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a-TRANSIENCE AND a-RECURRENCE FOR
RANDOM WALKS AND LEVY PROCESSES****
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Abstract

The authors investigate the a-transience and a-recurrence for random walks and
Lévy processes by means of the associated moment generating function, give a di-
chotomy theorem for not one-sided processes and prove that the process X is quasi-
symmetric if and only if X is not a-recurrent for all a < 0 which gives a probabilistic
explanation of quasi-symmetry, a concept originated from C. J. Stone.
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§1. Introduction

Random walks and Lévy processes on R™ are very interesting and important (see [1, 3,
4, 6-8]). The state space of any Lévy process is a locally compact Abelian group G. If G is
compactly generated, then G is the direct sum of a compact group D, a vector group V', and
a lattice group L (see [2, p.90]). There are two integers a and b such that V' is isomorphic
to R* and L is isomorphic to Zb. Thus the properties of Lévy processes on R™ may be
generalized to Lévy processes on a compactly generated locally compact Abelian group with
little effort. Let X be a Lévy process on R™ with convolution semigroup {m;} or a random
walk with transition probability pu. We know that Lévy processes (or random walks) can
be divided into two classes: recurrence and transience. If the genuine dimension of X is
greater than 2, then X is transient. Thus the question that how to classify the transient
Lévy process or random walks more finely is very interesting.

In the present paper, we shall discuss a-transience and a-recurrence with a < 0 of Lévy
processes (resp. random walk). We shall show that for any o < 0, X is a-recurrent if and
only if E(e~*L~) = oo for all open neighborhoods of 0; while X is a-transient if and only
if B(e=*I~) < oo for all bounded open neighborhoods of 0. We call a probability measure
v quasi-symmetric if lim sup v¢(K )% = 1 for some compact set K. The property of quasi-

1—00
symmetric measure has been studied in [9]. We call X quasi-symmetric if 71 (or if u) is
quasi-symmetric. We shall show that X is quasi-symmetric if and only if X is a-recurrent
for all @ < 0, that is to say, the speed at which X escapes from any bounded open set can

not be any exponential. This gives a probabilistic explanation of quasi-symmetry. If X is

Manuscript received May 21, 2003.
*Department of Mathematics, Zhejiang University, Hangzhou 310027, China.
School of Computer and Computing Science, Zhejiang University City College, Hangzhou 310015,
China. E-mail: huizengzhang@sina.com
**Institute of Mathematics, Fudan University, Shanghai 200433, China. E-mail: greenzmz@Qsohu.com
***Institute of Mathematics, Fudan University, Shanghai 200433, China. E-mail: jgying@fudan.edu.cn
****Project supported by the National Natural Science Foundation of China (No.10271109).



128 ZHANG, H. Z., ZHAO, M. Z. & YING, J. G.

not one-sided, then a dichotomy theorem holds. We may also use the moment generating
function to characterize the a-transience and a-recurrence. On our another paper [?], to
classify the quasi-symmetric Lévy processes more finely, we study the polynomial recurrence
and polynomial transience.

Throughout this paper, for any finite positive measure 1 on R", define the characteristic
function of p on R™ as ji(x) := [, e'@¥) (dy) and define the moment generating function
of pas £u(z) == [p, e® ¥ (dy). If i is a positive integer, we use p’ to denote the i-fold
convolution of p. Let u® := 6y. For any Borel set A, let L4 denote the last exit time from
A, let G(A) denote the closed group generated by A and let A denote the closure of A. For
any € R”, let 1 denote the space {u : (u,x) = 0} and §, denote the Dirac measure at
the point x. Let N denote the collection of all sets N C R™ such that N is relative compact
open and 0 € N. For any h > 0, let Ij, := {(z!,2%,--- ,2") € R™ : [2°| < & for 1 <i < n}.

§2. «a-Transience and a-Recurrence of Random Walks

Let X = {X;; P*} be a random walk on R™ with transition probability measure p, where
1 is genuinely n-dimensional, that is, there is no proper linear subspace of R™ contains
supp p. We use P to denote P for convenience. A point x € R™ is called possible if for each
neighborhood N of 0 there is an integer 4 > 0 such that P(X; € x4+ N) > 0. We denote the

set of all possible points by 3. Then ¥ = J supp u* which is the smallest closed semigroup
i=0

that contains 0 and supp p. The closed group generated by supp ! —supp ? is independent
of the positive integer ¢« and we denote it by GG;. Let G be the group generated by supp p.
Then G; C G. Let mg be the Haar measure on GG and let p denote the collection of all
bounded Borel sets A on G such that mg(A4) > 0 and mg(9g(A)) = 0. Here 0g(A) is the
boundary of A relative to G.

We say p is normalized (see [5, pp.64-75], or see [7]) if there is an integer n1, 0 < ny < n,
and there are real numbers ag, - - - , ay,, such that

a2mny, -, 2mng,,0,- -+ ,0) = exp(2mi(niay + -+ + npy Ay )
for all integers ny,- - ,ny,, and |(8)] < 1 for all other values of 6.

oo . .
For any a € R and any Borel subset A on R”, define V¥(A) = > e~ *'u’(A). Then
i=0

1=
V< is a measure with support . In this section, we assume that o < 0 which is the only
interesting case.

Definition 2.1. Given any x,y, we say that y can be reached from x, and write x ~ y,
if for any N € X, P*(X; € y+ N) > 0 for some integer i > 0. We say that x and y
communicate, and write x < vy, if x and y can be reached from each other.

Lemma 2.1. (1) Suppose that Ay, As, A are Borel sets and A1 + Ay C A. Then
WHI(A) > i(Ay ) (Ag) for any integers i, j.
(2) The relation < is an equivalent relation on R™.

Proof. (1) Since A; + A2 C A, Ay C A— z for all z € Ay. For any integers i, j,
PP ) = [ iAo > [ A= ) 2 A ().
" 2

(2) We need only to show that x < y and y < z imply that < z. For any N € X,
there is N7 € N such that Ny + N; € N. Since 2 ~ y and y ~ 2, p'(y + Ny — x) =
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P*(X; € y+N1) > 0and p (z+ Ny —y) = PY(X; € 2+ Ny) > 0 for some 7, j. Then by (1),
P*(X;4; €2+ N) = p(z2+ N —z) > pi(y+ Ny — z)p? (z + Ny —y) > 0. Hence z ~ 2.
Similarly, z ~ x. Therefore z < y.

Then R™ is divided into disjoint equivalent classes called communicating classes. Clearly,
the set that can be reached from z is  + ¥ and the set that can communicate with « is
r+XN(-Y).

A vector u is said to be a sided vector for p if u # 0 and p{z : (u,x) > 0} = 0, strictly
sided vector for p if u{x : (u,xz) > 0} = 0. The set of all sided vectors for u, including 0, is
a convex cone containing 0 which we denote by side u. Similarly, the set of all strictly sided
vectors for p which we denote by sside i is a convex cone that does not contain 0. We say u
is not one-sided if side p = {0}. Otherwise u is one-sided. We say p is strictly one-sided if
ssideu # (). Let g = £, the moment generating function of p. It can attain its infimum if
and only if p is not one-sided. If y is not one-sided, then there exists a unique point ug such
that g(ug) = inf g (see [?, ?]). The probability u is quasi-symmetric if and only if g(x) > 1
for all x # 0 (see [9]), that is to say, g(0) = inf g.

Theorem 2.1. The measure p is quasi-symmetric if and only if lim sup ui(erN)"li =1
1— 00

for all x € G and all N € X. Particularly, if G = G, then limsup can be replaced by lim.
Proof. We need only to prove the only if part. Suppose that p is quasi-symmetric. By
: 1
[9], there is a compact set K such that lim p*(K)7 = 1. We may assume that K C G and
11— 00
0 = mg(da(K)) < mg(K) without loss of generality. Firstly, if G = Gy, by [6, Corollary

1], for any A € p, Zlirgo Z((ng)) = ;Zg((K)) Thus hm pi(A)T =1. For any z € G and N € R,

there is A € p such that A C N. Therefore hm 1 ( + N)% =

Next, let p = Q/H— 16o. Then 0 € supp p and hence G(suppp—supp p) = G(suppp) = G.
Since £p( ) = Lep(x ) 1 > 1 for all  # 0, the measure p is also a quasi-symmetric

probability. So for any z € G and N € R, lim pi(z 4+ N)7 = 1. If for some z € G and
N e, hmsupu i(x 4+ N)7 < 1, then for some ¢ < 0, there is i such that p'(z + N) < e

— 00
for all 4 > ig. Hence

Fa+N) = kZ() x+N)<21k[§k:<>cz+Z<>] [1+e +Z(>]

i=0
1
Since klim (]j)’c =1 < 1+ €° there exists an integer ky > iy such that when k& > ko,
— 00
(f) < (L+e%)* for all i < dp. It follows that p*(z + N) < E2(1 + e°)* for all k >

ko, and then limsup p*(z + N)% < 1';—& < 1. This is a contradiction which shows that

k—o0

limsup p'(z 4+ N)i =1 for all z € G and all N € X.

Let D = {z : g(x) < oo}, the effective domain of D. For any x € D, define

e(@:y)
p* (dy) = mu(dy)-

Then p” is also a probability measure and has the same support with p. This is similar to

Doob’s h-transform of p. Let g* be the moment generating function of p*. Then ¢®(y) =
g(z+y)
g(x)
case g(z) =inf g.

. Thus p” is quasi-symmetric for some x € D if and only if p is not one-sided. In this



130 ZHANG, H. Z., ZHAO, M. Z. & YING, J. G.

Theorem 2.2. The group G is a communicating class if and only if y is not one-sided.

Proof. Suppose G is a communicating class. For any u € side i, supp p C {z : (u,z) <
0} which is a closed semigroup. Then ¥ C {x : (u,z) < 0}. Hence G = ¥ N (-X) C ut.
Since p is genuinely n-dimensional, u = 0. Therefore y is not one-sided.

If v is not one-sided, then u® is quasi-symmetric for some x € D. By Theorem 77,
G C ¥ and hence ¥ = GG which is a group. It follows that G is a communicating class.

Corollary 2.1. Any closed semigroup S of R™ is a group if and only if either both
Sn{z: (u,z) >0} and SN{z: (u,x) < 0} are empty or both of them are non-empty for
any u # 0.

Proof. It suffices to show the sufficiency. If S = {0} then S is a group. Now we assume
that the linear space generated by S is just R™ without loss of generality. Then for any
u#0, SN{z: (u,xz) > 0} is non-empty. Since S is separable, there are countable vectors

e oo}
{z;} in S such that {z1,z9,---} = S. Let v:= Y :6,,. Then v is a probability measure
i=1

on R" with suppr = S. Thus v is not one-sided. By Theorem ?7, S U {0} is a group.
There is « # 0 such that z € S. Then —x € S. Since S is a semigroup, 0 =z + (—z) € S.
Therefore S is a group.

Definition 2.2. A state x € R™ is a-recurrent if Ve(x + N) = oo for all N € X, and
a-transient if V*(x + N) < oo for some N € N. The random walk {X;} is said to be
a-transient if V* is a Radon measure; a-recurrent if V*(x + N) = oo for all x € ¥ and

N eR.
Proposition 2.1. Suppose that © ~ y. If x is a-recurrent, then y is a-recurrent.

Proof. For any N € XN, there is N; € XN such that Ny + N; C N. Since z ~ y,
pi(y + Ny —x) = P*(X; € y+ Ny) > 0 for some i. By Lemma ??, for any integer j,
piti(y + N) > pi(y + Ny — 2)p? (z + Ny). Our result follows as desired.

This proposition tells us that the a-transience and a-recurrence are class properties. The
process X is a-recurrent if and only if the state 0 is a-recurrent. If u is not one-sided, then
X is a-transient if and only if 0 is a-transient.

Proposition 2.2. (1) If X is a-transient, then lim sup ,ui(N)'IT < e for any N € N.

1—00

(2) If lim sup ui(N)% < e for any N € X, then X is a-transient.

(3) If X is a-recurrent, then limsup p'(z + N)7 > e® for any x € X and N € N.
i—00
(4) Iflimsup pi(N)7 > e for any N € R, then X is a-recurrent.
i—00
Proof. Evidently, (2) and (3) hold. If limsup x/(N)7 > e, then limsup p‘(N)7 > ¢? >
i—00 1—00
e® for some 3. Thus there is a sequence i; < iy < ---, such that p%(N) > e%%. Hence
VE(N) > S e @ipti(N) > 3 B~ = oo, Therefore (1) and (4) hold.
j=1 j=1

We call X quasi-symmetric if the transition probability p is quasi-symmetric. By this
proposition and by Theorem 7?7, we get the following corollary. It gives a probabilistic
explanation of quasi-symmetric random walks.

Corollary 2.2. The random walk X is quasi-symmetric if and only if X is a-recurrent
for all o < 0. Particularly, if X is recurrent, then X is quasi-symmetric.
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Since any symmetric probability measure is quasi-symmetric (see [9]), any symmetric
random walk is a-recurrent for all a < 0.

Lemma 2.2. For any Borel set A, limsup P(L4 > 4)7 = limsup p'(A)7. IfVO(A4) < oo,

1

then lim sup [ T (A)} " = limsup ' (A) 7.

Jj=i

Proof. Clearly, S p/(A) > P(La > i) > p'(A). If limsupp’(A)7 = 1, then our
j=i
result holds. Now suppose that limsupu’(A)7 < 1, then V°(A) < oo. Hence ¢; :=
%) 1
lim sup [ Sl (A)}

=i

7

< 1. If limsup p'(A)7 < ¢ < ¢1, then ¢ < 1 and there exists an

integer ng, such that for any j > ng, ! (A) < /. For any i > ng, Y. p/(A) < > ¢ = =
: =

% 1—c”
Jj=i

1

It follows that limsup [Z ,uj(A)} : < ¢ < ¢;. It is a contradiction which completes our
j=i
proof.

Lemma 2.3. If p is normalized and quasi-symmetric, then for all x € G and all h > 1,
Jim pF (x4 1) % = 1.

Proof. By the proof of Lemma 5 in [7], klim uk(h)% =1. Forany h > 1, I1+1,_1 C I}.

For any fixed z € G, since 1 is quasi-symmetric, there is an integer ¢ such that pi(x+1Ip—1) >
0. By Lemma 7?7, p'ti(x + Ip) > p*(z + In_1)p? (I1) for any integer j. Consequently,
klim pk(z + )% = 1.

— 00

Lemma 2.4. Suppose that x € D. Then for any bounded Borel set A, there exists two
positive constants ki and ko such that for all integer k,

kg () (u)* (A) < pF(A) < kag(x)*(u*)*(A).

Proof. Since pf(dy) = g(z)*e™ ") (u)¥(dy), p*(A) = g()* [, e @¥) (u®)*(dy). Thus

our lemma holds with k; = inf e~ @Y > 0 and ks

)
sup e~ (®¥) < oo that are independent
yEA yeA

of k.

If i is not one-sided, then we have the following dichotomy theorem.

Theorem 2.3. Suppose that u is not one-sided and g(u) = inf g = e*. Let x € G and
N € X. The following properties hold.
(1) There is a constant M < oo such that p*(x + N) < Me®? for all integer i.

(2) limsup P(Lyyn > k)% = limsup p#(z + N)% = e®. (limsup may be replaced by lim

k—o0 k—o0
if G = Gy.) There exists Ny € X, such that klim P(Lyyn, > )+ = klim 1k (4 No) & = e
—00 — 0
forally € G.
(3) The random walk X is a-transient provided o > oy, and a-recurrent provided o < «vg.
It is eit/_zer ag-recurrent or ag-transient. It is ag-recurrent (resp. ag-transient) if and only
if {(u*)'} is recurrent (resp. transient). When n >3, X is ag-transient.

Proof. Since p* is a probability, the random walk with transition probability " is
either recurrent or transient and is transient when n > 3. By Lemma 7?7 and Corollary 77,
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(1) and (3) hold. For any z € G and N € X, by Lemma 77,

lim sup p* (z + N)% = g(u) limsup(u®)* (x + N)%,

k—oo k—o0

lim inf p* (z + N)% = g(u) liminf(pu*)*(z + N)*.
k—o0 k—o0

=

Since p* is quasi-symmetric, by Theorem ??, Lemma ?? and Lemma 7?7, (2) holds.

If 1 is one-sided, it is getting more complicated. In general, let @y = inf{a : X is
a-transient} and ag = sup{a : X is a-recurrent}. By Lemma ?? and by Proposition ?7?,
we get the following theorem.

Theorem 2.4. Suppose that x € ¥ and N € N.

(1) as < a1 < v, where ag = inflng.

(2) The random walk X is a-transient provided oo > oy and a-recurrent provided a < ag.
It is neither a-recurrent nor a-transient if as < a < aq.

(3) e® < limsup P(Lyyn > k)% = limsup p*(z + N)

k—oo k—oo

==

< e,

Thus (aq, a2) characterize the escape speed and we call (a1, az) the decay parament for
X. If X is quasi-symmetric, then a; = as = 0 and the speed at which X escapes from any
bounded open set N is slower than any exponential. If ag = —o0, then a3 = as = —.
Particularly, if X is strictly one-sided, then X is a-transient for all & < 0. The escaping
speed is quicker than any exponential.

If X is not one-sided, then as = a1 = . It is difficult to determine a; and as if X
is one-sided. For any finite measure v on R", let (a4, a%) be the decay parameter for {v'}
and let af = infln ¢ where ¢” is the moment generating function of v. We say v is not
essentially one-sided if the restriction of v to the linear space generated by suppv is not
one-sided, that is, for any u # 0, either both v{z : (u,z) > 0} and v{x : (u,z) < 0} are zero
or both are positive. We have the following comparison result.

Lemma 2.5. (Comparison) If v < pu, then of < ay and of < as. In particular, if v is
not essential one-sided, then as > of.

Proof. Clearly, for any «, that {u’} is a-transient implies that {v?} is a-transient.
Hence o < a;. For any «, if {v'} is a-recurrent, then 0 is an a-recurrent state for {v}.
Since v < p, 0 is also an a-recurrent state for {u'}. Hence {u'} is a-recurrent. It follows
that o < ag. Suppose that v is not essential one-sided. Let 14 be the restriction of v to
the space generated by suppv. Then v is not one-sided, inf ¢** = inf ¢” and ag' = of. It
follows that a5 = af and hence ay > af.

Theorem 2.5. If there is u € side ju such that u # 0 and g(x) < oo for all x in u*, then
Qo = (1 = (.

Proof. We may assume ag > —oo. Let v, be the restriction of i to ut. Then ¢+ < g
and inf ¢ < infg. We shall show that inf g** = infg. Otherwise inf g > inf g"* + 2¢ for
some ¢ > 0. Since suppv; C u', there is a point x € u* such that ¢g"'(z) < inf g* + .
Then inf g > ¢"*(z) + . By our condition, g(x) < oo. Now for any ¢t > 0, by Lebesgue’s
dominated convergence theorem,

lim g(x +tu) = lim @) e Wy (dy) = / ") p(dy) = g** ().

t——4o0 t——4o0 (u,5)<0 ud

It follows that inf g < g”*(x). It is a contradiction which shows that inf g** = inf g > 0 and
%% 7é 0.
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If vy is not one-sided, then we finish. Otherwise for any u; # 0 with u; € sidewvy,
1

let vy be the restriction of vy to ui Nut. Since g"'(z) < g(z) < oo for all z € ut,
inf g*2 = inf ¢** = inf g > 0. Continue this program until v; is not one-sided or i = n. This ¢
is denoted by 4g. Since v, is the restriction of v to {0}, v, is not one-sided. Therefore v;, is
not one-sided and inf g0 = inf g = e®°. By Lemma 7?7, as > o and hence as = a1 = ag.

For any Borel set A, let T4 = inf{j > 0: X; € A}. Then T4 0 60; < oo if and only if
L >1.

Lemma 2.6. Suppose that v € G, N,N; € R with Ny+ N1y C N. LetT; =i+ Tyyn, 00,
and S; =i+ Ty1n 00;. Then for any a € R and integer i > 0,

VAN E(e "5 T < 00) S EY ey ny(Xp) S V(N = N)E(e %5 S; < o0).
h=i

In Particular,

VNP (Ear, 20) < 3O p ot N) SV = MP(La 2 ).

Proof. Let Y = Y e *1,,n5(X;). Then Y is F-measurable. For any stopping time
§=0

o0 X (o] X
T,Yobr=> el n(Xj00r)=eT Y e 1, n(X;).
j=0 j=T
Firstly, since T; > i, by the strong Markov property, one has

o0

EZ J]-erN Z _aj]-r+N )
j=1

Jj=
E(e —aTzY ofr,) = Ele T EX7(Y); T; < .

We know that X7, € x + Ny if T; < co. By that Ny + Ny C N, for any y € Ny,

(oo} (oo}
E"W(Y)=EY e iy y(Xi) > EY e 1y, (Xi) = V().
k=0 k=0

o) .
Hence E " e %1, n(X;) > VY(N1)E(e™ T, T; < 00).
j=i
Secondly, by the strong Markov property, we have

e 1N (X))

e O‘SlYo 0s,) = Ele *% EXsi(Y); S; < o0].

gk

(oo}
EY e 1n(X)) = E
Jj=t

»n

Jj=

We know that Xg, € x + N if S; < 0co. For any y € N,

E"W(Y)=EY ey (Xp) SEY e ™y n(Xi) =V*(N = N).
k=0 k=0

Hence E Z e~ Y1,y n(X;) S VYN — N)E(e2%;S; < 00).
j=t
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Theorem 2.6. Suppose that o < 0. Then X is a-recurrent if and only if E(e=%L=+n)
= oo forallz €Y and N € X; X is a-transient if and only if E(e=*F'V) < oo for all N € .

Proof. If X is recurrent, then P(L,yny = 00) =1 for all z € £ and N € X. Thus our
theorem holds. Now we shall assume that X is transient. For any x € ¥ and N € N,

Ele=oLetn 1] = E[Z(e*“ — 1)6*“1{%”_12”} =Y (e = 1)e ™ P(Lypn > i+1).
1=0 1=0

Let ¢; = m and ¢y = VO%N). Then c1, ¢ > 0. Now by the lemma above,

o0 ) (oo} )
c1 Z(efo‘ — e Z w(z+ N)
i=0 j=i+1
< Ele Loty _ 1] < ¢y Z(e*a —1)e ™ Z w(x+ N+ N).
i=0 j=i+1
Thus our theorem holds since for any Borel set A,

e’} oo e’} J—1
S e =Dt ST pi(A) = 30w (4) 3 (e - 1)em = ve(a) - VO(4),
i=0 j=i+1 j=1 i=0

8§ 3. a-Transience and a-Recurrence of Lévy Processes

Let X = (X;; P*) be a genuinely n-dimensional Lévy process on R™ with convolution
semigroup ™ = {m;;t > 0}. Let P = P° and E = E° for convenience. A point x € R"
is called possible if for each neighborhood N of 0 there is ¢ > 0 such that m,(z + N) =

P(X; € N+ z) > 0. We denote the set of all possible points by 3. Then ¥ = |J supp 7,
>0
which is a closed sub-semigroup of R™. Let G be the smallest closed group including 3. The

closed group generated by suppm; — supp 7; is independent of ¢ (see [3, Proposition 5.1])
and we denote it by G;. Then G; C G. The following dichotomy theorem is well known
(see [1,3,4]).

Theorem 3.1. (1) The Lévy process X is either recurrent or transient.
(2) X is recurrent if and only if P(Ly = 00) =1 for all N € X.

(3) X is transient if and only if P(Ly = 00) =0 for all N € N.

(4) If n > 3, then X is transient.

Thus Lévy processes are divided into two classes: recurrent and transient. However, from
the examples shown below, we may see that there is still big difference among transient Lévy
processes. Though the uniform translation and the Poisson process are both transient, their
escaping speed from a compact set is quite different. The former is much quicker than the
latter. In this section, we aim to distinguish those transient Lévy processes more precisely.

Example 3.1. The uniform translation X with X; = t is transient. It is easy to see
that for any compact set K, tlim e~ P(Lg >1t)=0 for all « € R.
—00
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Example 3.2. The Poisson process X with parameter A > 0 is also transient. For any

d i
fixed nonnegative integer d, we have P(Lggy > 1) = P(X; < d) =e Y % Then
0

d ()\t)i 0, a> =,
. —a . —(a+A
tlg&e 'P(Ligy > 1) = tli}rgoe (a2t Z 4= 1, a=—\and d =0,
0 00, otherwise.

For any o € R and any Borel set A, define V*(A) = [~ e=*'m;(A) dt. We consider a <0
which is the only interesting case. Similarly as random walk, we have

Definition 3.1. Given any x,y, we say that y can be reached from x, and write x ~ y,
if for any N € X, P*(X; € y+ N) > 0 for some t > 0. We say that x and y communicate,
and write T < y, if x and y can be reached from each other. A state x is a-recurrent if
Ve(x 4+ N) =00 for all N € X, and a-transient if V*(z + N) < oo for some N € X.

Proposition 3.1. (1) Suppose that Ay, As, A are Borel sets and Ay + As C A. Then
mirs(A) > m (A1) 7s(As) for any t,s > 0.

(2) The relation < is an equivalent relation on R™.

(3) Suppose x ~y. If x is a-recurrent, then y is a-recurrent.

Thus R" is divided into disjoint equivalent classes called communicating classes. The
group G is a communicating class if and only if ¥ is a group. The a-transience (or a-
recurrence) is a class property. We call X (strictly) one-sided if my is (strictly) one-sided.
Similarly, X is not one-sided if 7; is not one-sided.

Theorem 3.2. The group G is a communicating class if and only if X is not one-sided.

Proof. Suppose G is a communicating class. For any u € side 7, we have u € side m; for
all t > 0 and hence ¥ C {x : (u,z) < 0}. Then G = X N (-X) C ut. Since X is genuinely
n-dimensional, u = 0. It follows that X is not one-sided. Conversely, if X is not one-sided,
then for any u # 0, X N{z : (u,z) > 0} D suppm N{z : (u,z) > 0} # 0. By Corollary 77,
> is a group and hence G is a communicating class.

Definition 3.2. The Lévy process {X:} is said to be a-transient if V is a Radon
measure. It is said to be a-recurrent if V(N + ) = oo for allx € ¥ and N € X.

It is easy to see that O-recurrence or O-transience is just the usual recurrence and tran-
sience defined in [1, 3, 4], and as « decreases, the set of a-transient Lévy processes decreases,
while the set of a-recurrent ones increases. The Lévy process X is a-recurrent (resp. a-
transient) if and only if all states € ¥ are a-recurrent (resp. a-transient). By Proposi-
tion 77, X is a-recurrent if and only if 0 is a-recurrent. If X is not one-sided, then X is
a-transient if and only if 0 is a-transient. For any h > 0, {X};} is a random walk on R"
with transition probability 7.

Lemma 3.1. Suppose that N € X and N1, Ny are Borel sets with N + N1 C Ns.
(1) There is h > 0, such that inf m(N) > 0.

0<t<h
(2) For such h,

limsupﬂhi(Ng)% > hmsupm(Nl)% > limsupﬂhi(Nl)ﬁ,

1—00 t—o0 1—00

liminfﬂ'hi(Ng)% Z liminfwt(Ng)% Z 11111111f7‘(}”(]\/v1)ﬁ

t— 11—
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Proof. We need to prove (2). Let ¢ = Oinihm(N). Then ¢ > 0. Firstly, for any
<t<

0<t<h, mp1n(N2) > Tingt(N1)Th—o(N) > emipgt(N1). For any g, if limsupm(Nl)% >

t—oo

e, then B < 0 and there is iy < iy < --- and {t;} with i; € Z* and 0 < t; < h

such that 7r2]h+t (N1) > ePlshtt)  Thus (i, +1)h(N2) > gePlijhtty) > 5@5(”“)". So
lim sup 7, (N2)# > eP. This shows that lim sup m; (No)# > hm 5up T (Np) T

7/_)00 ’L—>OO
Secondly, for any 0 < ¢t < h, mjn4e(N2) > min(N1)m(N) 2 smh(Nl). For any g, if
lim inf Whi(Nl)i > e, then 3 < 0 and there is some integer ig, such that m (Ny) > ef

provided the integer i > ig. Then 7, 4¢(Na) > cef > gePh+Y) for all integer i > iy and
0 < t < h. This shows that litm inf Wt(NQ)% > liminf Whi(Nl)i. We complete the proof of

(2) since the other inequalities are obvious.

We say {m:} (or X) is quasi-symmetric if it satisfies

.

Condition 3.1. There exists a compact subset K C R™ such that limsupm(K)t = 1.

t—oo
Condition 3.1 was introduced by S. C. Port and C. J. Stone [3] to give a ratio limit
theorem. The process X is quasi-symmetric if and only if the probability measure 7 is
quasi-symmetric (see [?, ?]).

Theorem 3.3. (1) The {m:} is quasi-symmetric if and only if hm Sup me(y + B)t =1

orally e G and a € urthermore, 1 1, then limsup can be replace im.

llye G and all B € X. Furth G = Gy, then li b laced by li

(2) Suppose X is quasi-symmetric and 71 is normalized, then for any r > 1, thm me(y +
—00

1

%

1)t =1 foralyeq@q.
Proof. The if part of (1) is got by the definition. Now suppose that {m;} is quasi-

symmetric. For any y € G and any B € N, since G = ¥ = | supp 7y, there is x € supp m,
>0
with some ¢35 > 0 and N € X, such that t + N C y + B. For this N, there is N7 € XN such

that N1 + Ny C N. By Lemma 77, there is h > 0 such that inf m(Nl) > 0 and tg = jh

for some integer j. Then x € U supp mp; and 7y, is quasi-symmetric. If G = Gy, then
=0
G(supp7p) = G(supp 7y, — supp ). Therefore the only if part of (1) holds by Lemma ??

and by Theorem ??. Suppose r > 1. Then there is 9 > 1 and B € X such that I,,, + B C I,.
We have shown that for any y € G, there is x € G, h > 0 and N, N; € X, such that

r+ N Cy+ B, Ny+ N; C N, 1nf 7rt(N1) >0 and x € U supp mp;. The measure mp,
1=0

is quasi-symmetric and normalized since 7, = (#1)". Now Lemma ?? and Lemma ?? yield
the statement (2).

Lemma 3.2. Suppose N, N1, No as in Lemma 77 and h > 0.
(1) If - e~ Mgy (Ny) = oo, then / e ' (Ny) dt = oo
i=0 0

(2) [foértlf m(N) >0 (md/ e ' (Ny) dt = oo, then z%e_“hiﬂhi(Ng) =
0 i=

Proof. Since a < 0, we have
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o s (i+1)h
/ e~ (Ny) dt = Z/ et (Ny) dt
0

i=0 /i
o h h %)

>y et [ mam (V) ds = [ m () ds[ 3 e ().
i=0 0 0 i=0

It follows that (1) holds since foh 7s(N)ds > 0.
Let ¢ = Oirtlihﬂ-t(N). Then ¢ > 0. For any 0 <t < h, m(;41)n(N2) > cminye(N1). Thus

¢ Jo Tinse(N1) dt < hrisqyn(N2). Tt follows that

(i+1)h
¢ s(N1)ds =c¢ / 7ms(N1) ds
| e z 1

ScZe‘ah(”‘l)/ Tintt(N1) dt<hZe ah Z+1)7T(i+1)h(N2).

=0
o0 S 7
Therefore if [ e™*'m;(Ny) dt = oo, then Y e~ (Ny) =
=0

Proposition 3.2. (1) If for some h >0, {Xp;} is ah-recurrent, then X is a-recurrent.
(2) For any h > 0, X is a-transient if and only if {Xp;} is ah-transient.
(3) For any h > 0, Oirtlihm(N) > 0 for all N € R if and only if Oirtlilﬂt(N) > 0 for all

N € X. In this case, for any h > 0, X is a-recurrent if and only if the random walk {Xp;}
is ah-recurrent.

Proof. By Lemma ??, (1) and the necessity of (2) hold. If X is not a-transient, then
there is N € X such that [; e™*"m(N)dt = co. For any a > 0, let B, = {x : ||z| < a}.
There is hg such that <1nf ﬂt(Bl) > 0. Since 7m;:(Bj) > mj_1)e(Bj_1)m(B1) > -+ >

7 (B1)?, 0<1Iéfh m(Bj) >0 for all positive integer j. Hence for any h > 0, there is N; € R

such that 1nf 7rt(N1) > 0. By Lemma ?7?, Z e~ ir, (N + Ny) = co. Thus {Xp;} is

not ah—transwnt. Hence the sufficiency of (2) holds Suppose that 1n£ . m(N) > 0 for all

N € X. Fix any integer j > 1. For any N € R, there is N1 € R such that?Vl +---4+ Ny CN.
~—_———

j

Let ¢ := 1nf 7rt(N1) Then ¢ > 0. Since 71 (N) > m(Ny1), O<i§1<f‘h7rs(N) > ¢/ > 0. Thus
<t<j

(3) holds

Proposition 3.3. (1) If X is a-transient, then lim sup Wt(N)% <e“ for any N € X.

t—o0
(2) If lim sup ﬂt(N)% < e® for any N € X, then X is a-transient.
t—oo
(3) If X is a-recurrent, then limsupm(z + N)t > e® for any x € ¥ and N € X.

t—o0

(4) Iflimsupm (N)* > e® for any N € R, then X is a-recurrent.
t—oo

Proof. The statements (2) and (3) are obvious. For any N € X and ¢ > 0, there is
h > 0, such that 7 (N) > € for all 0 < ¢ < h. If X is a-transient, then {Xp;} is ah-transient
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and hence limsup 74, (N + N)# < ¢®. By Lemma ??, one has
i— 00

limsupwt(N)% < limsup 7p; (N + N)ﬁ < e

t—o0 71— 00

Therefore (1) holds. If lim sup ﬂt(N)% > %, then lim sup whi(N—&—N)% > e“. Consequently,

t—oo i— 00
> e ®Mimy (N 4+ N) = co. By Lemma ?? , [ e~ *'m (N + N + N) dt = co. Therefore (4)
i=0
holds.

Corollary 3.1. The Lévy process X is quasi-symmetric if and only if X is a-recurrent
for all a < 0. In particular, if X is symmetric, then X is a-recurrent for all o < 0. If X is
recurrent, then X is quasi-symmetric.

This corollary gives a probabilistic explanation of quasi-symmetric Lévy processes. Let
g = £m. Then £m, = ¢g'. For any z € D := {g < oo}, define 7¥(dy) := %ﬂ't(dy). Then

{n¥} is also a convolution semigroup. The following lemma is obvious by the compactness
of A.

Lemma 3.3. Suppose x € D. Then for any bounded Borel set A, there exist two positive
constants k1 and ko such that for all t > 0,

kig(z)'m (A) < m(A) < kag(x)'ni (A).

By Lemma ?7?, Proposition 7?7, Theorem ?? and by Theorem 7?7, we get the following
dichotomy theorem.

Theorem 3.4. Suppose that X is not one-sided and g(u) = inf g = e*°. Let x € G and
N e R,
(1) There is a constant M such that my(z + N) < Me®ot.

(2) limsupm(z 4+ N)* = e®. (Here limsup can be replaced by lim if G = Gy.) There
t—o0

exists a No € W, such that tlim m(y + NO)% =e™ forallye@G.

(3) The Lévy process X is a-transient provided o > ag and a-recurrent provided o < «g.
It is either ag-recurrent or ag-transient. It is ag-recurrent (resp. ag-transient) if and only
if the Lévy process {m}'} is recurrent (resp. transient). When n > 3, X is ag-transient.

Let oy = inf{a: X is a-transient} and ay = sup{e: X is a-recurrent}. By Lemma ??
and Proposition ?7?, we get the following theorem.

Theorem 3.5. (1) ap > a1 > ag, where ag = inflng.
(2) For any x € ¥ and N € R, e < limsupm(z 4+ N)t < e,

t—oo

(3) The Lévy process X is a-transient provided o > ay and a-recurrent provided o < .
It is neither a-recurrent nor a-transient if as < a < .
We call (a1, as) the decay parament for X. If ag = —oo, then ay = ay = —o0.

Corollary 3.2. If X is strictly one-sided, then X is a-transient for all o < 0.

For any convolution {14} with 14 (R™) < 1, let (o}, a) be the decay parameter for {v;}
and let af = infIn g” where g is the moment generating functions of v;. Similarly as that
in random walk, we have
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Proposition 3.4. (1) If vy < 7y, then of < a1 and of < ag. Particularly, if vy is not
essential one-sided, then as > af.

(2) If there is u € sidem; such that u # 0 and g(x) < oo for all x in ur, then ag = a; =
Q.

For any Borel set A, let Ty = inf{t > 0: X; € A}, the first hitting time of A.
Lemma 3.4. Suppose that x € G, N,N; € R with N1+ N; C N. Let Ty = t+ T, n, 00,
and Sy =t + Ty 06y Then for any a € R and t > 0, we have
© —
VN E(e™ Tt Ty < 00) < E/ e M, N(Xp)dh S V(N — N)E(e=*%; 8, < 00).
t

Proof. Let Y = [[% e™**1,,n(X,)ds. Then Y is F-measurable. Firstly, since T; > t,
(o)

oo
E/ e M Nn(Xp)dh > E | e M, v (X)) dh
i

Ty
=E(e Y 00r,) = Ele ** EXT (Y); T} < ).

We know that X7, € x + N provided T; < co. By that N; + N; C N, for any y € Ny,
E*Y(Y) = E/ e “ln_y(Xs)ds > E/ e 1N, (Xs)ds = V(Ny).
0 0

Hence E [ e "1, n(X}) dh > VO(Ny)E(e= T T} < 00).
Secondly, by the strong Markov property

o0

E/ e*ah1x+N(Xh)dh:E/ e M, N (X)) dh
t St

= E(e %Y 00s,) = Ele" " EX5:(Y); S; < oq].

We know that Xg, € x + N provided S; < oco. For any y € N,
E*Y(Y) = E/ e YIN_y(X,)ds < E/ e 1y _w(Xs)ds =V*(N — N).
0 0

Hence E [ e™*"1, n(X4) dh < V(N — N)E(e™*%; 5, < 00).

Corollary 3.3. Suppose that x € G, N,N; € X with Ny +N; C N. Then for anyt > 0,
we have

VON)P(Lyyn, > 1) < / mh(x 4+ N)dh < V(N = N)P(Lyyn > t).
t

Theorem 3.6. Suppose that o < 0. Then X is a-recurrent if and only if E(e=%L=+n)
=00 for allx € ¥ and N € R; is a-transient if and only if E(e~*'~N) < oo for all N € X.

Proof. If X is recurrent, then P(Ly4n = 00) = 1 for all z € ¥ and N € R. Thus our
theorem holds. Now we shall assume that X is transient. For any x € ¥ and N € R, there
holds

Ele=tety 1] = E[/ —ae” ", v dt] :/ —ae” ' P(Lyyn > t) dt.
0 0
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Let ¢ = and ¢y = . Then ¢y, c2 > 0. Now by Corollary 7?7, we have

1
VO(N—N) Vo

N
cl/ / n(z+ N)dhdt

< Eleolern 1) < 02/ —ae*at/ mn(z + N + N) dhdt.
0 ¢

Thus our theorem holds since for any Borel set A,
e’} 0o 00 h
/ —ozefo‘t/ mh(A) dhdt = / ﬂ'h(A)/ —ae " dtdh = V*(A) — VO(A).
0 t 0 0

Thus the classification of a-transient and a-recurrent is determined by the exponential
moments of the last exit times. This classification is more precise. For any probability

S} i,i
measure g and any A > 0, define p = e Y ()‘t% Then {u} is a convolution

o0
semigroup. Let ¥ = |J suppuf. Then ¥ = supppu) for any t > 0. Let g and g be

i=0
the moment generating function of u and of u} respectively. Then gA = eM9=D_ Thus
inf1n gy = (™9 —1). For any Borel set A and any 3 € R, let V(A = [, e Pur(A)dt

0 . .
and let VA(A) = Y e Piui(A).
i=0
Proposition 3.5. The following properties hold:

) The set side pu = side u3. Thus, u is one-sided if and only if 3 is one-sided.
) The measure uy is not strictly one-sided.

) The Lévy process {u}} is —\-recurrent.
)

5) Suppose B = A(e* —1). Then for any Borel set A, Vf(A) = —

Proof. By the equality gy = e*9~1) we get (1). The statement (2) is trivial. Since
p3({0}) > e~ >0, 7 is not strictly one-sided. Since

{0}) = /oo M) ({0}) dt > /OOO dt = oo

{u} is —A-recurrent. For any Borel set A,

VE(A) = e_w*/\)tZ@/ﬂ(A)dt: ),‘—;ﬂ'(A) et
A 0 =0 Z! —0 'L! 0

It follows that V}’(A) = ;) %MZ(A)W = 1=V (A).
Suppose the decay parameter for {u'} is (a1, a2), and the decay parameter for {u'} is
(B1,32). Then by Proposition 7?(4), 82 > —A.

Corollary 3.4. (1) The random walk {u'} is a-recurrent (resp. a-transient) if and only
if the Lévy process {p}\} is A(e® — 1)-recurrent (resp. A(e® — 1)-transient).
(2) 1= A(e™ —1) and B2 = A(e™ —1).

Thus the a-transient or a-recurrent property of a random walk can be converted into
the A(e® — 1)-transient or A\(e® — 1)-recurrent property of some Lévy process.
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8§4. Examples

By Theorem ??, if limsupe~*P(Ly > t) > 0 for all N € R, then X is a-recurrent. But

t—o0
the converse is not always true.
Example 4.1. Let {b;} be the Gaussian convolution semigroup on R and m; = by * d_;.
Let X be the Lévy process with convolution semigroup {m;}. Since £7;(1) = inf £7;(x) =

T2 . . . . .
infer % =¢ 2 and 7} = by, X is a-transient provided o > —% and is a-recurrent provided
1 . 1 _t _z?
a < —5. In fact for any compact set K with m(K) > 0, m(K) = Vol S e e T da.

Hence m;(K) ~ e 2. Tt follows that tlim m(K)t =e 7 and
—00

Vit

1

oo < 00, a > ——,

Ve(K) = / e~ my(K) dt 2

0 = 00, a< —=.

2

For any N € ¥, let ¢ = sup |z|. Then ¢ < oo and
zeEN

m(N)e® i R 2m(N)e® _

_ t t
e 2 ds = ——=——¢€" 2.

——¢
V2t t V2t

Therefore tlim e? ftoo 7s(N)ds = 0. By Corollary ?7?, tlim e2P(Ly >t)=0.
—00 — 00

/too ms(N)ds <

Example 4.2. The Brownian motion on R™ is transient whenever n > 3. But it is
symmetric and hence is a-recurrent for all & < 0. In fact for any compact set K with
m(K) >0, P(Lg >t) > m(K) ~t~% and hence V¥(K) = oo for all a < 0.

The two examples above are of not one-sided Lévy processes. Finally we shall give two
other examples. The first is a Lévy process whose decay parameter is (ag,ag). But it is
neither ap-recurrent nor ag-transient. The second is a random walk whose decay parameter
is not (av, ap).

Example 4.3. Let X be the Poisson process with A > 0 on R and X be the Brow-
nian motion on R™. Suppose that X and X are independent. Let X = (X(l),X(Q)).
Suppose its corresponding convolution is {m;}. Then for any z; € R and xz2 € R",

. 2
£y (z1,22) = A =D+ Py inf In £my ==\
For any nonnegative integer ¢ and any compact subset K of R™ with m(K) > 0, we have

m({i} x K) = e (At)’ [/K ( ! e*% dx] ~ e M E

i! 2mt) 3
Thus
< 00, a> =),
o = 00, a < 7)\,
Ve ({i} x K) :/ e=otm, ({i} x K) dt .
0 < 00, a= -\ andi<§—1,
= 00, a=—-A andizgfl.
Therefore X is a-transient if o > —\, a-recurrent if @« < —A. Thus a; = as = ag = —A. If

n < 2, then X is —A-recurrent. If n > 3, then X is neither —A-recurrent nor —\-transient.
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1 1
Example 4.4. Let p = 5(5(1’0) + 5™ x 01, where {m;} is the Cauchy convolution semi-

group on R. Then y is a probability measure on R?. Since £ (z) = oo for any z # 0,

1 1 00, 1 7£ 0,
Lp(wy, x2) = 5555(1,0)(1171,952) + §£W1($1)£51(952) =31 " le“ 21 =0
2 2 -

Thus infln £y = —1n 2.
For any integer 4, using the binomial formula, we have

. 1 AN i1 s
wo= 5];) (j>6€1x0) * (7Tl X (51) J = ?j:() (]) (ﬂ'i,j * (Sj) X 61’7]"

For any compact set K on R with m(K) > 0 and any nonnegative integer d, if i > d,

then p'(K x {d}) = Qi(z_Z )(ma * 6;—q)(K). If d = 0, then pf(K x {d}) = %5Z(K) =0
for sufficiently large i. Now we suppose that d > 0. The measure w4 * §;_g4 has density

m ~ 72, Thus p'(K x {d}) ~ 12;2 Consequently

e o 00, a>—1In2,
VeI x {d}) = 3 e (K x {d) { g
0

= o0, a< —In2.

Therefore X is a-transient provided a@ > —In 2, and X is neither a-transient nor a-recurrent
provided a < —In2. Thus a1 = ag = —1In2 and ay = —cc.
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