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SELF-CANCELLATION OF MODULES HAVING
THE FINITE EXCHANGE PROPERTY

CHEN Huanyin∗

Abstract

Self-cancellation of modules having the finite exchange property is introduced. If
a right R-module M has the finite exchange property, it is shown that M has self-
cancellation if and only if EndR(M) is a strongly separative ring. Using this result,
some new characterizations of strong separativity are obtained.
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§ 1 . Introduction

A right R-module M has the finite exchange property if for every right R-module A and
any decompositions A = M ′⊕N =

⊕
i∈I

Ai, where M ′ ∼= M and the index set I is finite, there

exist submodules A′i ⊆ Ai such that A = M ′⊕
( ⊕

i∈I

A′i
)
. If a ring R as a right R-module has

the finite exchange property, we say that R is an exchange ring (see [10]). It is well known
that a right R-module M has the finite exchange property if and only if EndR(M) is an
exchange ring. Following Ara et al. (see [3]), a ring R is said to be strongly separative if for
all finitely generated projective right R-modules A,B we have A⊕ A ∼= A⊕B =⇒ A ∼= B.
Strong separativity is very useful in a number of various cancellation problems for modules
over exchange rings.

An abelian group A has self-cancellation if A⊕A ∼= A⊕B implies that A ∼= B (see [5]).
By [5, Corollary 8.19], every almost completely decomposable torsion free group of finite
rank has self-cancellation. In this paper, we extend this concept to modules and introduce
self-cancellation for modules having the finite exchange property. If a right R-module M has
the finite exchange property, it is shown that M has self-cancellation if and only if EndR(M)
is a strongly separative ring. Using this fact, we get some new characterizations of strong
separativity.

Throughout, all rings are associative with identity and all modules are unitary right
modules. The symbol M .⊕ N means that M is isomorphic to a direct summand of a
module N and nM means that the direct sum of n copies of the R-module M . Let add(MR)
denote the full subcategory of Mod-R whose objects are all the modules isomorphic to direct
summands of direct sums nM for a finite number of copies of M .
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§ 2 . Self-cancellation of Modules

In [4], Ara et al. investigated regular rings having small projectives. Let R be a regular
ring. We say that R has cancellation of small projectives if for all finitely generated projective
right R-modules A,B, C, A ⊕ C ∼= B ⊕ C and C .⊕ nA for some n ∈ N =⇒ A ∼= B. By
[3, Lemma 5.1], a regular ring R has cancellation of small projectives if and only if it is an
strongly separative ring. We now extend this concept to modules having the finite exchange
property.

Definition 2.1. Let M be a right R-module with the finite exchange property. We say
that M has self-cancellation if for all A,B, C ∈ addR(M), A ⊕ C ∼= B ⊕ C and C .⊕ nA
for some n ∈ N =⇒ A ∼= B.

Clearly, an exchange ring R is an strongly separative ring if and only if it has self-
cancellation as a right R-module.

Lemma 2.1. Let M be a right R-module with the finite exchange property. For any
right R-modules B and C, if ψ : M ⊕B ∼= M ⊕ C, then we have a refinement matrix

M B
M
C

(
M1 B1

C1 D1

)
.

That is, M ∼= M1 ⊕ C1
∼= M1 ⊕B1, B ∼= B1 ⊕D1 and C ∼= C1 ⊕D1.

Proof. The result follows analogously to [14, Theorem 3.1].

Theorem 2.1. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) For any A,B,C ∈ addR(M), A⊕ C ∼= B ⊕ C with C .⊕ A =⇒ A ∼= B.
(3) For any A,B ∈ addR(M), A⊕A ∼= A⊕B =⇒ A ∼= B.

Proof. (1)⇒(3) is clear.
(3)⇒(2). Suppose that A ⊕ C ∼= B ⊕ C, C .⊕ A and A,B ∈ addR(M). Then we have

A ∼= C ⊕D for a right R-module D. Hence

2(C ⊕D) ∼= (A⊕ C)⊕D ∼= B ⊕ (C ⊕D),

and then A ∼= C ⊕D ∼= B.
(2)⇒(1). Suppose that A⊕C ∼= B ⊕C and C .⊕ nA (n ∈ N), A,B ∈ addR(M). Since

M is a right R-module with the finite exchange property, so is C. From C .⊕ nA, there
exists a right R-module D such that C ⊕ D ∼= A ⊕ (n − 1)A. By Lemma 2.1, we have a
refinement matrix

C D
A

(n− 1)A

(
C1 D1

B1 E1

)
.

So we have B1 ⊕ E1
∼= A⊕ (n− 2)A. Similarly, we have a refinement matrix

B1 E1

A
(n− 2)A

(
C2 D2

B2 E2

)
.
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Furthermore, we get a refinement matrix

Bn−2 En−2

A
A

(
Cn−1 Dn−1

Bn−1 En−1

)
.

From these refinement matrices, it follows that

C ∼= C1 ⊕B1
∼= C1 ⊕ (C2 ⊕B2) ∼= · · · ∼= C1 ⊕ C2 ⊕ · · · ⊕ Cn−1 ⊕Bn−1.

Set Cn = Bn−1. So C = C1 ⊕ C2 ⊕ · · · ⊕ Cn with C1, · · · , Cn .⊕ A; hence

C1 ⊕ · · · ⊕ Cn ⊕A ∼= C1 ⊕ · · · ⊕ Cn ⊕B.

As C1 .⊕ A, we deduce that

C2 ⊕ · · · ⊕ Cn ⊕A ∼= C2 ⊕ · · · ⊕ Cn ⊕B.

Furthermore, we get A ∼= B, as required.

Lemma 2.2. Let M be a right R-module with the finite exchange property. For any right
R-modules B and C, if M ⊕B ∼= M ⊕ C with M .⊕ B then we have a refinement matrix

M B
M
C

(
M1 B1

C1 D1

)

with M1 .⊕ B1.

Proof. Suppose that M ⊕ B ∼= M ⊕ C with M .⊕ B. By Lemma 2.1, we have a
refinement matrix

M B
M
C

(
M1 B1

C1 D1

)
.

Clearly
M1 .⊕ M .⊕ B ∼= B1 ⊕D1.

So M1 has the finite exchange property, and M1 ⊕D ∼= B1 ⊕D1 for a right R-module D.
By Lemma 2.1 again, we have a refinement matrix

M1 D
B1

D1

(
M2 B′

1

M ′
2 D′

1

)
.

Hence M1
∼= M2 ⊕M ′

2 with M2 .⊕ B1 and M ′
2 .⊕ D1. So we have a right R-module D2

such that D1
∼= M ′

2 ⊕D2. Thus we have a new refinement matrix

M B
M
C

(
M2 B2

C2 D2

)
,

where B2 = M ′
2 ⊕B1 and C2 = M ′

2 ⊕ C1. In addition, M2 .⊕ B1 .⊕ B2, as asserted.
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Lemma 2.3. Let M be a right R-module with the finite exchange property. If A ∈
addR(M), then there exist idempotents e1, · · · , en ∈ EndR(M) such that A ∼= e1M ⊕ · · · ⊕
enM .

Proof. Since A ∈ add(MR), we can find a right R-module B such that A ⊕ B ∼= nM
for some n ∈ N. Clearly, A also has the finite exchange property. Similarly to Lemma
2.1, we have decompositions A = A1 ⊕ · · · ⊕ An, B = B1 ⊕ · · · ⊕ Bn and Ai ⊕ Bi

∼= M for
i = 1, · · · , n. Thus, there exists ei = e2

i ∈ EndR(M) such that Ai
∼= eiM for i = 1, · · · , n.

Hence A ∼= e1M ⊕ · · · ⊕ enM , as asserted.

Theorem 2.2. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) For any C ∈ addR(M), A ⊕ C ∼= B ⊕ C with C .⊕ A =⇒ A ∼= B for any right

R-modules A and B.

Proof. (2)⇒(1) is clear by Theorem 2.1.
(1)⇒(2). Suppose that C ∈ addR(M) and C ⊕ A ∼= C ⊕ B with C .⊕ A. In view of

Lemma 2.3, we have idempotents e1, · · · , en ∈ EndR(M) such that C ∼= e1M ⊕ · · · ⊕ enM .
So

e1M ⊕ (e2M ⊕ · · · ⊕ enM ⊕A) ∼= e1M ⊕ (e2M ⊕ · · · ⊕ enM ⊕B).

Set
A1 = e2M ⊕ · · · ⊕ enM ⊕A and B1 = e2M ⊕ · · · ⊕ enM ⊕B.

Then
e1M ⊕A1

∼= e1M ⊕B1

with e1M .⊕ A1. Clearly, e1M has the finite exchange property. Using Lemma 2.2, we
have a refinement matrix

e1M A1

e1M
B1

(
M2 A2

B2 C2

)

with M2 .⊕ A2. Clearly

M2 ⊕A2
∼= M2 ⊕B2

∼= e1M .⊕ M.

It follows by Theorem 2.1 that A2
∼= B2, hence A1

∼= A2 ⊕ C2
∼= B2 ⊕ C2

∼= B1. That is,

e2M ⊕ · · · ⊕ enM ⊕A ∼= e2M ⊕ · · · ⊕ enM ⊕B.

Likewise, we claim that

e3M ⊕ · · · ⊕ enM ⊕A ∼= e3M ⊕ · · · ⊕ enM ⊕B.

Furthermore, we conclude that A ∼= B, as required.

Corollary 2.1. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) For any C ∈ add(MR), C ⊕ A ∼= C ⊕ B and C .⊕ nA for some n ∈ N =⇒ A ∼= B

for any right R-modules A and B.
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Proof. (2)⇒(1) is trivial.
(1)⇒(2). Suppose that A ∈ addR(M) and C ⊕ A ∼= C ⊕ B and C .⊕ nA for some

n ∈ N. Clearly, C ∈ addR(A). By virtue of Lemma 2.3, there exists a decomposition
C ∼= C1 ⊕ · · · ⊕ Cm with all Ci .⊕ A. Therefore

( ⊕

1≤i≤m

Ci

)
⊕A ∼=

( ⊕

1≤i≤m

Ci

)
⊕B

with all Ci .⊕ A. By applying Theorem 2.2, we conclude that A ∼= B.

Let M have the finite exchange property. It follows from Corollary 2.1 that if M has
self-cancellation then M ⊕M ∼= M ⊕B =⇒ M ∼= B for any right R-module B.

Corollary 2.2. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) For any right R-modules A and B, A⊕C ∼= B ⊕C .⊕ M with C .⊕ A =⇒ A ∼= B.

Proof. (1)⇒(2) is trivial by Theorem 2.2.
(2)⇒(1). Suppose that A ⊕ C ∼= B ⊕ C and C .⊕ mA (m ∈ N), A, B ∈ addR(M).

Clearly, C is a right R-module with the finite exchange property. From C .⊕ mA, there
exists a right R-module D such that C ⊕ D ∼= mA. Analogously to Theorem 2.1, we get
C = C1 ⊕ C2 ⊕ · · · ⊕ Cm with C1, · · · , Cm .⊕ A. Hence

C1 ⊕ · · · ⊕ Cn ⊕A ∼= C1 ⊕ · · · ⊕ Cn ⊕B.

As C1 .⊕ A and A ∈ addR(M), we have C1 .⊕ n1M . Similarly, we have C11, · · · , C1n1 .⊕

M such that C1
∼=

n1⊕
j=1

C1j . Likewise, we have Ci
∼=

ni⊕
j=1

Cij for i = 2, · · · ,m. Therefore

( ⊕

1≤i≤m,1≤j≤ni

Cij

)
⊕B ∼=

( ⊕

1≤i≤m,1≤j≤ni

Cij

)
⊕ C

with all Cij .⊕ A,M . Set

A1 =
( ⊕

1≤i≤m,1≤j≤ni
i 6=1 or j 6=1

Cij

)
⊕A, B1 =

( ⊕

1≤i≤m,1≤j≤ni
i 6=1 or j 6=1

Cij

)
⊕B.

Then C11 ⊕ A1
∼= C11 ⊕B2 with C11 .⊕ A1. Clearly, C11 has the finite exchange property

as well. According to Lemma 2.2, there exists a refinement matrix

C11 A1

C11

B1

(
C2 A2

B2 D2

)

with C2 .⊕ A2. Hence, C2 ⊕ A2
∼= C2 ⊕ B2

∼= C11 .⊕ M. So we get A2
∼= B2; whence,

A1
∼= B1. Analogously, we deduce that A ∼= B, as required.

Theorem 2.3. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) For any right R-modules A and B, A⊕A ∼= A⊕B .⊕ M =⇒ A .⊕ B.
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Proof. (1)⇒(2) is obvious by Corollary 2.2.
(2)⇒(1). Suppose that A⊕C ∼= B ⊕C .⊕ M with C .⊕ A. By Lemma 2.2, we have a

refinement matrix
A C

B
C

(
D1 B1

A1 C1

)

with C1 .⊕ A1. Hence A1 ⊕ C1
∼= C ∼= B1 ⊕ C1 .⊕ M . we may assume that A1

∼= C1 ⊕D
for a right R-module D. One checks that

2(C1 ⊕D) ∼= A1 ⊕ C1 ⊕D ∼= (C1 ⊕D)⊕B1
∼= A1 ⊕B1 .⊕ C ⊕B .⊕ M.

Thus, we get A1
∼= C1 ⊕D .⊕ B1.

Since A1 ⊕ C1
∼= B1 ⊕ C1 .⊕ M with C1 .⊕ A1, by Lemma 2.2 again, we have a

refinement matrix
A1 C1

B1

C1

(
D2 B2

A2 C2

)

with C2 .⊕ A2. By the consideration above, we have A2 .⊕ B2. Assume now that B2
∼=

A2⊕E for a right R-module E. It is easy to check that B1
∼= B2⊕D2

∼= A2⊕D2⊕E ∼= A1⊕E.
This infers that C ∼= B1 ⊕ C1

∼= A1 ⊕ E ⊕ C1
∼= C ⊕ E. As C .⊕ A, we have a right R-

module F such that A ∼= C ⊕ F . Thus A ⊕ E ∼= C ⊕ F ⊕ E ∼= C ⊕ F ∼= A. Therefore
B ∼= D1 ⊕B1

∼= D1 ⊕A1 ⊕ E ∼= A⊕ E ∼= A. So the result follows by Corollary 2.2.
Let M be a right R-module with the finite exchange property. We say that M satisfies

general comparability in case that for any N .⊕ M , if N ∼= N1 ⊕N2 then either N1 .⊕ N2

or N2 .⊕ N1.

Corollary 2.3. Let M be a directly finite right R-module with the finite exchange prop-
erty. If M satisfies general comparability, then it has self-cancellation.

Proof. Suppose that A ⊕ A ∼= A ⊕ B .⊕ M . Since M satisfies general comparability,
we have either A .⊕ B or B .⊕ A. If B .⊕ A, then A ∼= B ⊕ C for a right R-module C.
Hence 2A⊕ C ∼= A⊕B ⊕ C ∼= 2A. Since M is directly finite and 2A .⊕ M , 2A is directly
finite. So we deduce that C = 0, and then A ∼= B. Therefore we conclude that A .⊕ B. In
view of Theorem 2.3, we complete the proof.

Theorem 2.4. Let M be a right R-module with the finite exchange property. Then the
following statements are equivalent:

(1) M has self-cancellation.
(2) EndR(M) is a strongly separative ring.
(3) Every N .⊕ M has self-cancellation.

Proof. (1)⇒(2). By Corollary 2.1 and [14, Lemma 3.3], M is a strongly separative right
R-module. It follows from [14, Lemma 3.1] that EndR(M) is a strongly separative ring.

(2)⇒(3). For any N .⊕ M , we have an idempotent e ∈ EndR(M) such that N ∼= eM .
So EndR(N) ∼= eEndR(M)e is strongly separative. It follows by [14, Lemma 3.1] that N is
a strongly separative right R-module. Using [14, Lemma 3.3] and Corollary 2.2, we prove
that N has self-cancellation.

(3)⇒(1) is trivial.
Theorem 2.4 and Lemma 3.1 show that the concepts of self-cancellation of modules and

strongly separative right modules coincide with each other. Let M be a right R-module
with the finite exchange property, and let n ∈ N. As a result, we prove that M has self-
cancellation if and only if so has nM .
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§ 3 . Strongly Separative Exchange Ideals

Following Ara et al. [3], we say that an ideal of a ring R is strongly separative in case
for all A,B ∈ FP (I), A ⊕ A ∼= A ⊕ B =⇒ A ∼= B. In this section, we investigate strongly
separative exchange ideals of a ring.

Lemma 3.1. Let I be an exchange ideal of a ring R. Then eRe is an exchange ring for
all idempotents e ∈ I.

Proof. Let e ∈ I be an idempotent. Given any x ∈ eRe, we have x ∈ I. Since I is an
exchange ideal of R, we have an idempotent f ∈ I such that f ∈ Rx and 1− f ∈ R(1− x).
Hence fe = f , and then (efe)2 = efe ∈ (eRe)x. In addition, we have e− efe = e(1− f)e ∈
(eRe)(e− x). Consequently, eRe is an exchange ring.

Lemma 3.2. Let I be an exchange ideal of a ring R. If A ∈ FP (I), then A ∼= e1R ⊕
· · · ⊕ enR for some idempotents e1, · · · , en ∈ I.

Proof. Suppose that A is a finitely generated projective right R-module such that
A = AI. Then we have a right R-module B such that A ⊕ B ∼= nR for some n ∈ N. Let
e : nR → A be the projection onto A. Then A ∼= e(nR), whence EndR(A) ∼= eMn(R)e. It
follows from A = AI that e(nR) = e(nR)I ⊆ nI. Set e = (α1, · · · , α1) ∈ Mn(R). Then
e(1, 0, · · · , 0)T ∈ nI, and hence α1 ∈ nI. Likewise, α2, · · · , αn ∈ nI. Therefore e ∈ Mn(I).
Since I is an exchange ideal of R, Mn(I) is an exchange ideal of Mn(R) from [1, Theorem
1.4]. According to Lemma 3.1, EndR(A) is an exchange ring. That is, A has the finitely

exchange property. Set M = A ⊕ B. Then M = A ⊕ B =
n⊕

i=1

Ri with all Ri
∼= R. By the

finite exchange property of A, we have Bi .⊕ Ri (1 ≤ i ≤ n) such that M = A⊕
( n⊕

i=1

Bi

)
.

Assume that Bi ⊕Ai = Ri (1 ≤ i ≤ n). Then A⊕
( n⊕

i=1

Bi

)
=

( n⊕
i=1

Ai

)
⊕

( n⊕
i=1

Bi

)
. Hence

A ∼= A1 ⊕ · · · ⊕ An. Clearly, we have idempotents ei such that Ai
∼= eiR (1 ≤ i ≤ n). It

follows from A = AI that A
⊗
R

(R/I) = 0; hence, Ai

⊗
R

(R/I) = 0 (1 ≤ i ≤ n). That is, each

(eiR)
⊗
R

(R/I) = 0; hence, ei ∈ eiR = eiRI ⊆ I. Therefore A ∼= e1R ⊕ · · · ⊕ enR with all

ei ∈ I.

Lemma 3.3. Let I be an exchange ideal of a ring R. Then the following statements are
equivalent:

(1) I is strongly separative.
(2) For any idempotent e ∈ I, eR has self-cancellation.

Proof. Let e ∈ I be an idempotent. By Lemma 3.1, EndR(eR) ∼= eRe is an exchange
ring. Thus eR has the finite exchange property.

Suppose that I is strongly separative. Given A⊕A ∼= A⊕B as right eRe-modules, then
A

⊗
eRe

eR⊕A
⊗
eRe

eR ∼= A
⊗
eRe

eR⊕B
⊗
eRe

eR as right R-modules. Clearly, A
⊗
eRe

eR, B
⊗
eRe

eR ∈
FP (I). Hence A

⊗
eRe

eR ∼= B
⊗
eRe

eR, and then A
⊗
eRe

eR
⊗
R

Re ∼= B
⊗
eRe

eR
⊗
R

Re. Since

eR
⊗
R

Re ∼= eRe as right eRe-modules, we deduce that A ∼= B. Thus eRe is a strongly

separative ring by [3, Lemma 5.1]. That is, EndR(eR) is a strongly separative ring. Using
Theorem 2.4, eR has self-cancellation.
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Conversely, assume now that A ⊕ A ∼= A ⊕ B with A, B ∈ FP (I). By Lemma 3.2, we
have idempotents e1, · · · , en ∈ I such that A ∼= e1R⊕ · · · ⊕ enR. Then we have

e1R⊕ (e2R⊕ enR⊕A) ∼= e1R⊕ (e2R⊕ enR⊕B).

Since e1R has self-cancellation, it follows by Theorem 2.2 that

e2R⊕ (e3R⊕ · · · ⊕ enR⊕A) ∼= e2R⊕ (e3R⊕ · · · ⊕ enR⊕B).

Likewise, we have e3R⊕· · ·⊕ enR⊕A ∼= e3R⊕· · ·⊕ enR⊕B. Furthermore, we deduce that
A ∼= B. Therefore I is strongly separative.

Theorem 3.1. Let I be an exchange ideal of a ring R. Then the following statements
are equivalent:

(1) I is strongly separative.
(2) Every A ∈ FP (I) has self-cancellation.

Proof. (1)⇒(2). Let A ∈ FP (I). According to Lemma 3.2, we have idempotents
e1, · · · , en ∈ I such that A ∼= e1R ⊕ · · · ⊕ enR. It follows by Lemma 3.3, Theorem 2.4 and
[14, Lemma 3.1 and Theorem 3.2] that EndR(A) is a strongly separative ring.

(2)⇒(1). For any idempotent e ∈ I, eR has self-cancellation. Therefore we complete the
proof by Lemma 3.3.

Let I be a strongly separative exchange ideal of a ring R, and let n ∈ N. As a consequence
of Theorem 3.1, one can prove that Mn(I) is a strongly separative exchange ideal of the ring
Mn(R).
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