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TOEPLITZ ALGEBRAS ON DISCRETE GROUPS
AND THEIR NATURAL MORPHISMS∗∗∗
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Abstract

Let G be a discrete group, E1 and E2 be two subsets of G with E1 ⊆ E2, and
e ∈ E2. Denote by T E1 and T E2 the associated Toeplitz algebras. In this paper, it is
proved that the natural morphism γE2,E1 from T E1 to T E2 exists as a C∗-morphism if
and only if E2 is finitely covariant-lifted by E1. Based on this necessary and sufficient
condition, some applications are made.
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§ 1 . Introduction

The object of the present paper is to study the natural morphisms between Toeplitz
algebras. If G is a discrete group and E ⊆ G, one may form the associated Toeplitz
algebra T E . Given two subsets E1 and E2 with E1 ⊆ E2, there is a natural morphism
γE2,E1 : T E1 → T E2 . In some cases, this morphism fails to be a C∗-morphism, or even fails
to be well defined. Our main task is to put forth a necessary and sufficient condition under
which γE2,E1 exists as a C∗-morphism.

Toward this end, a technique initiated by E. Park in [2] and generalized in [6] yielded the
finite decomposition condition. However, as shown in [4], while this condition is sufficient
for the existence of γE2,E1 , it is not necessary. In this paper we put forth a more natural
condition, called the finite covariant-lift condition. We will show that this latter condition
is not only sufficient, but also necessary (see Theorem 2.1). Based on this new condition,
some applications also have been made.

The paper is organized in the following way. In Section 2, we give the precise definition
of the finite covariant-lift condition, and show that it is both necessary and sufficient for the
existence of γE2,E1 . In Section 3, we show that Toeplitz algebras associated to quasi-ordered
groups have a certain universal property (see Corollary 3.1). In Section 4, we extend certain
results from [4] to the nonabelian case. These results concern the natural morphism between
Toeplitz algebras corresponding to a quasi-ordered group and its induced partially-ordered
group. Using the finite covariant-lift condition, our arguments become much simpler than
those in [4]. Finally, in Section 5 we turn to study Toeplitz algebras on discrete abelian
groups. In [1], G. Murphy proved that if (G,G+) is a discrete abelian ordered group, then
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the Toeplitz algebra T G+ has a universal property for isometric representations of G+. As
a generalization, it was proved in [5] that the same property holds for Toeplitz algebras
associated to discrete abelian quasi-ordered groups. In this section, we will show that the
converse is also true (see Theorem 5.1).

§ 2 . The Natural Morphisms Between Toeplitz
Algebras on Discrete Groups

Let G be a discrete group and {δg | g ∈ G} be the usual orthonormal basis for `2(G),
where

δg(h) =

{
1, if g = h,

0, otherwise

for g, h ∈ G. For any g ∈ G, we define a unitary operator ug on `2(G) by ug(δh) = δgh

for h ∈ G. For any subset E of G, let `2(E) be the closed subspace of `2(G) generated by
{δg | g ∈ E}, and let pE denote the projection from `2(G) onto `2(E).

Definition 2.1. The C∗-algebra generated by {TE
g := pEugp

E | g ∈ G} is denoted by
T E and is called the Toeplitz algebra with respect to E.

Definition 2.2. Let E1 and E2 be two subsets of G with E1 ⊆ E2. E2 is said to be
finitely covariant-lifted by E1 if for any finite subset F of G, there exists g∗ ∈ G such that
for any g ∈ F , g ∈ E2 if and only if g · g∗ ∈ E1.

Remark 2.1. ( i ) Let E1 and E2 be two subsets of G with E1 ⊆ E2. Then E2 is finitely
covariant-lifted by E1 if and only if the following three conditions are satisfied:

(1) For any two non-empty subsets F1 ⊆ E2 and F2 ⊆ G \ E2, there exists g∗ ∈ G such
that F1 · g∗ ⊆ E1 and F2 · g∗ ⊆ G \E1. A diagram illustrating such a condition is as follows:

F1 ⊆ E2

↓
F1 · g∗ ⊆ E1

F2 ⊆ G \ E2

↓
F2 · g∗ ⊆ G \ E1;

(2) For any finite non-empty subset F1 ⊆ E2, there exists g1 ∈ G such that F1 · g1 ⊆ E1;
(3) For any finite non-empty subset F2 ⊆ G \E2, there exists g2 ∈ G such that F2 · g2 ⊆

G \ E1.
(ii) If e ∈ E2 and E2 is finitely covariant-lifted by E1, then upon replacing the finite

subset F by F ∪ {e}, we see that g∗ may be chosen in E1. Furthermore, if e ∈ E1, then we
may choose g2 = e, so the condition (3) above is satisfied automatically.

Theorem 2.1. Let G be a discrete group and E1, E2 ⊆ G with E1 ⊆ E2 and e ∈ E2.
Then the natural morphism γE2,E1 : T E1 → T E2 , which satisfies γE2,E1(TE1

g ) = TE2
g for

any g ∈ G, exists as a C∗-morphism if and only if E2 is finitely covariant-lifted by E1.

Proof. Suppose γE2,E1 exists as a C∗-algebra morphism. For a contradiction, suppose
that E2 is not finitely covariant-lifted by E1. Then Remark 2.1 implies that one of the
following three cases must occur:

Case 1. There exist two finite non-empty subsets F1 ⊆ E2 and F2 ⊆ G \ E2 such that
for any g∗ ∈ E1,

if F1 · g∗ ⊆ E1, then (F2 · g∗) ∩ E1 6= ∅. (2.1)
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Let F1 = {g1, g2, · · · , gn} and F2 = {h1, h2, · · · , hm}. Set

T =
( m∏

j=1

(1− TE1

h−1
j

TE1
hj

)
)
·
( n∏

i=1

TE1

g−1
i

TE1
gi

)
.

Then

γE2,E1(T ) =
( m∏

j=1

(1− TE2

h−1
j

TE2
hj

)
)
·
( n∏

i=1

TE2

g−1
i

TE2
gi

)
.

By (2.1) we know that T = 0, so γE2,E1(T ) = 0. But clearly γE2,E1(T ) δe = δe 6= 0, yielding
a contradiction.

Case 2. There exists a finite subset F = {g1, g2, . . . , gn } ⊆ E2, such that for any
g∗ ∈ E1, there exists gi0 ∈ F , such that gi0 · g∗ /∈ E1. Let

T =
n∏

i=1

TE1

g−1
i

TE1
gi

.

Then T = 0, but γE2,E1(T ) δe = δe 6= 0, which is a contradiction.

Case 3. There exists a finite subset F = {h1, h2, · · · , hm } ⊆ G \ E2, such that for any
g∗ ∈ E1, there exists hj0 ∈ F , such that hj0 · g∗ ∈ E1. Let

T =
m∏

j=1

(1− TE1

h−1
j

TE1
hj

).

Then T = 0, but γE2,E1(T ) δe = δe 6= 0, which is a contradiction.

Now, for the reverse direction, suppose that E2 is finitely covariant-lifted by E1. Let T
be an operator in T E1 of the form

T =
m∑

i=1

ξi

ni∏

j=1

TE1
gij

.

Then

γE2,E1(T ) =
m∑

i=1

ξi

ni∏

j=1

TE2
gij

for ξi ∈ C, gij ∈ G.

To show that γE2,E1 is well defined and can be extended as a C∗-morphism, it suffices to
show that ‖γE2,E1(T )‖ ≤ ‖T‖, as these operators are dense in T E1 .

Given ε > 0, there exists ξ ∈ `2(E2) with finite support such that ‖ξ‖ = 1, and

‖γE2,E1(T )‖ ≤ ‖γE2,E1(T )ξ‖+ ε. We may write ξ =
n∑

p=1
ηpδhp with ηp ∈ C and hp ∈ E2 for

p = 1, 2, · · · , n. Let

F =
{( ni∏

j=li

gij

)
· hp

∣∣∣ 1 ≤ li ≤ ni, ∀i, p
} ⋃

{hp | ∀p }.

Then by the assumption there exists g∗ ∈ E1 such that for any g ∈ F , we have g ∈ E2 if

and only if g · g∗ ∈ E1. So for any
( ni∏

j=li

gij

)
· hp ∈ F ,

( ni∏

j=li

gij

)
· hp ∈ E2 if and only if

( ni∏

j=li

gij

)
· hp · g∗ ∈ E1. (2.2)
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Let θ =
n∑

p=1
ηpδhpg∗ . Since hp ∈ E2, we know that hp · g∗ ∈ E1. Therefore θ ∈ `2(E1)

with ‖θ‖ = ‖ξ‖ = 1, and by (2.2) we know that ‖γE2,E1(T ) ξ‖ = ‖T θ‖. Thus

‖γE2,E1(T )‖ ≤ ‖γE2,E1(T ) ξ‖+ ε = ‖T θ‖+ ε ≤ ‖T‖+ ε.

Since ε is arbitrary, it follows that ‖γE2,E1‖ ≤ ‖T‖, hence γE2,E1 is bounded.

§ 3 . The Weakly Universal Property of Toeplitz Algebras

Next, we discuss a certain universal property concerning the natural morphisms which
will be used in the sequel. Throughout this section, G is a discrete group, G+ is a sub-
semigroup of G such that e ∈ G+.

Let E be a subset of G with e ∈ E. We first clarify a necessary condition on E under
which γE,G+ exists as a C∗-morphism.

If γE,G+ exists as a C∗-morphism, then for any g ∈ G+,

1− TE
g−1TE

g = TE
e − TE

g−1TE
g = γE,G+(1− T

G+

g−1T
G+
g ) = 0.

Therefore (1−TE
g−1TE

g ) δh = 0 for any g ∈ G+ and h ∈ E. It follows that G+ ·E ⊆ E. Since
e ∈ E, we conclude that G+ ⊆ E.

Definition 3.1. The Toeplitz algebra T G+ is said to have a weakly universal property if
for any subset E of G with G+ ⊆ E and G+ · E ⊆ E, γE,G+ exists as a C∗-morphism.

For any x ∈ G \G+, let H[x] = G+ ∪ (G+ · x). Clearly, G+ ·H[x] ⊆ H[x].

Theorem 3.1. T G+ has the weakly universal property if and only if γH[x],G+ exists as
a C∗-morphism for any x ∈ G \G+.

Proof. Clearly the forward implication holds, for G+ ⊆ H[x] and G+ ·H[x] ⊆ H[x]. It
remains to verify the reverse implication.

Let E be any subset of G satisfying G+ ⊆ E and G+ ·E ⊆ E. Since e ∈ G+ and G+ is a
sub-semigroup, by Remark 2.1 and Theorem 2.1 it suffices to prove that the following two
conditions are satisfied:

(1) For any two finite non-empty subsets F1 ⊆ E \ G+ and F2 ⊆ G \ E, there exists
g∗ ∈ G+ such that F1 · g∗ ⊆ G+ and F2 · g∗ ⊆ G \G+.

(2) For any finite non-empty subset F of E \G+, there exists g∗ ∈ G+ such that F · g∗ ⊆
G+.

First we consider the condition (1). Let F1 = {x1, x2, · · · , xn }. Then H[x1] ⊆ E, so
F2 ⊆ G \H[x1]. By the assumption γH[x1],G+ exists as a C∗-morphism, so by Theorem 2.1
we know that there exists g1 ∈ G+ such that x1g1 ∈ G+ and F2 ·g1 ⊆ G\G+. If x2g1 /∈ G+,
then since G+ · x2 ⊆ G+ · E ⊆ E, we know that

(F2 · g1) ∩H[x2g1] = ∅.

By the assumption, γH[x2g1],G+ exists as a C∗-morphism, so there exists g2 ∈ G+ such that
(x2g1)g2 ∈ G+ and (F2 · g1) · g2 ⊆ G \G+. Let g = g1g2. Then g ∈ G+ and xi · g ∈ G+ for
i = 1, 2; also F2 · g ⊆ G \ G+. Pursuing this process, eventually we obtain g∗ ∈ G+ such
that F1 · g∗ ⊆ G+ and F2 · g∗ ⊆ G \G+.

The condition (2) is satisfied in a similar way.



ALGEBRAS ON DISCRETE GROUPS AND THEIR NATURAL MORPHISMS 147

Proposition 3.1. γH[x],G+ exists as a C∗-morphism for any x ∈ G−1
+ \ G+, where

G−1
+ = {g−1 | g ∈ G+}.
Proof. Since x−1 ∈ G+ and G+ is a sub-semigroup, we know that for any g ∈ G,

g ∈ H[x] if and only if gx−1 ∈ G+. Now for any finite non-empty subset F of H[x], let
g∗ = x−1 ∈ G+. Then for any g ∈ F , g ∈ H[x] if and only if gg∗ ∈ G+.

Remark 3.1. There exists (G,G+) such that γH[x],G+ fails to be a C∗-morphism for
any given x /∈ G+ ∪G−1

+ . For example, consider G = Z2. Fix k0 ∈ Z, and let

G+ = {(0,m) |m ≥ 0} ∪ {(1, n) |n ≥ k0} ∪ {(s, t) | s ≥ 2}.
Then G+ is a sub-semigroup and given g ∈ G+\{e}, either (0,−1)+g ∈ G+ or (−1,−k0)+g ∈
G+. Also, if x /∈ G+ ∪ (−G+), then (0,−1) /∈ H[x] (otherwise −x ∈ (0, 1) + G+ ⊆ G+, a
contradiction). Similarly, (−1,−k0) /∈ H[x].

Now suppose that γH[x],G+ does exist as a C∗-morphism. By Theorem 2.1 there exists
g∗ ∈ G+ such that

x + g∗ ∈ G+,

(0,−1) + g∗ /∈ G+ and (−1,−k0) + g∗ /∈ G+.
(3.1)

Since x /∈ G+, we know g∗ ∈ G+ \ {e}, so either (0,−1) + g∗ ∈ G+ or (−1,−k0) + g∗ ∈ G+,
a contradiction to (3.1).

Definition 3.2. A pair (G,G+) is said to be a quasi-ordered group if e ∈ G+, G+ ·G+ ⊆
G+ and G = G+ ∪G−1

+ , where G−1
+ = { g−1

∣∣ g ∈ G+ }. (G, G+) is referred to as an ordered
group if furthermore G0

+ = G+ ∩G−1
+ = {e}.

Let us take a look at Z2, where Z is the integer group. By definition, (Z2,Z+ × Z) is
a quasi-ordered group, while the lexico-ordered group (Z2,Z2

`ex) is an ordered group. It
is easy to construct non-abelian quasi-ordered groups by choosing certain upper triangular
invertible matrices over the real numbers.

By Theorem 3.1 and Proposition 3.1, we have the following corollary.

Corollary 3.1. If (G,G+) is a quasi-ordered group, then T G+ has the weakly universal
property.

§ 4 . Quasi-ordered Groups and Their Induced
Partially Ordered Groups

This section and the next contain applications of the results discussed in Sections 2 and 3.
In this section we investigate the natural morphism between Toeplitz algebras corresponding
to a quasi-ordered group and its induced partially-ordered group. Results from [4] are
extended nontrivially to the nonabelian case, while at the same time the technique of proof
is greatly simplified.

Definition 4.1. Let G be a discrete group and G+ be a sub-semigroup of G containing
the identity of G. A pair (V, M) is said to be an isometric representation of G+ if M is a
unital C∗-algebra and V : G+ → M is a map satisfying

(1) V (e) = 1;
(2) V (g)V (h) = V (gh) for any g, h ∈ G+;
(3) V (g)∗V (g) = 1 for any g ∈ G+;
(4) V (g)V (g)∗ = 1 for any g ∈ G+ ∩G−1

+ .
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Remark 4.1. If G is a discrete amenable group and (G,G+) is a quasi-ordered group,
then by [5, Theorem 3.5] T G+ has a universal property for isometric representations of G+.
More precisely, for any isometric representation (V, M) of G+, there exists a C∗-morphism
πV : T G+ → M such that πV (TG+

g ) = V (g) for any g ∈ G+.

Throughout the rest of this section, (G,G+) denotes a quasi-ordered group such that
G0

+ = G+ ∩G−1
+ is non-trivial, that is, G0

+ is neither equal to {e} nor equal to G.
It is easy to show that

(G+ \G0
+) ·G+ = (G+ \G0

+) = G+ · (G+ \G0
+), (4.1)

and
G = (G+ \G0

+) ∪G0
+ ∪ (G+ \G0

+)−1.

Let G1 = (G+ \G0
+) ∪ {e}. Then (G,G1) is a partially ordered group in the sense that

e ∈ G1, G1 ·G1 ⊆ G1, G1 ∩G−1
1 = {e} and G = G1 ·G−1

1 . (4.2)

Proposition 4.1. Suppose that G0
+ is infinite. Then

(1) γG+,G1 exists as a C∗-morphism.
(2) For any M with G1 (M ( G+ and G1 ·M ⊆ M , γM,G1 fails to be a C∗-morphism.
(3) If G is amenable, then Ker γG+,G1 = K (`2(G1)), where K (`2(G1)) is the ideal of

compact operators on `2(G1).

Proof. (1) We apply Theorem 2.1. Since G = G1 ·G−1
1 , it is easy to show that for any

finite subset F of G, there exists g1 ∈ G1 such that F · g1 ⊆ G1. So it reduces to show that
for finite non-empty subsets F1 ⊆ G+ and F2 ⊆ G\G+ = (G+ \G0

+)−1, there exists g∗ ∈ G1

such that F1 · g∗ ⊆ G1 and F2 · g∗ ⊆ G \G1.
Toward this end, we define a quasi-order on G by x ¿ y ⇐⇒ x−1y ∈ G+ for x, y ∈ G.

Suppose F2 = {g−1
i | gi ∈ G+ \ G0

+, i = 1, 2, · · · , n}. There exists i0 ∈ {1, · · · , n} such that
gi0 ¿ gi for all i. Let

E = {gi | gi ¿ gi0 , and gio ¿ gi} and H = {g−1
i0

gi | gi ∈ E},

and observe {e} ⊆ H ⊆ G0
+.

Since G0
+ is infinite, we may choose h∗ ∈ G0

+ \ H. If we put g∗ = gi0 · h∗, then g∗ ∈
(G+ \G0

+) ·G+ = G+ \G0
+. Therefore F1 · g∗ ⊆ G+ \G0

+ ⊆ G1.
Finally, F2 ·g∗ ⊆ G\G1: Given any g−1

i ∈ F2, if gi ∈ E, then g−1
i g∗ ⊆ G0

+ \{e} ⊆ G\G1.
On the other hand, if gi ∈ F2 \ E, then g−1

i gi0 ∈ G \ G+, so g−1
i · g∗ ⊆ (G \ G+) · E0 =

G \G+ ⊆ G \G1.

(2) If g1 ∈ M \ G1 and g2 ∈ G+ \M , then g1, g2 ∈ G0
+ \ {e}. Let F1 = {g1} ⊆ M and

F2 = {g2} ⊆ G \M . Note that for any g∗ ∈ G1, if g1g∗ ∈ G1, then g∗ must be in G+ \G0
+,

which implies that g2g∗ ∈ G+ \G0
+ ⊆ G1. By Theorem 2.1, we conclude that γM,G1 fails to

be a C∗-morphism.

(3) First, we prove that T G1 is irreducible. Let T ∈ B (`2(G1)) be such that TS = ST
for any S ∈ T G1 . We prove that T = λ for some λ ∈ C. Indeed, for any t ∈ G1 \ {e},
TG1

t−1Tδe = TTG1
t−1δe = 0, so Tδe = λ δe for some λ ∈ C. It follows that for any g ∈ G1,

Tδg = TTG1
g δe = TG1

g Tδe = λ δg, so T = λ.
Second, we show that K (`2(G1)) ⊆ Ker γG+,G1 . If x ∈ G0

+\{e}, then clearly 1−TG1
x TG1

x−1

is a projection of rank one. Since T G1 is irreducible, and 0 6= 1− TG1
x TG1

x−1 ∈ Ker γG+,G1 ∩
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K (`2(G1)), by [3, Theorem 4.1.11] we know that K (`2(G1)) ⊆ Ker γG+,G1 . Therefore, a C∗-
morphism γG+,G1 : T G1/K (`2(G1))→ T G+ can be induced such that γG+,G1 ([TG1

g ]) = T
G+
g

for any g ∈ G.
The proof will be finished if we show that γG+,G1 is an isomorphism. Define V : G+ →

T G1/K (`2(G1)) by V (g) = [TG1
g ] for any g ∈ G+. Then V is an isometric representation

of G+. Since G is amenable, by [5, Theorem 3.5] we know that there is a C∗-morphism
πV : T G+ → T G1/K (`2(G1)) such that πV (TG+

g ) = [TG1
g ] for any g ∈ G+, and since

G = G+∪G−1
+ , we know that πV (TG+

g ) = [TG1
g ] for any g ∈ G. Therefore, γG+,G1 = (πV )−1.

Remark 4.2. In the special case when G is abelian and M is the positive part of an
ordered group containing G1, the preceding proposition was obtained in [4] (see [4, Theorem
3.2 and Corollary 3.3]). The proof of [4, Theorem 3.2] relied on a complicated technique
(see [4, Theorem 2.4]). Our current proof is much simpler.

§ 5 . Toeplitz Algebras Associated to Abelian Ordered Groups

Throughout this section, G is a discrete abelian group and G+ is a sub-semigroup of G
such that 0 ∈ G+ and G+ ∩G−1

+ = {0}. It is well known that G admits a total order if and
only if G is torsion-free. So in the following we always assume that G is torsion-free.

Proposition 5.1. Suppose that G is abelian and torsion-free. Then the following two
conditions are equivalent:

(1) (G, G+) is an ordered group;
(2) If x ∈ G, then 2x ∈ G+ implies that x ∈ G+, and T G+ has the weakly universal

property.

Proof. That (1) implies (2) follows immediately from Corollary 3.1. So, we consider (2)
implies (1).

Suppose that γE,G+ exists as a C∗-morphism for any E with 0 ∈ E and G+ + E ⊆ E. If
(G, G+) is not an ordered group, then there exists some x ∈ G such that x /∈ G+ ∪ (−G+).
Let

H = G+ ∪ (G+ + x) ∪ (G+ + 3x).

Then 2x /∈ G+ (otherwise, by the assumption x ∈ G+), 2x /∈ (G+ +x)∪(G+ +3x), therefore
2x /∈ H. Let F1 = {x, 3x } ⊆ H and F2 = {2x} ⊆ G \H. By hypothesis γH,G+ exists as a
C∗-morphism, thus by Theorem 2.1 there exists g∗ ∈ G+ such that

x + g∗ ∈ G+, 3x + g∗ ∈ G+; (5.1)

2x + g∗ ∈ G \G+. (5.2)

Now (5.1) implies that 2(2x + g∗) = (x + g∗) + (3x + g∗) ∈ G+, which by hypothesis yields
2x + g∗ ∈ G+, contradicting (5.2).

Example 5.1. Let G = Z2, α and β be two real numbers with α < β. Let

G+ = {(m,n) ∈ Z2 | − αm + n ≥ 0 and − βm + n ≤ 0 }.

Toeplitz algebras associated to such a pair (G,G+) were studied in [2]. By the preceding
proposition, we know that there exists some E with G+ ⊆ E and G+ + E ⊆ E, such that
γE,G+ fails to be a C∗-morphism.
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Lemma 5.1. Suppose 2x0 ∈ G+ but x0 /∈ G+. If T G+ has the weakly universal property,
then T H[G+,x0] also has the weakly universal property, where H[G+, x0] = G+ ∪ (G+ + x0).

Proof. Let G1 be H[G+, x0]. Then G1 is a sub-semigroup and x0 + G1 ⊆ G1. To show
that T G1 has the weakly universal property, by Theorem 3.1 it suffices to prove that for any
y0 /∈ G1, γH[G1,y0],G1 exists as a C∗-morphism, which in turn by Theorem 2.1 is equivalent
to proving that for any finite collection y1, y2, · · · , yn /∈ H[G1, y0] = G1 ∪ (G1 + y0), there
exists g∗ ∈ G1 such that

y0 + g∗ ∈ G1, but yi + g∗ /∈ G1 for any i = 1, 2, · · · , n.

Since x0 + G1 ⊆ G1, we have x0 + H[G1, y0] ⊆ H[G1, y0], which implies yi − x0 /∈ H[G1, y0]
for any i = 1, 2, · · · , n. Clearly, G+ ⊆ H[G1, y0] and G+ + H[G1, y0] ⊆ H[G1, y0]. By
the assumption γH[G1,y0],G+ exists as a C∗-morphism, hence by Theorem 2.1 (let F =
{y0, yi, yi − x0, i = 1, 2, · · · , n}), there exists g∗ ∈ G+ such that

y0 + g∗ ∈ G+, yi + g∗ /∈ G+, yi − x0 + g∗ /∈ G+.

So y0 + g∗ ∈ G1 and yi + g∗ /∈ G+ ∪ (x0 + G+) = G1.

Lemma 5.2. Suppose that G is torsion-free, 2x0 ∈ G+ but x0 /∈ G+. If such x0 is
unique, then T G+ fails to have the weakly universal property.

Proof. In order to obtain a contradiction, suppose that T G+ has the weakly universal
property.

First, note 2(x0 + t) = 2x0 + 2t ∈ G+ + G+ ⊆ G+ for any t ∈ G+ \ {0}. Since x0 is
unique, we have x0 + t ∈ G+; hence

x0 + G+ \ {0} ⊆ G+.

Second, x0 ∈ H[G+, y] = G+ ∪ (G+ + y) for y /∈ G+; otherwise, by the assumption
γH[G+,y],G+ exists as a C∗-morphism, hence by Theorem 2.1 there exists g∗ ∈ G+ \{0} such
that y + g∗ ∈ G+ but x0 + g∗ /∈ G+, yielding a contradiction. It follows that

G = G+ ∪ (x0 −G+). (5.3)

Now let G1 = G+∪(G++x0) = G+∪{x0}. By Lemma 5.1 we know that T G1 also has the
weakly universal property. We claim (G, G1) must be an ordered group. By Proposition 5.1
it suffices to verify that 2y0 ∈ G1 implies y0 ∈ G1 for y0 ∈ G. First, suppose that 2y0 = x0.
If y0 /∈ G+, then by (5.3) we know that y0 = x0 − t for some t ∈ G+, so x0 = 2t ∈ G+,
which is impossible. Next, suppose that 2y0 ∈ G+. If y0 /∈ G+, then by the uniqueness of
x0, y0 = x0 ∈ G1. Thus (G,G1) is an ordered group.

Define a total order ≤1 on G by x ≤1 y ⇐⇒ y − x ∈ G1. Since x0 /∈ G+ and G1 =
G+ ∪ {x0}, we know x0− t /∈ G1 for t ∈ G+ \ {0}. Therefore t− x0 ∈ G1, which means that
x0 is the minimal positive element in G with respect to ≤1.

Observe −nx0 /∈ G+ (and hence is not in G1) for n ∈ N . Otherwise −2nx0 ∈ G+ ∩
(−G+) = {0}, and since G is torsion free, this would imply x0 = 0, which is impossible.

Finally, by the assumption γG1,G+ exists as a C∗-morphism. Using Theorem 2.1 and the
fact that −nx0 /∈ G1 for n ∈ N , there exists g∗ ∈ G+ \ {0} such that

x0 + g∗ ∈ G+,

−x0 + g∗ /∈ G+, (5.4)

−2x0 + g∗ /∈ G+. (5.5)
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Since x0 is minimal, g∗ − x0 ∈ G1. By (5.4) we know that g∗ − x0 = x0, so g∗ = 2x0, a
contradiction to (5.5).

Theorem 5.1. Suppose that G is torsion-free, and for any sub-semigroup E containing
G+, T E has the weakly universal property. Then (G,G+) is an ordered group.

Proof. By Proposition 5.1, it sufficies to verify that for any x0 ∈ G, 2x0 ∈ G+ implies
x0 ∈ G+. Suppose that x0 /∈ G+. We will show that x0 is unique, and then use Lemma 5.2
to conclude that T G+ does not have the weakly universal property, which is contrary to the
assumption.

Let
G1 = G+ ∪ (G+ + x0) and G2 = G+ ∪ (G+ \ {0}+ x0).

Then G1 and G2 are two sub-semigroups containing G+. Since G2 \{0}+x0 ⊆ G2 and T G2

has the weakly universal property, by Theorem 2.1 we have

G = G2 ∪ (x0 −G2) = (G+ ∪ (−G+)) ∪ (G+ + x0) ∪ (x0 −G+). (5.6)

So for any y /∈ G+ ∪ (−G+), either y − x0 ∈ G+ or x0 − y ∈ G+.
First, we prove 3x0 ∈ G+. In fact, by the assumption γH[G+,−x0],G+ exists as a C∗-

morphism, where H[G+,−x0] = G+ ∪ (G+− x0). Therefore there exists g∗ ∈ G+ \ {0} such
that

−x0 + g∗ ∈ G+,

−2x0 + g∗ /∈ G+,

−3x0 + g∗ /∈ G+ (5.7)

We assert −2x0 + g∗ /∈−G+; indeed, if −2x0 + g∗ = −t for some t ∈ G+, then x0 − t =
−x0 + g∗∈ G+, so x0 = (x0 − t) + t ∈ G+, yielding a contradiction. Therefore, −2x0 + g∗ /∈
G+ ∪ (−G+), hence either (−2x0 + g∗)− x0 ∈ G+ or x0 − (−2x0 + g∗) ∈ G+. By (5.7) we
know 3x0 − g∗ ∈ G+, so 3x0 = (3x0 − g∗) + g∗ ∈ G+.

Next, we prove for any t ∈ G+ \ {0}, t + x0 ∈ G+, therefore G+ \ {0}+ x0 ⊆ G+.

Case 1. t− 2x0 ∈ G+. In this case, t + x0 = (t− 2x0) + 3x0 ∈ G+.
Case 2. 2x0 − t ∈ G+. By the assumption γG1,G+ exists as a C∗-morphism, therefore

there exists g∗ ∈ G+ \ {0} such that

x0 + g∗ ∈ G+, (5.8)

x0 − t + g∗ /∈ G+, (5.9)

−t + g∗ /∈ G+. (5.10)

We assert x0−t+g∗ /∈ −G+; otherwise x0−g∗ = (2x0−t)+(−x0+t−g∗) ∈ G++G+ ⊆ G+,
which implies that x0 ∈ G+, a contradiction. By (5.6), (5.9) and (5.10) we have t−g∗ ∈ G+,
and then t + x0 ∈ G+ follows from (5.8).

Case 3. 2x0 − t /∈ G+ ∪ (−G+). Since x0 /∈ G+, by (5.6) we have t − x0 ∈ G+, so
t + x0 = 2x0 + (t− x0) ∈ G+.

Finally, since G+ \ {0} + x0 ⊆ G+, we know from (5.6) that for any y /∈ G+ ∪ (−G+),
x0 − y ∈ G+. Now if x1 ∈ G such that 2x1 ∈ G+ but x1 /∈ G+, then x1 /∈ G+ ∪ (−G+), so
x0 − x1 ∈ G+. Exchanging x0 with x1, we have x1 − x0 ∈ G+, so x1 = x0.
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Remark 5.1. (1) Let G be a discrete abelian group, G+ a sub-semigroup of G such
that 0 ∈ G+ and G = G+ − G+ (G+ ∩ (−G+) is not necessarily {0}). Given any subset
E with G+ ⊆ E and G+ + E ⊆ E, a natural isometric representation V : G+ → T E

can be induced by V (g) = TE
g for any g ∈ G+. So if T G+ has the universal property

for isometric representations of G+, then there is a C∗-morphism πV : T G+ → T E such
that πV (TG+

g ) = TE
g for any g ∈ G+. Moreover, since G = G+ − G+, we know for any

t ∈ G, t = g − h for some g, h ∈ G+, so πV (TG+
t ) = πV ((TG+

h )∗TG+
g ) = TE

−hTE
g = TE

t , i.e.,
πV = γE,G+ , therefore in this case T G+ has the weakly universal property. In view of this
and [5, Theorem 3.5] we know that the reverse of Theorem 5.1 is also true.

(2) Many examples indicate that the following conjecture seems to be true:

Conjecture. Let G be a discrete torsion-free abelian group, and (G,G+) a partial-
ordered group (for the definition, see (4.2)) which is not totally ordered . If there exists some
x0 /∈ G+ such that 2x0 ∈ G+, then T G+ fails to have the weakly universal property.
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