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Abstract

The authors investigate the α-transience and α-recurrence for random walks and
Lévy processes by means of the associated moment generating function, give a di-
chotomy theorem for not one-sided processes and prove that the process X is quasi-
symmetric if and only if X is not α-recurrent for all α < 0 which gives a probabilistic
explanation of quasi-symmetry, a concept originated from C. J. Stone.
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§ 1 . Introduction

Random walks and Lévy processes on Rn are very interesting and important (see [1, 3,
4, 6–8]). The state space of any Lévy process is a locally compact Abelian group G. If G is
compactly generated, then G is the direct sum of a compact group D, a vector group V , and
a lattice group L (see [2, p.90]). There are two integers a and b such that V is isomorphic
to Ra and L is isomorphic to Zb. Thus the properties of Lévy processes on Rn may be
generalized to Lévy processes on a compactly generated locally compact Abelian group with
little effort. Let X be a Lévy process on Rn with convolution semigroup {πt} or a random
walk with transition probability µ. We know that Lévy processes (or random walks) can
be divided into two classes: recurrence and transience. If the genuine dimension of X is
greater than 2, then X is transient. Thus the question that how to classify the transient
Lévy process or random walks more finely is very interesting.

In the present paper, we shall discuss α-transience and α-recurrence with α ≤ 0 of Lévy
processes (resp. random walk). We shall show that for any α < 0, X is α-recurrent if and
only if E(e−αLN ) = ∞ for all open neighborhoods of 0; while X is α-transient if and only
if E(e−αLN ) < ∞ for all bounded open neighborhoods of 0. We call a probability measure
ν quasi-symmetric if lim sup

i→∞
νi(K)

1
i = 1 for some compact set K. The property of quasi-

symmetric measure has been studied in [9]. We call X quasi-symmetric if π1 (or if µ) is
quasi-symmetric. We shall show that X is quasi-symmetric if and only if X is α-recurrent
for all α < 0, that is to say, the speed at which X escapes from any bounded open set can
not be any exponential. This gives a probabilistic explanation of quasi-symmetry. If X is
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not one-sided, then a dichotomy theorem holds. We may also use the moment generating
function to characterize the α-transience and α-recurrence. On our another paper [?], to
classify the quasi-symmetric Lévy processes more finely, we study the polynomial recurrence
and polynomial transience.

Throughout this paper, for any finite positive measure µ on Rn, define the characteristic
function of µ on Rn as µ̂(x) :=

∫
Rn ei(x,y)µ(dy) and define the moment generating function

of µ as £µ(x) :=
∫
Rn e(x,y)µ(dy). If i is a positive integer, we use µi to denote the i-fold

convolution of µ. Let µ0 := δ0. For any Borel set A, let LA denote the last exit time from
A, let G(A) denote the closed group generated by A and let A denote the closure of A. For
any x ∈ Rn, let x⊥ denote the space {u : (u, x) = 0} and δx denote the Dirac measure at
the point x. Let ℵ denote the collection of all sets N ⊆ Rn such that N is relative compact
open and 0 ∈ N . For any h ≥ 0, let Ih := {(x1, x2, · · · , xn) ∈ Rn : |xi| ≤ h

2 for 1 ≤ i ≤ n}.

§ 2 . α-Transience and α-Recurrence of Random Walks

Let X = {Xi;P x} be a random walk on Rn with transition probability measure µ, where
µ is genuinely n-dimensional, that is, there is no proper linear subspace of Rn contains
supp µ. We use P to denote P 0 for convenience. A point x ∈ Rn is called possible if for each
neighborhood N of 0 there is an integer i ≥ 0 such that P (Xi ∈ x + N) > 0. We denote the

set of all possible points by Σ. Then Σ =
∞⋃

i=0

supp µi which is the smallest closed semigroup

that contains 0 and suppµ. The closed group generated by supp µi− suppµi is independent
of the positive integer i and we denote it by G1. Let G be the group generated by suppµ.
Then G1 ⊆ G. Let mG be the Haar measure on G and let ℘ denote the collection of all
bounded Borel sets A on G such that mG(A) > 0 and mG(∂G(A)) = 0. Here ∂G(A) is the
boundary of A relative to G.

We say µ is normalized (see [5, pp.64–75], or see [7]) if there is an integer n1, 0 ≤ n1 ≤ n,
and there are real numbers α1, · · · , αn1 such that

µ̂(2πn1, · · · , 2πnn1 , 0, · · · , 0) = exp(2πi(n1α1 + · · ·+ nn1αn1))

for all integers n1, · · · , nn1 , and |µ̂(θ)| < 1 for all other values of θ.

For any α ∈ R and any Borel subset A on Rn, define V α(A) =
∞∑

i=0

e−αiµi(A). Then

V α is a measure with support Σ. In this section, we assume that α ≤ 0 which is the only
interesting case.

Definition 2.1. Given any x, y, we say that y can be reached from x, and write x y y,
if for any N ∈ ℵ, P x(Xi ∈ y + N) > 0 for some integer i ≥ 0. We say that x and y
communicate, and write x ↔ y, if x and y can be reached from each other.

Lemma 2.1. (1) Suppose that A1, A2, A are Borel sets and A1 + A2 ⊆ A. Then
µi+j(A) ≥ µi(A1)µj(A2) for any integers i, j.

(2) The relation ↔ is an equivalent relation on Rn.

Proof. (1) Since A1 + A2 ⊆ A, A1 ⊆ A− z for all z ∈ A2. For any integers i, j,

µi+j(A) =
∫

Rn

µi(A− z)µj(dz) ≥
∫

A2

µi(A− z)µj(dz) ≥ µi(A1)µj(A2).

(2) We need only to show that x ↔ y and y ↔ z imply that x ↔ z. For any N ∈ ℵ,
there is N1 ∈ ℵ such that N1 + N1 ⊆ N . Since x y y and y y z, µi(y + N1 − x) =
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P x(Xi ∈ y +N1) > 0 and µj(z +N1− y) = P y(Xj ∈ z +N1) > 0 for some i, j. Then by (1),
P x(Xi+j ∈ z + N) = µi+j(z + N − x) ≥ µi(y + N1 − x)µj(z + N1 − y) > 0. Hence x y z.
Similarly, z y x. Therefore x ↔ y.

Then Rn is divided into disjoint equivalent classes called communicating classes. Clearly,
the set that can be reached from x is x + Σ and the set that can communicate with x is
x + Σ ∩ (−Σ).

A vector u is said to be a sided vector for µ if u 6= 0 and µ{x : (u, x) > 0} = 0, strictly
sided vector for µ if µ{x : (u, x) ≥ 0} = 0. The set of all sided vectors for µ, including 0, is
a convex cone containing 0 which we denote by side µ. Similarly, the set of all strictly sided
vectors for µ which we denote by sside µ is a convex cone that does not contain 0. We say µ
is not one-sided if side µ = {0}. Otherwise µ is one-sided. We say µ is strictly one-sided if
sside µ 6= ∅. Let g = £µ, the moment generating function of µ. It can attain its infimum if
and only if µ is not one-sided. If µ is not one-sided, then there exists a unique point u0 such
that g(u0) = inf g (see [?, ?]). The probability µ is quasi-symmetric if and only if g(x) > 1
for all x 6= 0 (see [9]), that is to say, g(0) = inf g.

Theorem 2.1. The measure µ is quasi-symmetric if and only if lim sup
i→∞

µi(x+N)
1
i = 1

for all x ∈ G and all N ∈ ℵ. Particularly, if G = G1, then lim sup can be replaced by lim.

Proof. We need only to prove the only if part. Suppose that µ is quasi-symmetric. By
[9], there is a compact set K such that lim

i→∞
µi(K)

1
i = 1. We may assume that K ⊆ G and

0 = mG(∂G(K)) < mG(K) without loss of generality. Firstly, if G = G1, by [6, Corollary
1], for any A ∈ ℘, lim

i→∞
µi(A)
µi(K) = mG(A)

mG(K) . Thus lim
i→∞

µi(A)
1
i = 1. For any x ∈ G and N ∈ ℵ,

there is A ∈ ℘ such that A ⊂ N . Therefore lim
i→∞

µi(x + N)
1
i = 1.

Next, let ρ = 1
2µ+ 1

2δ0. Then 0 ∈ supp ρ and hence G(supp ρ−supp ρ) = G(supp ρ) = G.
Since £ρ(x) = 1

2£µ(x) + 1
2 > 1 for all x 6= 0, the measure ρ is also a quasi-symmetric

probability. So for any x ∈ G and N ∈ ℵ, lim
i→∞

ρi(x + N)
1
i = 1. If for some x ∈ G and

N ∈ ℵ, lim sup
i→∞

µi(x + N)
1
i < 1, then for some c < 0, there is i0 such that µi(x + N) < eci

for all i > i0. Hence

ρk(x+N) =
1
2k

k∑

i=0

(
k

i

)
µi(x+N) ≤ 1

2k

[ k∑

i=0

(
k

i

)
eci +

i0∑

i=0

(
k

i

)]
=

1
2k

[
(1+ec)k +

i0∑

i=0

(
k

i

)]
.

Since lim
k→∞

(
k
i

) 1
k = 1 < 1 + ec, there exists an integer k0 > i0 such that when k > k0,(

k
i

) ≤ (1 + ec)k for all i ≤ i0. It follows that ρk(x + N) ≤ i0+2
2k (1 + ec)k for all k >

k0, and then lim sup
k→∞

ρk(x + N)
1
k ≤ 1+ec

2 < 1. This is a contradiction which shows that

lim sup
i→∞

µi(x + N)
1
i = 1 for all x ∈ G and all N ∈ ℵ.

Let D = {x : g(x) < ∞}, the effective domain of D. For any x ∈ D, define

µx(dy) :=
e(x,y)

g(x)
µ(dy).

Then µx is also a probability measure and has the same support with µ. This is similar to
Doob’s h-transform of µ. Let gx be the moment generating function of µx. Then gx(y) =
g(x+y)

g(x) . Thus µx is quasi-symmetric for some x ∈ D if and only if µ is not one-sided. In this
case g(x) = inf g.
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Theorem 2.2. The group G is a communicating class if and only if µ is not one-sided.

Proof. Suppose G is a communicating class. For any u ∈ side µ, supp µ ⊆ {x : (u, x) ≤
0} which is a closed semigroup. Then Σ ⊆ {x : (u, x) ≤ 0}. Hence G = Σ ∩ (−Σ) ⊆ u⊥.
Since µ is genuinely n-dimensional, u = 0. Therefore µ is not one-sided.

If µ is not one-sided, then µx is quasi-symmetric for some x ∈ D. By Theorem ??,
G ⊆ Σ and hence Σ = G which is a group. It follows that G is a communicating class.

Corollary 2.1. Any closed semigroup S of Rn is a group if and only if either both
S ∩ {x : (u, x) > 0} and S ∩ {x : (u, x) < 0} are empty or both of them are non-empty for
any u 6= 0.

Proof. It suffices to show the sufficiency. If S = {0} then S is a group. Now we assume
that the linear space generated by S is just Rn without loss of generality. Then for any
u 6= 0, S ∩ {x : (u, x) > 0} is non-empty. Since S is separable, there are countable vectors

{xi} in S such that {x1, x2, · · · } = S. Let ν :=
∞∑

i=1

1
2i δxi

. Then ν is a probability measure

on Rn with supp ν = S. Thus ν is not one-sided. By Theorem ??, S ∪ {0} is a group.
There is x 6= 0 such that x ∈ S. Then −x ∈ S. Since S is a semigroup, 0 = x + (−x) ∈ S.
Therefore S is a group.

Definition 2.2. A state x ∈ Rn is α-recurrent if V α(x + N) = ∞ for all N ∈ ℵ, and
α-transient if V α(x + N) < ∞ for some N ∈ ℵ. The random walk {Xi} is said to be
α-transient if V α is a Radon measure; α-recurrent if V α(x + N) = ∞ for all x ∈ Σ and
N ∈ ℵ.

Proposition 2.1. Suppose that x y y. If x is α-recurrent, then y is α-recurrent.

Proof. For any N ∈ ℵ, there is N1 ∈ ℵ such that N1 + N1 ⊆ N . Since x y y,
µi(y + N1 − x) = P x(Xi ∈ y + N1) > 0 for some i. By Lemma ??, for any integer j,
µi+j(y + N) ≥ µi(y + N1 − x)µj(x + N1). Our result follows as desired.

This proposition tells us that the α-transience and α-recurrence are class properties. The
process X is α-recurrent if and only if the state 0 is α-recurrent. If µ is not one-sided, then
X is α-transient if and only if 0 is α-transient.

Proposition 2.2. (1) If X is α-transient, then lim sup
i→∞

µi(N)
1
i ≤ eα for any N ∈ ℵ.

(2) If lim sup
i→∞

µi(N)
1
i < eα for any N ∈ ℵ, then X is α-transient.

(3) If X is α-recurrent, then lim sup
i→∞

µi(x + N)
1
i ≥ eα for any x ∈ Σ and N ∈ ℵ.

(4) If lim sup
i→∞

µi(N)
1
i > eα for any N ∈ ℵ, then X is α-recurrent.

Proof. Evidently, (2) and (3) hold. If lim sup
i→∞

µi(N)
1
i > eα, then lim sup

i→∞
µi(N)

1
i > eβ >

eα for some β. Thus there is a sequence i1 < i2 < · · · , such that µij (N) > eβij . Hence

V α(N) ≥
∞∑

j=1

e−αij µij (N) >
∞∑

j=1

e(β−α)ij = ∞. Therefore (1) and (4) hold.

We call X quasi-symmetric if the transition probability µ is quasi-symmetric. By this
proposition and by Theorem ??, we get the following corollary. It gives a probabilistic
explanation of quasi-symmetric random walks.

Corollary 2.2. The random walk X is quasi-symmetric if and only if X is α-recurrent
for all α < 0. Particularly, if X is recurrent, then X is quasi-symmetric.
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Since any symmetric probability measure is quasi-symmetric (see [9]), any symmetric
random walk is α-recurrent for all α < 0.

Lemma 2.2. For any Borel set A, lim sup P (LA ≥ i)
1
i = lim sup µi(A)

1
i . If V 0(A) < ∞,

then lim sup
[ ∞∑

j=i

µj(A)
] 1

i

= lim sup µi(A)
1
i .

Proof. Clearly,
∞∑

j=i

µj(A) ≥ P (LA ≥ i) ≥ µi(A). If lim sup µi(A)
1
i = 1, then our

result holds. Now suppose that lim sup µi(A)
1
i < 1, then V 0(A) < ∞. Hence c1 :=

lim sup
[ ∞∑

j=i

µj(A)
] 1

i ≤ 1. If lim sup µi(A)
1
i < c < c1, then c < 1 and there exists an

integer n0, such that for any j > n0, µj(A) < cj . For any i > n0,
∞∑

j=i

µj(A) <
∞∑

j=i

cj = ci

1−c .

It follows that lim sup
[ ∞∑

j=i

µj(A)
] 1

i ≤ c < c1. It is a contradiction which completes our

proof.

Lemma 2.3. If µ is normalized and quasi-symmetric, then for all x ∈ G and all h > 1,
lim

k→∞
µk(x + Ih)

1
k = 1.

Proof. By the proof of Lemma 5 in [7], lim
k→∞

µk(I1)
1
k = 1. For any h > 1, I1+Ih−1 ⊆ Ih.

For any fixed x ∈ G, since µ is quasi-symmetric, there is an integer i such that µi(x+Ih−1) >
0. By Lemma ??, µi+j(x + Ih) ≥ µi(x + Ih−1)µj(I1) for any integer j. Consequently,
lim

k→∞
µk(x + Ih)

1
k = 1.

Lemma 2.4. Suppose that x ∈ D. Then for any bounded Borel set A, there exists two
positive constants k1 and k2 such that for all integer k,

k1g(x)k(µx)k(A) ≤ µk(A) ≤ k2g(x)k(µx)k(A).

Proof. Since µk(dy) = g(x)ke−(x,y)(µx)k(dy), µk(A) = g(x)k
∫

A
e−(x,y)(µx)k(dy). Thus

our lemma holds with k1 = inf
y∈A

e−(x,y) > 0 and k2 = sup
y∈A

e−(x,y) < ∞ that are independent

of k.

If µ is not one-sided, then we have the following dichotomy theorem.

Theorem 2.3. Suppose that µ is not one-sided and g(u) = inf g = eα0 . Let x ∈ G and
N ∈ ℵ. The following properties hold.

(1) There is a constant M < ∞ such that µi(x + N) ≤ Meα0i for all integer i.
(2) lim sup

k→∞
P (Lx+N ≥ k)

1
k = lim sup

k→∞
µk(x + N)

1
k = eα0 . (lim sup may be replaced by lim

if G = G1.) There exists N0 ∈ ℵ, such that lim
k→∞

P (Ly+N0 ≥ k)
1
k = lim

k→∞
µk(y + N0)

1
k = eα0

for all y ∈ G.
(3) The random walk X is α-transient provided α > α0, and α-recurrent provided α < α0.

It is either α0-recurrent or α0-transient. It is α0-recurrent (resp. α0-transient) if and only
if {(µu)i} is recurrent (resp. transient). When n ≥ 3, X is α0-transient.

Proof. Since µu is a probability, the random walk with transition probability µu is
either recurrent or transient and is transient when n ≥ 3. By Lemma ?? and Corollary ??,
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(1) and (3) hold. For any x ∈ G and N ∈ ℵ, by Lemma ??,

lim sup
k→∞

µk(x + N)
1
k = g(u) lim sup

k→∞
(µu)k(x + N)

1
k ,

lim inf
k→∞

µk(x + N)
1
k = g(u) lim inf

k→∞
(µu)k(x + N)

1
k .

Since µu is quasi-symmetric, by Theorem ??, Lemma ?? and Lemma ??, (2) holds.

If µ is one-sided, it is getting more complicated. In general, let α1 = inf{α : X is
α-transient} and α2 = sup{α : X is α-recurrent}. By Lemma ?? and by Proposition ??,
we get the following theorem.

Theorem 2.4. Suppose that x ∈ Σ and N ∈ ℵ.
(1) α2 ≤ α1 ≤ α0, where α0 = inf ln g.
(2) The random walk X is α-transient provided α > α1 and α-recurrent provided α < α2.

It is neither α-recurrent nor α-transient if α2 < α < α1.
(3) eα2 ≤ lim sup

k→∞
P (Lx+N ≥ k)

1
k = lim sup

k→∞
µk(x + N)

1
k ≤ eα1 .

Thus (α1, α2) characterize the escape speed and we call (α1, α2) the decay parament for
X. If X is quasi-symmetric, then α1 = α2 = 0 and the speed at which X escapes from any
bounded open set N is slower than any exponential. If α0 = −∞, then α1 = α2 = −∞.
Particularly, if X is strictly one-sided, then X is α-transient for all α ≤ 0. The escaping
speed is quicker than any exponential.

If X is not one-sided, then α2 = α1 = α0. It is difficult to determine α1 and α2 if X
is one-sided. For any finite measure ν on Rn, let (αν

1 , αν
2) be the decay parameter for {νi}

and let αν
0 = inf ln gν where gν is the moment generating function of ν. We say ν is not

essentially one-sided if the restriction of ν to the linear space generated by supp ν is not
one-sided, that is, for any u 6= 0, either both ν{x : (u, x) > 0} and ν{x : (u, x) < 0} are zero
or both are positive. We have the following comparison result.

Lemma 2.5. (Comparison) If ν ≤ µ, then αν
1 ≤ α1 and αν

2 ≤ α2. In particular, if ν is
not essential one-sided, then α2 ≥ αν

0 .

Proof. Clearly, for any α, that {µi} is α-transient implies that {νi} is α-transient.
Hence αν

1 ≤ α1. For any α, if {νi} is α-recurrent, then 0 is an α-recurrent state for {νi}.
Since ν ≤ µ, 0 is also an α-recurrent state for {µi}. Hence {µi} is α-recurrent. It follows
that αν

2 ≤ α2. Suppose that ν is not essential one-sided. Let ν1 be the restriction of ν to
the space generated by supp ν. Then ν1 is not one-sided, inf gν1 = inf gν and αν1

2 = αν
2 . It

follows that αν
2 = αν

0 and hence α2 ≥ αν
0 .

Theorem 2.5. If there is u ∈ sideµ such that u 6= 0 and g(x) < ∞ for all x in u⊥, then
α2 = α1 = α0.

Proof. We may assume α0 > −∞. Let ν1 be the restriction of µ to u⊥. Then gν1 ≤ g
and inf gν1 ≤ inf g. We shall show that inf gν1 = inf g. Otherwise inf g > inf gν1 + 2ε for
some ε > 0. Since supp ν1 ⊂ u⊥, there is a point x ∈ u⊥ such that gν1(x) < inf gν1 + ε.
Then inf g > gν1(x) + ε. By our condition, g(x) < ∞. Now for any t > 0, by Lebesgue’s
dominated convergence theorem,

lim
t→+∞

g(x + tu) = lim
t→+∞

∫

(u,y)≤0

e(x,y)et(u,y)µ(dy) =
∫

u⊥
e(x,y)µ(dy) = gν1(x).

It follows that inf g ≤ gν1(x). It is a contradiction which shows that inf gν1 = inf g > 0 and
ν1 6= 0.
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If ν1 is not one-sided, then we finish. Otherwise for any u1 6= 0 with u1 ∈ side ν1,
let ν2 be the restriction of ν1 to u⊥1 ∩ u⊥. Since gν1(x) ≤ g(x) < ∞ for all x ∈ u⊥,
inf gν2 = inf gν1 = inf g > 0. Continue this program until νi is not one-sided or i = n. This i
is denoted by i0. Since νn is the restriction of ν to {0}, νn is not one-sided. Therefore νi0 is
not one-sided and inf gνi0 = inf g = eα0 . By Lemma ??, α2 ≥ α0 and hence α2 = α1 = α0.

For any Borel set A, let TA = inf{j ≥ 0 : Xj ∈ A}. Then TA ◦ θi < ∞ if and only if
LA ≥ i.

Lemma 2.6. Suppose that x ∈ G, N, N1 ∈ ℵ with N1 +N1 ⊆ N . Let Ti = i+Tx+N1 ◦ θi

and Si = i + Tx+N ◦ θi. Then for any α ∈ R and integer i ≥ 0,

V α(N1)E(e−αTi ;Ti < ∞) ≤ E

∞∑

h=i

e−αh1x+N (Xh) ≤ V α(N −N)E(e−αSi ; Si < ∞).

In Particular,

V 0(N1)P (Lx+N1 ≥ i) ≤
∞∑

h=i

µh(x + N) ≤ V 0(N −N)P (Lx+N ≥ i).

Proof. Let Y =
∞∑

j=0

e−αj1x+N (Xj). Then Y is F-measurable. For any stopping time

T , Y ◦ θT =
∞∑

j=0

e−αj1x+N (Xj ◦ θT ) = eαT
∞∑

j=T

e−αj1x+N (Xj).

Firstly, since Ti ≥ i, by the strong Markov property, one has

E

∞∑

j=i

e−αj1x+N (Xj) ≥ E

∞∑

j=Ti

e−αj1x+N (Xj)

= E(e−αTiY ◦ θTi) = E[e−αTiEXTi (Y ); Ti < ∞].

We know that XTi ∈ x + N1 if Ti < ∞. By that N1 + N1 ⊆ N , for any y ∈ N1,

Ex+y(Y ) = E

∞∑

k=0

e−αk1N−y(Xk) ≥ E

∞∑

k=0

e−αk1N1(Xk) = V α(N1).

Hence E
∞∑

j=i

e−αj1x+N (Xj) ≥ V α(N1)E(e−αTi ; Ti < ∞).

Secondly, by the strong Markov property, we have

E

∞∑

j=i

e−αj1x+N (Xj) = E

∞∑

j=Si

e−αj1x+N (Xj)

= E(e−αSiY ◦ θSi) = E[e−αSiEXSi (Y ); Si < ∞].

We know that XSi ∈ x + N if Si < ∞. For any y ∈ N ,

Ex+y(Y ) = E

∞∑

k=0

e−αk1N−y(Xk) ≤ E

∞∑

k=0

e−αk1N−N (Xk) = V α(N −N).

Hence E
∞∑

j=i

e−αj1x+N (Xj) ≤ V α(N −N)E(e−αSi ;Si < ∞).
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Theorem 2.6. Suppose that α < 0. Then X is α-recurrent if and only if E(e−αLx+N )
= ∞ for all x ∈ Σ and N ∈ ℵ; X is α-transient if and only if E(e−αLN ) < ∞ for all N ∈ ℵ.

Proof. If X is recurrent, then P (Lx+N = ∞) = 1 for all x ∈ Σ and N ∈ ℵ. Thus our
theorem holds. Now we shall assume that X is transient. For any x ∈ Σ and N ∈ ℵ,

E[e−αLx+N − 1] = E
[ ∞∑

i=0

(e−α − 1)e−αi1{Lx+N−1≥i}
]

=
∞∑

i=0

(e−α − 1)e−αiP (Lx+N ≥ i + 1).

Let c1 = 1
V 0(N−N) and c2 = 1

V 0(N) . Then c1, c2 > 0. Now by the lemma above,

c1

∞∑

i=0

(e−α − 1)e−αi
∞∑

j=i+1

µj(x + N)

≤ E[e−αLx+N − 1] ≤ c2

∞∑

i=0

(e−α − 1)e−αi
∞∑

j=i+1

µj(x + N + N).

Thus our theorem holds since for any Borel set A,

∞∑

i=0

(e−α − 1)e−αi
∞∑

j=i+1

µj(A) =
∞∑

j=1

µj(A)
j−1∑

i=0

(e−α − 1)e−αi = V α(A)− V 0(A).

§ 3 . α-Transience and α-Recurrence of Lévy Processes

Let X = (Xt;P x) be a genuinely n-dimensional Lévy process on Rn with convolution
semigroup π = {πt; t > 0}. Let P = P 0 and E = E0 for convenience. A point x ∈ Rn

is called possible if for each neighborhood N of 0 there is t > 0 such that πt(x + N) =
P (Xt ∈ N + x) > 0. We denote the set of all possible points by Σ. Then Σ =

⋃
t>0

supp πt

which is a closed sub-semigroup of Rn. Let G be the smallest closed group including Σ. The
closed group generated by supp πt − supp πt is independent of t (see [3, Proposition 5.1])
and we denote it by G1. Then G1 ⊆ G. The following dichotomy theorem is well known
(see [1, 3, 4]).

Theorem 3.1. (1) The Lévy process X is either recurrent or transient.
(2) X is recurrent if and only if P (LN = ∞) = 1 for all N ∈ ℵ.
(3) X is transient if and only if P (LN = ∞) = 0 for all N ∈ ℵ.
(4) If n ≥ 3, then X is transient.

Thus Lévy processes are divided into two classes: recurrent and transient. However, from
the examples shown below, we may see that there is still big difference among transient Lévy
processes. Though the uniform translation and the Poisson process are both transient, their
escaping speed from a compact set is quite different. The former is much quicker than the
latter. In this section, we aim to distinguish those transient Lévy processes more precisely.

Example 3.1. The uniform translation X with Xt = t is transient. It is easy to see
that for any compact set K, lim

t→∞
e−αtP (LK > t) = 0 for all α ∈ R.
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Example 3.2. The Poisson process X with parameter λ > 0 is also transient. For any

fixed nonnegative integer d, we have P (L{d} > t) = P (Xt ≤ d) = e−λt
d∑
0

(λt)i

i! . Then

lim
t→∞

e−αtP (L{d} > t) = lim
t→∞

e−(α+λ)t
d∑
0

(λt)i

i!
=





0, α > −λ,

1, α = −λ and d = 0,

∞, otherwise.

For any α ∈ R and any Borel set A, define V α(A) =
∫∞
0

e−αtπt(A) dt. We consider α ≤ 0
which is the only interesting case. Similarly as random walk, we have

Definition 3.1. Given any x, y, we say that y can be reached from x, and write x y y,
if for any N ∈ ℵ, P x(Xt ∈ y + N) > 0 for some t > 0. We say that x and y communicate,
and write x ↔ y, if x and y can be reached from each other. A state x is α-recurrent if
V α(x + N) = ∞ for all N ∈ ℵ, and α-transient if V α(x + N) < ∞ for some N ∈ ℵ.

Proposition 3.1. (1) Suppose that A1, A2, A are Borel sets and A1 + A2 ⊆ A. Then
πt+s(A) ≥ πt(A1)πs(A2) for any t, s > 0.

(2) The relation ↔ is an equivalent relation on Rn.
(3) Suppose xy y. If x is α-recurrent, then y is α-recurrent.

Thus Rn is divided into disjoint equivalent classes called communicating classes. The
group G is a communicating class if and only if Σ is a group. The α-transience (or α-
recurrence) is a class property. We call X (strictly) one-sided if π1 is (strictly) one-sided.
Similarly, X is not one-sided if π1 is not one-sided.

Theorem 3.2. The group G is a communicating class if and only if X is not one-sided.

Proof. Suppose G is a communicating class. For any u ∈ side π1, we have u ∈ sideπt for
all t > 0 and hence Σ ⊆ {x : (u, x) ≤ 0}. Then G = Σ ∩ (−Σ) ⊆ u⊥. Since X is genuinely
n-dimensional, u = 0. It follows that X is not one-sided. Conversely, if X is not one-sided,
then for any u 6= 0, Σ ∩ {x : (u, x) > 0} ⊇ supp π1 ∩ {x : (u, x) > 0} 6= ∅. By Corollary ??,
Σ is a group and hence G is a communicating class.

Definition 3.2. The Lévy process {Xt} is said to be α-transient if V α is a Radon
measure. It is said to be α-recurrent if V α(N + x) = ∞ for all x ∈ Σ and N ∈ ℵ.

It is easy to see that 0-recurrence or 0-transience is just the usual recurrence and tran-
sience defined in [1, 3, 4], and as α decreases, the set of α-transient Lévy processes decreases,
while the set of α-recurrent ones increases. The Lévy process X is α-recurrent (resp. α-
transient) if and only if all states x ∈ Σ are α-recurrent (resp. α-transient). By Proposi-
tion ??, X is α-recurrent if and only if 0 is α-recurrent. If X is not one-sided, then X is
α-transient if and only if 0 is α-transient. For any h > 0, {Xhi} is a random walk on Rn

with transition probability πh.

Lemma 3.1. Suppose that N ∈ ℵ and N1, N2 are Borel sets with N + N1 ⊂ N2.
(1) There is h > 0, such that inf

0≤t≤h
πt(N) > 0.

(2) For such h,

lim sup
i→∞

πhi(N2)
1

ih ≥ lim sup
t→∞

πt(N1)
1
t ≥ lim sup

i→∞
πhi(N1)

1
ih ,

lim inf
i→∞

πhi(N2)
1

ih ≥ lim inf
t→∞

πt(N2)
1
t ≥ lim inf

i→∞
πhi(N1)

1
ih .
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Proof. We need to prove (2). Let ε = inf
0≤t≤h

πt(N). Then ε > 0. Firstly, for any

0 ≤ t ≤ h, π(i+1)h(N2) ≥ πih+t(N1)πh−t(N) ≥ επih+t(N1). For any β, if lim sup
t→∞

πt(N1)
1
t >

eβ , then β < 0 and there is i1 < i2 < · · · and {tj} with ij ∈ Z+ and 0 ≤ tj ≤ h
such that πijh+tj (N1) > eβ(ijh+tj). Thus π(ij+1)h(N2) > εeβ(ijh+tj) ≥ εeβ(ij+1)h. So
lim sup

i→∞
πhi(N2)

1
ih ≥ eβ . This shows that lim sup

i→∞
πhi(N2)

1
ih ≥ lim sup

t→∞
πt(N1)

1
t .

Secondly, for any 0 ≤ t ≤ h, πih+t(N2) ≥ πih(N1)πt(N) ≥ επih(N1). For any β, if
lim inf
i→∞

πhi(N1)
1

ih > eβ , then β < 0 and there is some integer i0, such that πih(N1) > eβih

provided the integer i > i0. Then πih+t(N2) ≥ εeβih ≥ εeβ(ih+t) for all integer i > i0 and
0 ≤ t ≤ h. This shows that lim inf

t→∞
πt(N2)

1
t ≥ lim inf

i→∞
πhi(N1)

1
ih . We complete the proof of

(2) since the other inequalities are obvious.

We say {πt} (or X) is quasi-symmetric if it satisfies

Condition 3.1. There exists a compact subset K ⊂ Rn such that lim sup
t→∞

πt(K)
1
t = 1.

Condition 3.1 was introduced by S. C. Port and C. J. Stone [3] to give a ratio limit
theorem. The process X is quasi-symmetric if and only if the probability measure π1 is
quasi-symmetric (see [?, ?]).

Theorem 3.3. (1) The {πt} is quasi-symmetric if and only if lim sup
t→∞

πt(y + B)
1
t = 1

for all y ∈ G and all B ∈ ℵ. Furthermore, if G = G1, then lim sup can be replaced by lim.
(2) Suppose X is quasi-symmetric and π1 is normalized, then for any r > 1, lim

t→∞
πt(y +

Ir)
1
t = 1 for all y ∈ G.

Proof. The if part of (1) is got by the definition. Now suppose that {πt} is quasi-
symmetric. For any y ∈ G and any B ∈ ℵ , since G = Σ =

⋃
t>0

supp πt, there is x ∈ supp πt0

with some t0 > 0 and N ∈ ℵ, such that x + N ⊂ y + B. For this N , there is N1 ∈ ℵ such
that N1 + N1 ⊂ N . By Lemma ??, there is h > 0 such that inf

0≤t≤h
πt(N1) > 0 and t0 = jh

for some integer j. Then x ∈
∞⋃

i=0

suppπhi and πh is quasi-symmetric. If G = G1, then

G(suppπh) = G(suppπh − supp πh). Therefore the only if part of (1) holds by Lemma ??
and by Theorem ??. Suppose r > 1. Then there is r0 > 1 and B ∈ ℵ such that Ir0 +B ⊂ Ir.
We have shown that for any y ∈ G, there is x ∈ G, h > 0 and N, N1 ∈ ℵ, such that

x + N ⊂ y + B, N1 + N1 ⊂ N , inf
0≤t≤h

πt(N1) > 0 and x ∈
∞⋃

i=0

supp πhi. The measure πh

is quasi-symmetric and normalized since π̂h = (π̂1)h. Now Lemma ?? and Lemma ?? yield
the statement (2).

Lemma 3.2. Suppose N,N1, N2 as in Lemma ?? and h > 0.

(1) If
∞∑

i=0

e−αhiπhi(N1) = ∞, then
∫ ∞

0

e−αtπt(N2) dt = ∞.

(2) If inf
0≤t≤h

πt(N) > 0 and
∫ ∞

0

e−αtπt(N1) dt = ∞, then
∞∑

i=0

e−αhiπhi(N2) = ∞.

Proof. Since α ≤ 0, we have
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∫ ∞

0

e−αtπt(N2) dt =
∞∑

i=0

∫ (i+1)h

ih

e−αtπt(N2) dt

≥
∞∑

i=0

e−αhi

∫ h

0

πhi(N1)πs(N) ds =
∫ h

0

πs(N) ds
[ ∞∑

i=0

e−αhiπhi(N1)
]
.

It follows that (1) holds since
∫ h

0
πs(N) ds > 0.

Let c = inf
0≤t≤h

πt(N). Then c > 0. For any 0 ≤ t ≤ h, π(i+1)h(N2) ≥ cπih+t(N1). Thus

c
∫ h

0
πih+t(N1) dt ≤ hπ(i+1)h(N2). It follows that

c

∫ ∞

0

e−αsπs(N1) ds = c

∞∑

i=0

∫ (i+1)h

ih

e−αsπs(N1) ds

≤ c

∞∑

i=0

e−αh(i+1)

∫ h

0

πih+t(N1) dt ≤ h

∞∑

i=0

e−αh(i+1)π(i+1)h(N2).

Therefore if
∫∞
0

e−αtπt(N1) dt = ∞, then
∞∑

i=0

e−αhiπhi(N2) = ∞.

Proposition 3.2. (1) If for some h > 0, {Xhi} is αh-recurrent, then X is α-recurrent.
(2) For any h > 0, X is α-transient if and only if {Xhi} is αh-transient.
(3) For any h > 0, inf

0≤t≤h
πt(N) > 0 for all N ∈ ℵ if and only if inf

0≤t≤1
πt(N) > 0 for all

N ∈ ℵ. In this case, for any h > 0, X is α-recurrent if and only if the random walk {Xhi}
is αh-recurrent.

Proof. By Lemma ??, (1) and the necessity of (2) hold. If X is not α-transient, then
there is N ∈ ℵ such that

∫∞
0

e−αtπt(N) dt = ∞. For any a > 0, let Ba = {x : ‖x‖ < a}.
There is h0 such that inf

0≤t≤h0
πt(B1) > 0. Since πjt(Bj) ≥ π(j−1)t(Bj−1)πt(B1) ≥ · · · ≥

πt(B1)j , inf
0≤t≤jh0

πt(Bj) > 0 for all positive integer j. Hence for any h > 0, there is N1 ∈ ℵ

such that inf
0≤t≤h

πt(N1) > 0. By Lemma ??,
∞∑

i=0

e−αhiπhi(N + N1) = ∞. Thus {Xhi} is

not αh-transient. Hence the sufficiency of (2) holds. Suppose that inf
0≤t≤h

πt(N) > 0 for all

N ∈ ℵ. Fix any integer j > 1. For any N ∈ ℵ, there is N1 ∈ ℵ such that N1 + · · ·+ N1︸ ︷︷ ︸
j

⊆ N .

Let c := inf
0≤t≤h

πt(N1). Then c > 0. Since πjt(N) ≥ πt(N1)j , inf
0≤t≤jh

πs(N) ≥ cj > 0. Thus

(3) holds.

Proposition 3.3. (1) If X is α-transient, then lim sup
t→∞

πt(N)
1
t ≤ eα for any N ∈ ℵ.

(2) If lim sup
t→∞

πt(N)
1
t < eα for any N ∈ ℵ, then X is α-transient.

(3) If X is α-recurrent, then lim sup
t→∞

πt(x + N)
1
t ≥ eα for any x ∈ Σ and N ∈ ℵ.

(4) If lim sup
t→∞

πt(N)
1
t > eα for any N ∈ ℵ, then X is α-recurrent.

Proof. The statements (2) and (3) are obvious. For any N ∈ ℵ and ε > 0, there is
h > 0, such that πt(N) ≥ ε for all 0 ≤ t ≤ h. If X is α-transient, then {Xhi} is αh-transient



138 ZHANG, H. Z., ZHAO, M. Z. & YING, J. G.

and hence lim sup
i→∞

πhi(N + N)
1

ih ≤ eα. By Lemma ??, one has

lim sup
t→∞

πt(N)
1
t ≤ lim sup

i→∞
πhi(N + N)

1
ih ≤ eα.

Therefore (1) holds. If lim sup
t→∞

πt(N)
1
t > eα, then lim sup

i→∞
πhi(N +N)

1
ih > eα. Consequently,

∞∑
i=0

e−αhiπhi(N + N) = ∞. By Lemma ?? ,
∫∞
0

e−αtπt(N + N + N) dt = ∞. Therefore (4)

holds.

Corollary 3.1. The Lévy process X is quasi-symmetric if and only if X is α-recurrent
for all α < 0. In particular, if X is symmetric, then X is α-recurrent for all α < 0. If X is
recurrent, then X is quasi-symmetric.

This corollary gives a probabilistic explanation of quasi-symmetric Lévy processes. Let
g = £π1. Then £πt = gt. For any x ∈ D := {g < ∞}, define πx

t (dy) := e(x,y)

g(x)t πt(dy). Then
{πx

t } is also a convolution semigroup. The following lemma is obvious by the compactness
of A.

Lemma 3.3. Suppose x ∈ D. Then for any bounded Borel set A, there exist two positive
constants k1 and k2 such that for all t > 0,

k1g(x)tπx
t (A) ≤ πt(A) ≤ k2g(x)tπx

t (A).

By Lemma ??, Proposition ??, Theorem ?? and by Theorem ??, we get the following
dichotomy theorem.

Theorem 3.4. Suppose that X is not one-sided and g(u) = inf g = eα0 . Let x ∈ G and
N ∈ ℵ.

(1) There is a constant M such that πt(x + N) ≤ Meα0t.
(2) lim sup

t→∞
πt(x + N)

1
t = eα0 . (Here lim sup can be replaced by lim if G = G1.) There

exists a N0 ∈ ℵ, such that lim
t→∞

πt(y + N0)
1
t = eα0 for all y ∈ G.

(3) The Lévy process X is α-transient provided α > α0 and α-recurrent provided α < α0.
It is either α0-recurrent or α0-transient. It is α0-recurrent (resp. α0-transient) if and only
if the Lévy process {πu

t } is recurrent (resp. transient). When n ≥ 3, X is α0-transient.

Let α1 = inf{α : X is α-transient} and α2 = sup{α : X is α-recurrent}. By Lemma ??
and Proposition ??, we get the following theorem.

Theorem 3.5. (1) α0 ≥ α1 ≥ α2, where α0 = inf ln g.
(2) For any x ∈ Σ and N ∈ ℵ, eα2 ≤ lim sup

t→∞
πt(x + N)

1
t ≤ eα1 .

(3) The Lévy process X is α-transient provided α > α1 and α-recurrent provided α < α2.
It is neither α-recurrent nor α-transient if α2 < α < α1.

We call (α1, α2) the decay parament for X. If α0 = −∞, then α1 = α2 = −∞.

Corollary 3.2. If X is strictly one-sided, then X is α-transient for all α ≤ 0.

For any convolution {νt} with ν1(Rn) ≤ 1, let (αν
1 , αν

2) be the decay parameter for {νt}
and let αν

0 = inf ln gν where gν is the moment generating functions of ν1. Similarly as that
in random walk, we have
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Proposition 3.4. (1) If ν1 ≤ π1, then αν
1 ≤ α1 and αν

2 ≤ α2. Particularly, if ν1 is not
essential one-sided, then α2 ≥ αν

0 .
(2) If there is u ∈ side π1 such that u 6= 0 and g(x) < ∞ for all x in u⊥, then α2 = α1 =

α0.

For any Borel set A, let TA = inf{t > 0 : Xt ∈ A}, the first hitting time of A.

Lemma 3.4. Suppose that x ∈ G, N,N1 ∈ ℵ with N1 +N1 ⊆ N . Let Tt = t+Tx+N1 ◦θt

and St = t + Tx+N ◦ θt. Then for any α ∈ R and t ≥ 0, we have

V α(N1)E(e−αTt ; Tt < ∞) ≤ E

∫ ∞

t

e−αh1x+N (Xh) dh ≤ V α(N −N)E(e−αSt ;St < ∞).

Proof. Let Y =
∫∞
0

e−αs1x+N (Xs) ds. Then Y is F-measurable. Firstly, since Tt ≥ t,

E

∫ ∞

t

e−αh1x+N (Xh) dh ≥ E

∫ ∞

Tt

e−αh1x+N (Xh) dh

= E(e−αTtY ◦ θTt) = E[e−αTtEXTt (Y ); Tt < ∞].

We know that XTt ∈ x + N1 provided Tt < ∞. By that N1 + N1 ⊆ N , for any y ∈ N1,

Ex+y(Y ) = E

∫ ∞

0

e−αs1N−y(Xs) ds ≥ E

∫ ∞

0

e−αs1N1(Xs) ds = V α(N1).

Hence E
∫∞

t
e−αh1x+N (Xh) dh ≥ V α(N1)E(e−αTt ; Tt < ∞).

Secondly, by the strong Markov property

E

∫ ∞

t

e−αh1x+N (Xh) dh = E

∫ ∞

St

e−αh1x+N (Xh) dh

= E(e−αStY ◦ θSt) = E[e−αStEXSt (Y ); St < ∞].

We know that XSt ∈ x + N provided St < ∞. For any y ∈ N ,

Ex+y(Y ) = E

∫ ∞

0

e−αs1N−y(Xs) ds ≤ E

∫ ∞

0

e−αs1N−N (Xs) ds = V α(N −N).

Hence E
∫∞

t
e−αh1x+N (Xh) dh ≤ V α(N −N)E(e−αSt ;St < ∞).

Corollary 3.3. Suppose that x ∈ G, N,N1 ∈ ℵ with N1 +N1 ⊆ N . Then for any t > 0,
we have

V 0(N1)P (Lx+N1 > t) ≤
∫ ∞

t

πh(x + N) dh ≤ V 0(N −N)P (Lx+N > t).

Theorem 3.6. Suppose that α < 0. Then X is α-recurrent if and only if E(e−αLx+N )
= ∞ for all x ∈ Σ and N ∈ ℵ; is α-transient if and only if E(e−αLN ) < ∞ for all N ∈ ℵ.

Proof. If X is recurrent, then P (Lx+N = ∞) = 1 for all x ∈ Σ and N ∈ ℵ. Thus our
theorem holds. Now we shall assume that X is transient. For any x ∈ Σ and N ∈ ℵ, there
holds

E[e−αLx+N − 1] = E
[ ∫ ∞

0

−αe−αt1{Lx+N >t} dt
]

=
∫ ∞

0

−αe−αtP (Lx+N > t) dt.
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Let c1 = 1
V 0(N−N)

and c2 = 1
V 0(N) . Then c1, c2 > 0. Now by Corollary ??, we have

c1

∫ ∞

0

−αe−αt

∫ ∞

t

πh(x + N) dh dt

≤ E[e−αLx+N − 1] ≤ c2

∫ ∞

0

−αe−αt

∫ ∞

t

πh(x + N + N) dh dt.

Thus our theorem holds since for any Borel set A,
∫ ∞

0

−αe−αt

∫ ∞

t

πh(A) dh dt =
∫ ∞

0

πh(A)
∫ h

0

−αe−αt dt dh = V α(A)− V 0(A).

Thus the classification of α-transient and α-recurrent is determined by the exponential
moments of the last exit times. This classification is more precise. For any probability

measure µ and any λ > 0, define µλ
t := e−λt

∞∑
i=0

(λt)iµi

i! . Then {µλ
t } is a convolution

semigroup. Let Σ =
∞⋃

i=0

supp µi. Then Σ = supp µλ
t for any t > 0. Let g and gλ be

the moment generating function of µ and of µλ
1 respectively. Then gλ = eλ(g−1). Thus

inf ln gλ = λ(einf ln g−1). For any Borel set A and any β ∈ R, let V β
λ (A) =

∫∞
0

e−βtµλ
t (A) dt

and let V β(A) =
∞∑

i=0

e−βiµi(A).

Proposition 3.5. The following properties hold:
(1) The measure µ is quasi-symmetric if and only if µλ

1 is quasi-symmetric.
(2) The set sideµ = side µλ

1 . Thus, µ is one-sided if and only if µλ
1 is one-sided.

(3) The measure µλ
1 is not strictly one-sided.

(4) The Lévy process {µλ
t } is −λ-recurrent.

(5) Suppose β = λ(eα − 1). Then for any Borel set A, V β
λ (A) =

1
λeα

V α(A).

Proof. By the equality gλ = eλ(g−1), we get (1). The statement (2) is trivial. Since
µλ

1 ({0}) ≥ e−λ > 0, µλ
1 is not strictly one-sided. Since

V −λ
λ ({0}) =

∫ ∞

0

eλtµλ
t ({0}) dt ≥

∫ ∞

0

dt = ∞,

{µλ
t } is −λ-recurrent. For any Borel set A,

V β
λ (A) =

∫ ∞

0

e−(β+λ)t
∞∑

i=0

(λt)i

i!
µi(A) dt =

∞∑

i=0

λi

i!
µi(A)

∫ ∞

0

e−λeαtti dt.

It follows that V β
λ (A) =

∞∑
i=0

λi

i! µi(A) i!
(λeα)i+1 = 1

λeα V α(A).

Suppose the decay parameter for {µi} is (α1, α2), and the decay parameter for {µλ
t } is

(β1, β2). Then by Proposition ??(4), β2 ≥ −λ.

Corollary 3.4. (1) The random walk {µi} is α-recurrent (resp. α-transient) if and only
if the Lévy process {µλ

t } is λ(eα − 1)-recurrent (resp. λ(eα − 1)-transient).
(2) β1 = λ(eα1 − 1) and β2 = λ(eα2 − 1).

Thus the α-transient or α-recurrent property of a random walk can be converted into
the λ(eα − 1)-transient or λ(eα − 1)-recurrent property of some Lévy process.
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§ 4 . Examples

By Theorem ??, if lim sup
t→∞

e−αtP (LN > t) > 0 for all N ∈ ℵ, then X is α-recurrent. But

the converse is not always true.

Example 4.1. Let {bt} be the Gaussian convolution semigroup on R and πt = bt ∗ δ−t.
Let X be the Lévy process with convolution semigroup {πt}. Since £π1(1) = inf £π1(x) =
inf e

x2
2 −x = e−

1
2 and π1

t = bt, X is α-transient provided α > − 1
2 and is α-recurrent provided

α ≤ − 1
2 . In fact for any compact set K with m(K) > 0, πt(K) = 1√

2πt
e−

t
2

∫
K

e−
x2
2t e−x dx.

Hence πt(K) ∼ 1√
t
e−

t
2 . It follows that lim

t→∞
πt(K)

1
t = e−

1
2 and

V α(K) =
∫ ∞

0

e−αtπt(K) dt





< ∞, α > −1
2
,

= ∞, α ≤ −1
2
.

For any N ∈ ℵ, let c = sup
x∈N

|x|. Then c < ∞ and

∫ ∞

t

πs(N) ds ≤ m(N)ec

√
2πt

e−
t
2

∫ ∞

t

e−
s−t
2 ds =

2m(N)ec

√
2πt

e−
t
2 .

Therefore lim
t→∞

e
t
2

∫∞
t

πs(N) ds = 0. By Corollary ??, lim
t→∞

e
t
2 P (LN > t) = 0.

Example 4.2. The Brownian motion on Rn is transient whenever n ≥ 3. But it is
symmetric and hence is α-recurrent for all α < 0. In fact for any compact set K with
m(K) > 0, P (LK ≥ t) ≥ πt(K) ∼ t−

n
2 and hence V α(K) = ∞ for all α < 0.

The two examples above are of not one-sided Lévy processes. Finally we shall give two
other examples. The first is a Lévy process whose decay parameter is (α0, α0). But it is
neither α0-recurrent nor α0-transient. The second is a random walk whose decay parameter
is not (α0, α0).

Example 4.3. Let X(1) be the Poisson process with λ > 0 on R and X(2) be the Brow-
nian motion on Rn. Suppose that X(1) and X(2) are independent. Let X = (X(1), X(2)).
Suppose its corresponding convolution is {πt}. Then for any x1 ∈ R and x2 ∈ Rn,

£π1(x1, x2) = eλ(ex1−1)+
‖x2‖2

2 . Thus inf ln£π1 = −λ.
For any nonnegative integer i and any compact subset K of Rn with m(K) > 0, we have

πt({i} ×K) = e−λt (λt)i

i!

[ ∫

K

1
(2πt)

n
2

e−
‖x‖2
2t dx

]
∼ e−λtti−

n
2 .

Thus

V α({i} ×K) =
∫ ∞

0

e−αtπt({i} ×K) dt





< ∞, α > −λ,

= ∞, α < −λ,

< ∞, α = −λ and i <
n

2
− 1,

= ∞, α = −λ and i ≥ n

2
− 1.

Therefore X is α-transient if α > −λ, α-recurrent if α < −λ. Thus α1 = α2 = α0 = −λ. If
n ≤ 2, then X is −λ-recurrent. If n ≥ 3, then X is neither −λ-recurrent nor −λ-transient.
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Example 4.4. Let µ =
1
2
δ(1,0) +

1
2
π1 × δ1, where {πt} is the Cauchy convolution semi-

group on R. Then µ is a probability measure on R2. Since £π1(x) = ∞ for any x 6= 0,

£µ(x1, x2) =
1
2
£δ(1,0)(x1, x2) +

1
2
£π1(x1)£δ1(x2) =




∞, x1 6= 0,
1
2

+
1
2
ex2 , x1 = 0.

Thus inf ln£µ = − ln 2.
For any integer i, using the binomial formula, we have

µi =
1
2i

i∑

j=0

(
i

j

)
δj
(1,0) ∗ (π1 × δ1)i−j =

1
2i

i∑

j=0

(
i

j

)
(πi−j ∗ δj)× δi−j .

For any compact set K on R with m(K) > 0 and any nonnegative integer d, if i > d,
then µi(K × {d}) = 1

2i

(
i

i−d

)
(πd ∗ δi−d)(K). If d = 0, then µi(K × {d}) = 1

2i δi(K) = 0
for sufficiently large i. Now we suppose that d > 0. The measure πd ∗ δi−d has density

d
π[d2+(x+d−i)2] ∼ i−2. Thus µi(K × {d}) ∼ id−2

2i . Consequently

V α(K × {d}) =
∞∑
0

e−αiµi(K × {d})
{

< ∞, α > − ln 2,

= ∞, α ≤ − ln 2.

Therefore X is α-transient provided α > − ln 2, and X is neither α-transient nor α-recurrent
provided α ≤ − ln 2. Thus α1 = α0 = − ln 2 and α2 = −∞.
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