in \operatorname{End}_R(M)$ such that $N \cong eM$. So $\operatorname{End}_R(N) \cong e\operatorname{End}_R(M)e$ is strongly separative. It follows by [14, Lemma 3.1] that N is a strongly separative right *R*-module. Using [14, Lemma 3.3] and Corollary 2.2, we prove that N has self-cancellation.

 $(3) \Rightarrow (1)$ is trivial.

Theorem 2.4 and Lemma 3.1 show that the concepts of self-cancellation of modules and strongly separative right modules coincide with each other. Let M be a right R-module with the finite exchange property, and let $n \in \mathbb{N}$. As a result, we prove that M has selfcancellation if and only if so has nM.

§3. Strongly Separative Exchange Ideals

Following Ara et al. [3], we say that an ideal of a ring R is strongly separative in case for all $A, B \in FP(I), A \oplus A \cong A \oplus B \Longrightarrow A \cong B$. In this section, we investigate strongly separative exchange ideals of a ring.

Lemma 3.1. Let I be an exchange ideal of a ring R. Then eRe is an exchange ring for all idempotents $e \in I$.

Proof. Let $e \in I$ be an idempotent. Given any $x \in eRe$, we have $x \in I$. Since I is an exchange ideal of R, we have an idempotent $f \in I$ such that $f \in Rx$ and $1 - f \in R(1 - x)$. Hence fe = f, and then $(efe)^2 = efe \in (eRe)x$. In addition, we have $e - efe = e(1 - f)e \in (eRe)(e - x)$. Consequently, eRe is an exchange ring.

Lemma 3.2. Let I be an exchange ideal of a ring R. If $A \in FP(I)$, then $A \cong e_1R \oplus \cdots \oplus e_nR$ for some idempotents $e_1, \cdots, e_n \in I$.

Proof. Suppose that A is a finitely generated projective right R-module such that A = AI. Then we have a right R-module B such that $A \oplus B \cong nR$ for some $n \in \mathbb{N}$. Let $e : nR \to A$ be the projection onto A. Then $A \cong e(nR)$, whence $\operatorname{End}_R(A) \cong eM_n(R)e$. It follows from A = AI that $e(nR) = e(nR)I \subseteq nI$. Set $e = (\alpha_1, \dots, \alpha_1) \in M_n(R)$. Then $e(1, 0, \dots, 0)^T \in nI$, and hence $\alpha_1 \in nI$. Likewise, $\alpha_2, \dots, \alpha_n \in nI$. Therefore $e \in M_n(I)$. Since I is an exchange ideal of $R, M_n(I)$ is an exchange ring. That is, A has the finitely exchange property. Set $M = A \oplus B$. Then $M = A \oplus B = \bigoplus_{i=1}^n R_i$ with all $R_i \cong R$. By the finite exchange property of A, we have $B_i \lesssim^{\oplus} R_i$ $(1 \le i \le n)$ such that $M = A \oplus \left(\bigoplus_{i=1}^n B_i\right)$. Hence $A \cong A_1 \oplus \dots \oplus A_n$. Clearly, we have idempotents e_i such that $A_i \cong e_iR$ $(1 \le i \le n)$. It follows from A = AI that $A \bigotimes_R (R/I) = 0$; hence, $A_i \bigotimes_R (R/I) = 0$; hence, $A_i \bigotimes_R (R/I) = 0$. Therefore $A \cong e_1R \oplus \dots \oplus e_nR$ with all $e_i \in I$.

Lemma 3.3. Let I be an exchange ideal of a ring R. Then the following statements are equivalent:

- (1) I is strongly separative.
- (2) For any idempotent $e \in I$, eR has self-cancellation.

Proof. Let $e \in I$ be an idempotent. By Lemma 3.1, $\operatorname{End}_R(eR) \cong eRe$ is an exchange ring. Thus eR has the finite exchange property.

Conversely, assume now that $A \oplus A \cong A \oplus B$ with $A, B \in FP(I)$. By Lemma 3.2, we have idempotents $e_1, \dots, e_n \in I$ such that $A \cong e_1 R \oplus \dots \oplus e_n R$. Then we have

 $e_1R \oplus (e_2R \oplus e_nR \oplus A) \cong e_1R \oplus (e_2R \oplus e_nR \oplus B).$

Since $e_1 R$ has self-cancellation, it follows by Theorem 2.2 that

 $e_2R \oplus (e_3R \oplus \cdots \oplus e_nR \oplus A) \cong e_2R \oplus (e_3R \oplus \cdots \oplus e_nR \oplus B).$

Likewise, we have $e_3R \oplus \cdots \oplus e_nR \oplus A \cong e_3R \oplus \cdots \oplus e_nR \oplus B$. Furthermore, we deduce that $A \cong B$. Therefore I is strongly separative.

Theorem 3.1. Let I be an exchange ideal of a ring R. Then the following statements are equivalent:

(1) I is strongly separative.

(2) Every $A \in FP(I)$ has self-cancellation.

Proof. $(1)\Rightarrow(2)$. Let $A \in FP(I)$. According to Lemma 3.2, we have idempotents $e_1, \dots, e_n \in I$ such that $A \cong e_1 R \oplus \dots \oplus e_n R$. It follows by Lemma 3.3, Theorem 2.4 and [14, Lemma 3.1 and Theorem 3.2] that $\operatorname{End}_R(A)$ is a strongly separative ring.

 $(2) \Rightarrow (1)$. For any idempotent $e \in I$, eR has self-cancellation. Therefore we complete the proof by Lemma 3.3.

Let I be a strongly separative exchange ideal of a ring R, and let $n \in \mathbb{N}$. As a consequence of Theorem 3.1, one can prove that $M_n(I)$ is a strongly separative exchange ideal of the ring $M_n(R)$.

References

- [1] Ara, P., Extensions of exchange rings, J. Algebra, 197(1997), 409-423.
- [2] Ara, P., Stability properties of exchange rings, International Symposium on Ring Theory, Birkenmeier G. F. et al.(eds.), Trends in Mathematics, Birkhaeuser, Boston, 2001, 23–42.
- [3] Ara, P., Goodearl, K. R., O'Meara, K. C. & Pardo, E., Separative cancellation for projective modules over exchange rings, *Israel J. Math.*, 105(1998), 105–137.
- [4] Ara, P., O'Meara, K. C. & Tyukavkin, D. V., Cancellation of projective modules over regular rings with comparability, J. Pure Appl. Algebra, 107(1996), 19–38.
- [5] Arnold, D. M., Finite rank torsion free Abelian groups and rings, Lect. Notes in Math., 931, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [6] Chen, H., Related comparability over exchange rings, Comm. Algebra, **27**(1999), 4209–4216.
- [7] Chen, H., Regular rings with finite stable range, Comm. Algebra, 29(2001), 157-166.
- [8] Chen, H. & Li, F., Exchange rings satisfying the n-stable range conditions, II, Algebra Colloq., 10(2003), 1–8.
- [9] Goodearl, K. R., Von Neumann regular regular rings and direct sum decomposition problems, Abelian Groups and Modules, Facchini, A. et al. (eds.), Dordrecht, Math. Appl., Kluwer Academic Publishers, Dordrecht, 343, 1995, 249–255.
- [10] Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229(1977), 269–278.
- [11] Pardo, E., Comparability, separativity, and exchange rings, Comm. Algebra, 24(1996), 2915–2929.
- [12] Warfield, Jr., R. B., Cancellation of modules and groups and stable range of endomorphism rings, *Pacific J. Math.*, **91**(1980), 457–485.
- [13] Wu, T. & Xu, Y., On the stable range condition of exchange rings, Comm. Algebra, 25(1997), 2355– 2363.
- [14] Chen, H. & Qin, H., Morita contexts with cancellation of modules, Chin. Ann. Math., 25A:1(2004), 43–52.

118