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REGULARITY RESULTS FOR SOME
QUASI-LINEAR ELLIPTIC SYSTEMS INVOLVING

CRITICAL EXPONENTS∗∗∗

HU Yexin∗ LI Juan∗∗

Abstract

The authors show the regularity of weak solutions for some typical quasi-linear
elliptic systems governed by two p-Laplacian operators. The weak solutions of the
following problem with lack of compactness are proved to be regular when a(x) and
α, β, p, q satisfy some conditions:8>><>>:

−∆pu + a(x)|u|α−1|v|β+1u = |u|p∗−2u, x ∈ Ω,

−∆qv + a(x)|u|α+1|v|β−1v = |v|q∗−2v, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain.

Keywords Elliptic equation system, p-Laplacian operator, Critical Sobolev expo-
nent, Regularity
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§ 1 . Introduction

In this paper, we consider the regularity of the weak solutions of the following quasi-linear
elliptic systems





−∆pu + a(x)|u|α−1|v|β+1u = |u|p∗−2u, x ∈ Ω,

−∆qv + a(x)|u|α+1|v|β−1v = |v|q∗−2v, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, ∆p is the p-Laplacian operator,
namely ∆pu

.= div(|∇u|p−2∇u). In addition, we assume that 1 ≤ p < N , 1 ≤ q < N ,
α + 1 > 0, β + 1 > 0 and a(x) ∈ L∞(Ω). For the positive constants α, β, p, q and N , the
following inequality is valid:

α + 1
p∗

+
β + 1

q∗
≤ 1, (1.2)
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where p∗ and q∗ are the critical Sobolev exponents, i.e., p∗ = Np
N−p and q∗ = Nq

N−q .

Analogous results have been obtained for single elliptic equation (see [1]). As for the
existence and regularity results for some quasi-linear elliptic equations or systems on RN ,
we refer to [2, 3] and the references therein. The condition (1.2) can guarantee that the C1

functional corresponding with the problem (1.1) defined as follows exists.

I(u, v) =
α + 1

p

∫

Ω

|∇u|pdx +
β + 1

q

∫

Ω

|∇v|qdx− α + 1
p∗

∫

Ω

|u|q∗dx

− β + 1
q∗

∫

Ω

|v|q∗dx +
∫

Ω

a(x)|u|α+1|v|β+1dx.

By variational methods, the critical point theory and Lions’ concentration compactness
principle, we can prove the existence of nontrivial weak solutions to the problem (1.1) similar
to the arguments of [4]. Thus, it is necessary to show the regularity of the weak solutions to
problem (1.1). In this paper, we obtain the regularity result by applying Morse’s iterative
scheme to this elliptic systems.

We shall denote by W 1,p
0 (Ω) the Sobolev space obtained as the closure of C∞0 (Ω) in the

norm ||u||p =
∫
Ω
|∇u|pdx. For simplicity, we denote

∫
Ω
· dx by

∫ · dx and denote different
positive constants by C which may change from line to line. The natural space setting
for our problem is the space E

.= W 1,p
0 (Ω) × W 1,q

0 (Ω). We prove first any weak solution
(u, v) ∈ E belongs to L∞(Ω) × L∞(Ω), then (u, v) belongs to C1,µ(Ω) × C1,ν(Ω), µ > 0,
ν > 0.

Now, We state our main results in this paper.

Theorem 1.1. Let (u, v) ∈ E be the weak solution of problem (1.1), and suppose that
(1.2) holds and the following condition holds

β + 1
p∗ − (α + 1)

≤ q∗

p∗
≤ q∗ − (β + 1)

α + 1
. (1.3)

Then (u, v) ∈ L∞(Ω)× L∞(Ω).

Theorem 1.2. Under the conditions of Theorem 1.1, it holds that (|∇u|, |∇v|) ∈ L∞(Ω)
×L∞(Ω), moreover there exist two positive constants µ > 0, ν > 0 such that (u, v) ∈
C1,µ(Ω)× C1,ν(Ω).

Example 1.1. Take N = 4, p = q = 3, and let α + 1 = β + 1 = 4. One can see that the
conditions (1.2) and (1.3) hold.

Example 1.2. When N = 3, p = q = 2, if α + 1 = β + 1 = 3, then (1.2) and (1.3) are
satisfied. Hence the classical solutions of the problem (1.1) are obtained.
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§ 2 . Proofs of Main Results

Proof of Theorem 1.1. First we suppose u ≥ 0, v ≥ 0 and s ≥ 1, ω = us ∈ Lp(Ω),
where s is to be determined. In a way similar to [1], let ωL = η · u · us−1

L , where L ∈ R+,
and

uL(x) =

{
u(x), if u ≤ L,

L, if u > L.

Take η ∈ C∞0 (Ω), η ≡ 1 if x ∈ BR(x0), ∀x0 ∈ Ω fixed; η ≡ 0 if x 6∈ BR+r(x0), and 0 < r < R

such that |∇η| ≤ 1
r . Then

∇ωL = u · us−1
L · ∇η + η · us−1

L (∇u + (s− 1)∇uL),
∫
|∇ωL|pdx ≤ 2p−1

∫
|∇η|pup · up(s−1)

L dx

+ 4p−1

∫
ηp · up(s−1)

L (|∇u|p + (s− 1)p|∇uL|p)dx. (2.1)

Since (u, v) ∈ E is a weak solution of the problem (1.1), for any ϕ ∈ W 1,p
0 (Ω), it follows that

∫
|∇u|p−2∇u∇ϕdx +

∫
a(x)|u|α−1|v|β+1uϕdx =

∫
up∗−1ϕdx. (2.2)

Let ϕ = ηpu · up(s−1)
L , then ϕ ∈ W 1,p

0 (Ω). By (2.2) we get

N∑

i=1

∫ [
|∇u|p · ηp · up(s−1)

L + p(s− 1)|∇u|p−2 ∂u

∂xi

∂uL

∂xi
ηpu · up(s−1)−1

L

+ p|∇u|p−2 ∂u

∂xi

∂η

∂xi
ηp−1u · up(s−1)

L

]
dx +

∫
a(x)ηpuα+1|v|β+1u

p(s−1)
L dx

=
∫

up∗ηp · up(s−1)
L dx. (2.3)

Then for any ε > 0, we deduce that
∫
|∇u|pηpu

p(s−1)
L dx + p(s− 1)

∫
|∇uL|pηpu

p(s−1)
L dx

≤ −p

∫ N∑

i=1

|∇u|p−2 ∂u

∂xi

∂η

∂xi
ηp−1 · u · up(s−1)

L dx

−
∫

a(x)ηpuα+1|v|β+1u
p(s−1)
L dx +

∫
up∗ηp · up(s−1)

L dx

≤
∫

p|∇u|p−2ηp−2 · up(s−1)
L (ε|∇u|2η2 + Cε|∇η|2 · u2)dx

+
∫
|a(x)|ηpuα+1|v|β+1u

p(s−1)
L dx +

∫
up∗ηp · up(s−1)

L dx

= ε

∫
|∇u|pηpu

p(s−1)
L dx + Cε

∫
|∇u|p−2ηp−2|∇η|2 · u2 · up(s−1)

L dx

+
∫
|a(x)|ηpuα+1|v|β+1u

p(s−1)
L dx +

∫
up∗ηp · up(s−1)

L dx.
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Choose ε = 1
2 , then

∫
|∇u|pηpu

p(s−1)
L dx + 2p(s− 1)

∫
|∇uL|pηpu

p(s−1)
L dx

≤ C

∫
|∇u|p−2ηp−2|∇η|2 · up(s−1)

L dx

+
∫
|a(x)|ηpuα+1|v|β+1u

p(s−1)
L dx +

∫
up∗ηp · up(s−1)

L dx.

Notice that for any ε > 0, the following inequality holds
∫
|∇u|p−2|∇η|2 · ηp−2u2 · up(s−1)

L dx ≤ ε

∫
|∇u|pηpu

p(s−1)
L dx + Cε

∫
|∇η|pup · up(s−1)

L dx.

We may choose ε such that
∫
|∇u|pηpu

p(s−1)
L dx + 4Cp(s− 1)

∫
|∇uL|pηpu

p(s−1)
L dx

≤ C

∫
|∇η|pupu

p(s−1)
L dx +

∫
|a(x)|ηpuα+1|v|β+1u

p(s−1)
L dx +

∫
up∗ηp · up(s−1)

L dx. (2.4)

By (2.1) and (2.4), we obtain
∫

Ω

|∇ωL|pdx =
∫

Ω

|∇(ηuus−1
L )|pdx

≤ C · sp−1

∫

Ω

(|∇η|pup · up(s−1)
L + ηpa(x)|v|β+1uα+1 · up(s−1)

L + ηpup∗ · up(s−1)
L )dx. (2.5)

Let s = p∗

p , then ω = u
p∗
p ∈ Lp(Ω). By (2.5) and Sobolev inequality, we have

[ ∫

Ω

(
ηu · u

p∗−p
p

L

)p∗

dx
] p

p∗ ≤ C

∫

Ω

∣∣∣∇
(
ηuu

p∗−p
p

L

)∣∣∣
p

dx

≤ C
(p∗

p

) ∫

Ω

(|∇η|pupup∗−p
L + |a(x)|ηpuα+1|v|β+1up∗−p

L + ηpup∗ · up∗−p
L )dx. (2.6)

Notice that
∫

Ω

ηpup∗ · up∗−p
L dx =

∫

BR+r

(ηpupup∗−p
L ) · up∗−pdx ≤

[ ∫

Ω

(ηuu
p∗−p

p

L )p∗dx
] p

p∗
[ ∫

BR+r

up∗dx
] p∗−p

p∗
.

Similarly, for α + 1 ≥ p, we have
∫

Ω

ηpuα+1|v|β+1 · up∗−p
L dx =

∫

BR+r

(ηpupup∗−p
L ) · uα+1−p|v|β+1dx

≤
[ ∫

Ω

(ηuu
p∗−p

p

L )p∗dx
] p

p∗
[ ∫

BR+r

(uα+1−p|v|β+1)
p∗

p∗−p dx
] p∗−p

p∗
.

Clearly

∫

Ω

u
p∗(α+1−p)

p∗−p |v| p∗(β+1)
p∗−p dx ≤

( ∫

Ω

|u|p∗dx
)α+1−p

p∗−p
( ∫

Ω

|v| p∗(β+1)
p∗−α+1 dx

) p∗−(α+1)
p∗−p ≤ C. (2.7)
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Here we have used (1.3) and (u, v) ∈ E in the last inequality. As for the case 0 < α + 1 < p,
the same result holds after the arguments similar to (2.11). By the continuity of integral,
for any ε0 > 0 we may choose R, r such that

∫

BR+r

up∗dx < ε0,

∫

BR+r

u
p∗(α+1−p)

p∗−p |v| p∗(β+1)
p∗−p dx < ε0.

Since u ∈ W 1,p
0 (Ω), it follows that u ∈ Lp∗(Ω). Take ε0 such that

C ·
(p∗

p

)p−1

· ε
p∗−p

p

0 =
1
4
,

then
∫

Ω

ηpuα+1|v|β+1 · up∗−p
L dx +

∫

Ω

ηpup∗ · up∗−p
L dx ≤ 1

2

[ ∫

Ω

(ηu · u
p∗−p

p

L )p∗dx
] p

p∗
.

Substituting it into (2.6), we get

[ ∫

Ω

(ηu · u
p∗−p

p

L )p∗dx
] p

p∗ ≤ C

∫

Ω

|∇η|pup · up∗−p
L dx ≤ C.

Letting L →∞, by Fatou’s lemma, we have

( ∫

BR

u
p∗2

p dx
) p

p∗ ≤ C. (2.8)

By (2.5) and Sobolev inequality, we obtain

[ ∫

Ω

(ηu · us−1
L )p∗dx

] p
p∗

≤ C · sp−1

∫

Ω

(|∇η|pup · up(s−1)
L + ηp|v|β+1uα+1 · up(s−1)

L + ηpup∗ · up(s−1)
L )dx. (2.9)

If p < α + 1 < p∗, then
∫

ηpuα+1|v|β+1u
p(s−1)
L dx =

∫
(ηuus−1

L )p · uα+1−p|v|β+1dx

≤
(∫

(ηuus−1
L )p∗dx

) p
p∗

( ∫
(uα+1−p|v|β+1)

p∗
p∗−p dx

) p∗−p
p∗

.

In view of (2.7), it follows that

[ ∫
(ηu · us−1

L )p∗dx
] p

p∗ ≤ C · sp−1

∫
(|∇η|pup · up(s−1)

L + ηpup∗ · up(s−1)
L )dx. (2.10)

If 0 < α + 1 < p, we have
∫

ηuα+1|v|β+1u
p(s−1)
L dx ≤

∫
(ηuus−1

L )α+1 · u[p−(α+1)](s−1)
L |v|β+1dx

≤
( ∫

(ηuus−1
L )p∗dx

)α+1
p∗

( ∫

R+r

(u[p−(α+1)](s−1)|v|β+1)
p∗

p∗−(α+1) dx
) p∗−(α+1)

p∗
.
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For a fixed A > 1, we may choose R, r small suitably such that

( ∫
(ηuus−1

L )p∗dx
)α+1

p∗ ≤ A
( ∫

(ηuus−1
L )p∗dx

) p
p∗

.

Note that
∫

R+r

u
[p−(α+1)](s−1)p∗

p∗−(α+1) |v| p∗(β+1)
p∗−(α+1) dx

≤
( ∫

|u|p∗dx
) [p−(α+1)](s−1)

p∗−(α+1)
( ∫

|v| p∗(β+1)
p∗−(α+1)−[p−(α+1)](s−1) dx

) p∗−(α+1)−[p−(α+1)](s−1)
p∗−(α+1)

.

In view of (1.3), we may choose s ≥ 1 suitably such that
∫
|v| p∗(β+1)

p∗−(α+1)−[p−(α+1)](s−1) dx

exists. Then we get
∫

ηpuα+1|v|β+1u
p(s−1)
L dx

≤
∫

(ηuus−1
L )α+1 · u[p−(α+1)](s−1)

L |v|β+1dx

≤ A
(∫

(ηuus−1
L )p∗dx

) p
p∗

(∫

2R

(u[p−(α+1)](s−1)|v|β+1)
p∗

p∗−(α+1) dx
) p∗−(α+1)

p∗
. (2.11)

According to the continuity of integral, we also obtain (2.10).
Now, let t = p∗2

p(p∗−p) . Using Holder inequality, we have

∫
ηpupsdx ≤ C

( ∫

R+r

(ηpups)
t

t−1

)1− 1
t

and
∫

R+r

ηpup∗+ps−pdx =
∫

R+r

(ηpups) · up∗−pdx

≤
(∫

R+r

(ηpups)
t

t−1 dx
)1− 1

t
(∫

R+r

u(p∗−p)tdx
) 1

t

=
(∫

R+r

(ηpups)
t

t−1 dx
)1− 1

t
(∫

R+r

u
p∗2

p dx
) 1

t

.

By (2.8), there results
∫

R+r

ηpup∗+ps−pdx ≤ C
( ∫

R+r

(ηpups)
t

t−1 dx
)1− 1

t

. (2.12)

Combining with (2.10), we obtain

[ ∫
(ηuus−1

L )p∗dx
] p

p∗ ≤C
(
1 +

1
rp

)
sp−1

(∫

R+r

us· pt
t−1 dx

)1− 1
t

≤ Cr−psp−1
(∫

R+r

us· pt
t−1 dx

)1− 1
t

.
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Thus [ ∫
(ηuus−1

L )p∗dx
] 1

s ≤ C
p∗
ps · r−p∗

s · s p∗(p−1)
ps ·

( ∫

R+r

us pt
t−1 dx

) p∗
ps

t−1
t

. (2.13)

By the same methods of Theorem 1.1 (see [1]), setting τ = p∗(t−1)
pt > 1, letting si = τ i,

ri = 2−ir, Bi = BR+2−ir(x0) and letting L →∞ in (2.13) for i = 1, 2, · · · , we have

[ ∫

BR

(us)p∗dx
] 1

s ≤ C
p∗
ps · r−p∗

s · s p∗(p−1)
ps ·

( ∫

R+r

us pt
t−1 dx

) p∗
ps

t−1
t

. (2.14)

Set W = u
pt

t−1 , Ti = (
∫

Bi
W sidx)

1
si , and apply (2.14) iteratively,

Ti+1 =
( ∫

Bi+1

u
pt

t−1 τ i+1
dx

) 1
τi+1

=
( ∫

Bi+1

uτ i·p∗dx
) 1

τi+1

≤ C
1

τi · r−p∗
τi · 2 p∗i

τi (τ i)
p∗(p−1)

pτi ·
(∫

Bi

uτ i p∗
t−1 dx

) 1
τi

= C
1

τi · r−p∗
τi · 2 p∗i

τi (τ i)
p∗(p−1)

pτi · Ti

≤ C

iP
k=0

( 1
r )k

· (r−p∗)
iP

k=0
( 1

r )k

· (2p∗)
iP

k=0

k

τk · e
p∗(p−1)

p

iP
k=0

k ln τ

τk · T0

≤ C

iP
k=0

( 1
r )k

· (r−p∗)
iP

k=0
( 1

r )k

· (2p∗)
iP

k=0

k

τk · e
p∗(p−1)

p

iP
k=0

k ln τ

τk ·
(∫

R+r

u
pt

t−1 dx
)
.

Note that
∞∑

k=0

(1
τ

)k

=
τ

τ − 1
< +∞,

∞∑

k=0

k

τk
< +∞.

Since pt
t−1 < p∗ implies ∫

BR+r

u
pt

t−1 dx < +∞,

it follows that Ti+1 ≤ C. Letting i → ∞, we can conclude that ||u||
pt

t−1

L∞(BR) ≤ C, i.e.,
||u||L∞(BR) ≤ C. Since x0 is an arbitrary point in Ω and Ω is compact, u ∈ L∞(Ω) follows
by the finitely covered for u ≥ 0.

If the sign of u is changeable, write u = u+ − u−, where u+ = max{u, 0}, u− =
−min{u, 0}. Let ωL = ηu+u

+(s−1)
L , and take ϕ = ηpu+ · u+p(s−1)

L in (2.2). We may deduce
in the same way that u+ ∈ L∞(Ω).

Because of the oddness of the first equation in the elliptic systems (1.1), (−u,−v) is also
a weak solution of the elliptic systems, thus u− ∈ L∞(Ω). Noting that |u| = u+ + u−, we
obtain u ∈ L∞(Ω).

Taking the place of u, p by v, q, corresponding with (1.3), we can also conclude in the
same way as above that v ∈ L∞(Ω). This completes the proof of Theorem 1.1.

Proof of the Theorem 1.2. By Theorem 1.1, the fact that (u, v) is a solution of (1.1)
implies that (u, v) ∈ L∞(Ω) × L∞(Ω). In a way similar to the arguments of Corollary 5.4
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in [3], we can conclude that there exist µ > 0, ν > 0 such that (u, v) ∈ C1,µ(Ω)× C1,ν(Ω),
thus the proof is completed by the results of Tolksdorf [5] and Serrin [6].
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