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TOEPLITZ ALGEBRAS ON DISCRETE GROUPS
AND THEIR NATURAL MORPHISMS***

J. LORCH* XU QINGXIANG**

Abstract

Let G be a discrete group, F1 and FE2 be two subsets of G with E1 C Fs, and
e € Ey. Denote by 7P and 772 the associated Toeplitz algebras. In this paper, it is
proved that the natural morphism v72:F1 from Tt to T2 exists as a C*-morphism if
and only if F» is finitely covariant-lifted by E;. Based on this necessary and sufficient
condition, some applications are made.
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§1. Introduction

The object of the present paper is to study the natural morphisms between Toeplitz
algebras. If G is a discrete group and F C G, one may form the associated Toeplitz
algebra 7F. Given two subsets E; and E, with E; C F,, there is a natural morphism
yF2Er . TE  TE2 In some cases, this morphism fails to be a C*-morphism, or even fails
to be well defined. Our main task is to put forth a necessary and sufficient condition under
which yF2:F1 exists as a C*-morphism.

Toward this end, a technique initiated by E. Park in [2] and generalized in [6] yielded the
finite decomposition condition. However, as shown in [4], while this condition is sufficient
for the existence of ¥#2:1 it is not necessary. In this paper we put forth a more natural
condition, called the finite covariant-lift condition. We will show that this latter condition
is not only sufficient, but also necessary (see Theorem 2.1). Based on this new condition,
some applications also have been made.

The paper is organized in the following way. In Section 2, we give the precise definition
of the finite covariant-lift condition, and show that it is both necessary and sufficient for the
existence of y#2:F1, In Section 3, we show that Toeplitz algebras associated to quasi-ordered
groups have a certain universal property (see Corollary 3.1). In Section 4, we extend certain
results from [4] to the nonabelian case. These results concern the natural morphism between
Toeplitz algebras corresponding to a quasi-ordered group and its induced partially-ordered
group. Using the finite covariant-lift condition, our arguments become much simpler than
those in [4]. Finally, in Section 5 we turn to study Toeplitz algebras on discrete abelian
groups. In [1], G. Murphy proved that if (G, G) is a discrete abelian ordered group, then
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the Toeplitz algebra 7%+ has a universal property for isometric representations of G. As
a generalization, it was proved in [5] that the same property holds for Toeplitz algebras
associated to discrete abelian quasi-ordered groups. In this section, we will show that the
converse is also true (see Theorem 5.1).

§ 2. The Natural Morphisms Between Toeplitz
Algebras on Discrete Groups

Let G be a discrete group and {d,|g € G} be the usual orthonormal basis for ¢*(G),

where
1, if g=nh,
5g(h) =

0, otherwise

for g,h € G. For any g € G, we define a unitary operator u, on ¢?(G) by uy(8n) = dgn
for h € G. For any subset E of G, let £?(E) be the closed subspace of £?(G) generated by
{8,]9 € E}, and let p¥ denote the projection from ¢*(G) onto ¢?(E).

Definition 2.1. The C*-algebra generated by {TQE = pEung | g € G} is denoted by
TF and is called the Toeplitz algebra with respect to E.

Definition 2.2. Let Ey and E5 be two subsets of G with E1 C Es. FEs is said to be
finitely covariant-lifted by F if for any finite subset F' of G, there exists g. € G such that
foranyge F, g€ Ey if and only if g- g« € F1.

Remark 2.1. (i) Let E; and F5 be two subsets of G with Ey C E5. Then Es is finitely
covariant-lifted by FE; if and only if the following three conditions are satisfied:

(1) For any two non-empty subsets F} C Fy and F» C G\ Es, there exists g. € G such
that F} - g. C E7 and Fs-g. C G\ E;. A diagram illustrating such a condition is as follows:

F CEy F, CG\ Es
! !
F1'9*§E1 FQQ*QG\Eh

(2) For any finite non-empty subset F; C Fs, there exists g1 € G such that Fy - g; C Ey;

(3) For any finite non-empty subset Fy C G \ Es, there exists go € G such that F5 - go C
G\ E;.

(ii) If e € F5 and E, is finitely covariant-lifted by Fj, then upon replacing the finite
subset F' by F U {e}, we see that g. may be chosen in E;. Furthermore, if e € Fy, then we
may choose g2 = e, so the condition (3) above is satisfied automatically.

Theorem 2.1. Let G be a discrete group and Fy,Ey C G with By C Es and e € Es.
Then the natural morphism 2P« TEr — TF2 which satisfies yF> 1 (Tfl) = TQE2 for
any g € G, exists as a C*-morphism if and only if Es is finitely covariant-lifted by Fy.

Proof. Suppose 7¥2F1 exists as a C*-algebra morphism. For a contradiction, suppose

that Fs is not finitely covariant-lifted by F;. Then Remark 2.1 implies that one of the
following three cases must occur:

Case 1. There exist two finite non-empty subsets F; C FEo and F» C G\ E3 such that
for any g. € Fn,
if F1 * Jx QEl, then (Fgg*)ﬂEl #@ (21)
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Let F1 = {gl,gg, ce 7gn} and F2 = {h17h27' s ;hm} Set

m n
e (flo-spa) - ([Tns)
i =1

Jj=1 1=
Then

,.)/E27E1 (T) _ (ﬁ(l B T’?IT}EQ ) (HTE’z TEz).

j=1
By (2.1) we know that T' = 0, so yF2:£1(T) = 0. But clearly y#2:51(T) §, = 6, # 0, yielding
a contradiction.

Case 2. There exists a finite subset F' = {g1,92,...,9n } C Es, such that for any
g« € Ey, there exists g;, € F, such that g;, - g« ¢ E1. Let
T = HTE_llTEl.

Then T = 0, but y¥2£1(T) 6, = §. # 0, which is a contradiction.
Case 3. There exists a finite subset F' = {hy,ha, -, hy } € G\ Ea, such that for any
g« € I, there exists hj, € F, such that hj, - g. € Eq. Let
T=1[a-1217).

Then T = 0, but yF2£1(T) §, = §. # 0, which is a contradiction.

Now, for the reverse direction, suppose that F5 is finitely covariant-lifted by F;. Let T
be an operator in 77t of the form

T = Za

i=1 Jj=1

Then
EQ’El Z{Z ]‘_[T}i2 for § €C, gij €G.
i=1 Jj=1
To show that v#2F1 is well defined and can be extended as a C*-morphism, it suffices to

show that ||[vF2F1(T)| < ||T||, as these operators are dense in 7 1.
Given € > 0, there exists ¢ € (%(F,) with finite support such that ||£] = 1, and

[yE2E(T)|| < ||[vF2 21 (T)€|| 4+ e. We may write £ = > 1,05, with 1, € C and hy, € E, for
p=1
p=1,2,--- ,n. Let

F= {(ﬁgj) -hp‘1§zi <, Vi,p}U{hpr}.
1

Then by the assumption there exists g. € E; such that for any g € F, we have g € Fs if
n;

and only if g - g, € E1. So for any ( 11 gij) ~hy, € F,
2.

(T 9i) e Bz ifand only if ( H 9ij) - 9. € B, (2.2)
1
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Let @ = > np0n,q.. Since hy, € Es, we know that h, - g. € E1. Therefore 6 € (?(Ey)
p=1

with [|0]] = ||€]| = 1, and by (2.2) we know that ||[yZ2F1(T)&|| = || T 6]|. Thus
Iy P2 P < Ay P>PUT) €l + e = 1T 0] + e < IT +e.

Since ¢ is arbitrary, it follows that ||y®2 1| < ||T'||, hence v#2:F1 is bounded.

§ 3. The Weakly Universal Property of Toeplitz Algebras

Next, we discuss a certain universal property concerning the natural morphisms which
will be used in the sequel. Throughout this section, G is a discrete group, G4 is a sub-
semigroup of G such that e € G,..

Let E be a subset of G with e € E. We first clarify a necessary condition on F under
which y#G+ exists as a C*-morphism.

If vF:G+ exists as a C*-morphism, then for any g € G,

1-TE,TF =TF ~ TE,TF = 4B:C+(1 - THTE+) = 0.

Therefore (1 -T2 ,T)d;, = 0 for any g € G and h € E. It follows that G- E C E. Since
e € E, we conclude that G C FE.

Definition 3.1. The Toeplitz algebra T+ is said to have a weakly universal property if
for any subset E of G with G, C E and G4 - E C E, v%C+ exists as a C*-morphism.

For any © € G\ Gy, let H[z] = G4 U (G4 - x). Clearly, G4 - H[x] C H[z].

Hiz]

Theorem 3.1. 7%+ has the weakly universal property if and only if Y7#1LG+ exists as

a C*-morphism for any v € G\ G4.

Proof. Clearly the forward implication holds, for G C H[z] and G4 - H[z] C Hlz]. Tt
remains to verify the reverse implication.

Let E be any subset of G satisfying G, C F and G4 -FE C E. Sincee € G4 and G4 is a
sub-semigroup, by Remark 2.1 and Theorem 2.1 it suffices to prove that the following two
conditions are satisfied:

(1) For any two finite non-empty subsets F; C E\ G4 and F» C G\ E, there exists
g« € G4 such that Fy - g, C G4 and Fy - g, C G\ G4.

(2) For any finite non-empty subset F' of E'\ G, there exists g, € G4 such that F-g, C
G+.

First we consider the condition (1). Let Fy = {z1,22, -+ ,2, }. Then Hz1] C E, so
F, C G\ H[zy]. By the assumption y[*1:G+ exists as a C*-morphism, so by Theorem 2.1
we know that there exists g1 € G such that 191 € G4 and Fy-g1 C G\ G4. lf 2991 ¢ G4,
then since G4 - 22 C G4 - E C E, we know that

(Fy - g1) N Hlzag1] = 0.

By the assumption, vH[#2911.G+ exists as a C*-morphism, so there exists gy € G such that
(z291)92 € G4+ and (Fy - g1) - g2 C G\ G4. Let g = g192. Then g € G4 and z; - g € G for
i =1,2; also F5 - g C G\ G4. Pursuing this process, eventually we obtain g, € G such
that Fy - g. C G4 and Fy - g, C G\ G4

The condition (2) is satisfied in a similar way.
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Proposition 3.1. ~H7[.C+ ezists as a C*-morphism for any = € G__i_l \ G4, where

Gyl ={g7'ge Gy}

Proof. Since 27! € G, and G, is a sub-semigroup, we know that for any g € G,
g € Hl[z] if and only if gr—! € G,. Now for any finite non-empty subset F of H|[z], let
g« =1~ 1 € G,. Then for any g € F, g € H[z] if and only if gg. € G

Remark 3.1. There exists (G, G, ) such that v7[*1:C+ fails to be a C*-morphism for
any given x ¢ G4 U G_T_l. For example, consider G' = Z2. Fix ko € Z, and let

Gy ={(0,m)|m =0} U{(L,n)|n=ko} U{(s,t)|s = 2}.
Then G is a sub-semigroup and given g € G4 \{e}, either (0, —1)+g € G4 or (-1, —ko)+g €
Gy. Also, if © ¢ G4 U (—G4), then (0,—1) ¢ H[z] (otherwise —z € (0,1) + G+ C G4, a
contradiction). Similarly, (-1, —ko) ¢ H|[z].

Now suppose that v7[*1:G+ does exist as a C*-morphism. By Theorem 2.1 there exists
g« € G4 such that

T+ g« € G+,
(Ov _1) + g« ¢ G-‘r and (_17_k0) + 9+ ¢ Gy.

Since x ¢ G4, we know ¢, € G4 \ {e}, so either (0,—1) + ¢g. € G4 or (=1, —ko) + g« € G4,
a contradiction to (3.1).

(3.1)

Definition 3.2. A pair (G,G.) is said to be a quasi-ordered group ife € G, G, -Gy C
G4 and G = G4 UG, where G1' = { g7} |g€ Gy} (G,Gy) is referred to as an ordered
group if furthermore G = G4 N G' = {e}.

Let us take a look at Z?, where Z is the integer group. By definition, (Z2,Z, x Z) is
a quasi-ordered group, while the lexico-ordered group (Z2,Z§em) is an ordered group. It
is easy to construct non-abelian quasi-ordered groups by choosing certain upper triangular
invertible matrices over the real numbers.

By Theorem 3.1 and Proposition 3.1, we have the following corollary.

Corollary 3.1. If (G,G) is a quasi-ordered group, then TS+ has the weakly universal
property.

84 . Quasi-ordered Groups and Their Induced
Partially Ordered Groups

This section and the next contain applications of the results discussed in Sections 2 and 3.
In this section we investigate the natural morphism between Toeplitz algebras corresponding
to a quasi-ordered group and its induced partially-ordered group. Results from [4] are
extended nontrivially to the nonabelian case, while at the same time the technique of proof
is greatly simplified.

Definition 4.1. Let G be a discrete group and G4 be a sub-semigroup of G containing
the identity of G. A pair (V, M) is said to be an isometric representation of G4 if M is a
unital C*-algebra and V : G4 — M is a map satisfying

(
(2) V(9)V(h) = V(gh) for any g,h e Gy;
(3) V(g)'V(g) =1 forany g€ Gy;
(4) V(g)V(g)* =1 forany g€ GyNGT'.
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Remark 4.1. If G is a discrete amenable group and (G,G.) is a quasi-ordered group,
then by [5, Theorem 3.5] 7%+ has a universal property for isometric representations of G ;.
More precisely, for any isometric representation (V, M) of G4, there exists a C*-morphism
7y : TG+ — M such that 7rV(TgG+) =V(g) for any g € G.

Throughout the rest of this section, (G,G) denotes a quasi-ordered group such that
Gi =G4 N G;l is non-trivial, that is, Gg is neither equal to {e} nor equal to G.
It is easy to show that

(G \GY) -Gy = (G4 \GY) = Gy - (G4 \ GY), (4.1)

and

G=(G+\GYHUGLU(GL\ G
Let G = (G4 \ G%) U{e}. Then (G,G1) is a partially ordered group in the sense that

e€cGy, G1-G1CG, GiNG{'={e} and G=G, -G;" (4.2)

Proposition 4.1. Suppose that G?|r is infinite. Then

(1) v9+C1 exists as a C*-morphism.

(2) For any M with Gy ¢ M C G4 and Gy - M C M, v*:C1 fails to be a C*-morphism.

(3) If G is amenable, then Kery%+¢1 = K (£2(G1)), where K ((?(G1)) is the ideal of
compact operators on (*(Gy).

Proof. (1) We apply Theorem 2.1. Since G = G - G7'!, it is easy to show that for any
finite subset F' of G, there exists g1 € G such that F'- g1 C G;. So it reduces to show that
for finite non-empty subsets F; C G4 and F» C G\ Gy = (G \GY) ™!, there exists g, € Gy
such that Fy - g. € Gy and Fy - g. C G\ G;.

Toward this end, we define a quasi-order on G by = < y <= 2z~ 'y € G, for z,y € G.
Suppose > = {g; ' |gi € G+ \ G%,i =1,2,--- ,n}. There exists igp € {1,---,n} such that
9i, < g; for all i. Let

E={gi|9; < giy, and g;, < g;} and H = {g[olgﬂgi € E},

and observe {e} C H C GY.

Since GO+ is infinite, we may choose h, € GS)F \ H. If we put g. = gi, - h, then g, €
(G+ \ Gg) . G+ = G+ \Gg Therefore F1 * g% - G+ \ Gi - Gl-

Finally, F»-g. C G\ G1: Given any g;l € Fy, if g; € E, then g;lg* CGY\{e} CG\Gr.
On the other hand, if g; € Fy \ E, then g; 'g;, € G\ G4, 50 g; ' - g. C (G\G4) - E® =
G\ Gy CG\ Gy

(2) If gy € M\ Gy and g2 € G4 \ M, then g1,90 € G \ {e}. Let I} = {g1} € M and
F, ={g2} € G\ M. Note that for any g, € Gy, if g19. € G1, then g, must be in G4 \ G,
which implies that g2g. € G4\ G%. C G;. By Theorem 2.1, we conclude that v*1 fails to
be a C*-morphism.

(3) First, we prove that 7 is irreducible. Let T' € B (¢?(G4)) be such that T'S = ST
for any S € T¢. We prove that T = \ for some A € C. Indeed, for any ¢t € G \ {e},
TthlT(Se = TTthlée =0, so Td, = AJ for some X\ € C. It follows that for any g € Gy,
Tog =TT 0 = TS T = Aoy, 50 T = A,

Second, we show that K (¢2(G1)) C Kery“+¢1. If € G% \ {e}, then clearly 17T51Tf_11
is a projection of rank one. Since 7€ is irreducible, and 0 # 1 — Tflejl € Kery&+¢1 0
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K (¢2(G1)), by [3, Theorem 4.1.11] we know that K (¢2(G;)) C Kery%+ &1, Therefore, a C*-
morphism &+ : T /K (€2(Gy)) — T+ can be induced such that y&+:61 ([TF1]) = TgG+
for any g € G.

The proof will be finished if we show that yG+:G1 is an isomorphism. Define V : G, —
T /K (£2(Gy)) by V(g) = [TgGl] for any g € G4. Then V is an isometric representation
of G4. Since G is amenable, by [5, Theorem 3.5] we know that there is a C*-morphism
my + TG+ — TG /K (£*(Gy)) such that WV(TE,GJr) = [T$] for any g € G4, and since
G = GLUGT', we know that 7Tv(TgG+) = [TgGl] for any g € G. Therefore, yG+:C1 = (my) L

Remark 4.2. In the special case when G is abelian and M is the positive part of an
ordered group containing G, the preceding proposition was obtained in [4] (see [4, Theorem
3.2 and Corollary 3.3]). The proof of [4, Theorem 3.2] relied on a complicated technique
(see [4, Theorem 2.4]). Our current proof is much simpler.

8§ 5. Toeplitz Algebras Associated to Abelian Ordered Groups

Throughout this section, G is a discrete abelian group and G is a sub-semigroup of G
such that 0 € G and G+ NG;' = {0}. It is well known that G admits a total order if and
only if G is torsion-free. So in the following we always assume that G is torsion-free.

Proposition 5.1. Suppose that G is abelian and torsion-free. Then the following two
conditions are equivalent:

(1) (G,G4) is an ordered group;

(2) If x € G, then 2z € G implies that x € G, and TS+ has the weakly universal
property.

Proof. That (1) implies (2) follows immediately from Corollary 3.1. So, we consider (2)
implies (1).

Suppose that v+ exists as a C*-morphism for any £ with 0 € £ and G, +E C E. If
(G,G4) is not an ordered group, then there exists some z € G such that x ¢ G, U (=G4).
Let

H:G+U(G++I)U(G++3I’).

Then 2z ¢ G, (otherwise, by the assumption x € G), 2z ¢ (G4 +2)U (G4 +3x), therefore
20 ¢ H. Let Fy = {x,3x} C H and F» = {22} C G\ H. By hypothesis y:¢+ exists as a
C*-morphism, thus by Theorem 2.1 there exists g. € G such that

r+g. € Gy, 3v+g. € Gy
2z +g. € G\ Gy

—
[N
— ~—

Now (5.1) implies that 2(2z + g«) = (x + ¢«) + (3 + ¢«) € G4, which by hypothesis yields
2z 4 g« € G4, contradicting (5.2).

Example 5.1. Let G = Z2, o and 3 be two real numbers with o < 3. Let
Gy ={(mmn)€Z?| —am+n>0 and —Bm+n<0}.

Toeplitz algebras associated to such a pair (G,G,) were studied in [2]. By the preceding
proposition, we know that there exists some F with Gy C F and G4 + E C F, such that
-G+ fails to be a C*-morphism.
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Lemma 5.1. Suppose 2z € Gy but o & G. If TG+ has the weakly universal property,
then THIG+0] qlso has the weakly universal property, where H|G, o] = G4 U (G4 + x0).

Proof. Let G; be H[G,x]. Then G is a sub-semigroup and zg + G1 C G;. To show
that 7C1 has the weakly universal property, by Theorem 3.1 it suffices to prove that for any
yo & G1, AH1G 190G oxists as a C*-morphism, which in turn by Theorem 2.1 is equivalent
to proving that for any finite collection y1,y2,- - ,yn & H[G1,90] = G1 U (G1 + yo), there
exists g. € G1 such that

Yo+ 9« €G1, but y;+g.¢ Gy forany i=1,2,-- n.

Since g + G1 C G1, we have z¢ + H[G1,yo] € H|[G1,yo], which implies y; — xo ¢ H[G1, yo]
for any ¢ = 1,2,--- ,n. Clearly, Gy C H[G1,y0] and G1 + H[G1,y] C H[G1,y]. By
the assumption ~vH[G1:%].G+ exists as a C*-morphism, hence by Theorem 2.1 (let F =
{Y0,Yi, i — x0, 1 =1,2,-+- ,n}), there exists g. € G4 such that

Yo+« €Gy, Yitg- Gy, yi—x0+9s ¢ Gy
So yo + g« € G and y; + g« € G4 U (20 + G4) = G1.

Lemma 5.2. Suppose that G is torsion-free, 209 € G4 but xg ¢ Gi. If such xg is
unique, then T+ fails to have the weakly universal property.

Proof. In order to obtain a contradiction, suppose that 7+ has the weakly universal
property.

First, note 2(zg +¢t) = 29 + 2t € GL + G4+ C G4 for any t € G4 \ {0}. Since zg is
unique, we have zy +t € G4; hence

$0+G+\{0} C G+.

Second, z¢g € H[G4+,y] = G+ U (G4 +y) for y ¢ G,; otherwise, by the assumption
AHIG+9.G+ exists as a C*-morphism, hence by Theorem 2.1 there exists g, € G4 \ {0} such
that y + g« € G4 but 29 + g« ¢ G4, yielding a contradiction. It follows that

G =Gy U (zo— Gy). (5.3)

Now let G = G4 U(G4 +x) = G U{xo}. By Lemma 5.1 we know that 7 also has the
weakly universal property. We claim (G, G1) must be an ordered group. By Proposition 5.1
it suffices to verify that 2y, € G implies yo € G; for yo € G. First, suppose that 2y = zo.
If yo ¢ G4, then by (5.3) we know that yg = z¢ — ¢ for some ¢ € G4, so xg = 2t € Gy,
which is impossible. Next, suppose that 2yg € G1. If yo ¢ G4, then by the uniqueness of
Zo, Yo = o € G1. Thus (G, Gy) is an ordered group.

Define a total order <y on G by © <; y <= y —x € G1. Since xg ¢ G4 and G| =
Gy U{xo}, we know g —t ¢ Gy for t € G4 \ {0}. Therefore t — ¢ € G1, which means that
To is the minimal positive element in G with respect to <j.

Observe —nxzy ¢ G4 (and hence is not in Gy) for n € N. Otherwise —2nzy € G4 N
(=G4) = {0}, and since G is torsion free, this would imply o = 0, which is impossible.

Finally, by the assumption y“1:G+ exists as a C*-morphism. Using Theorem 2.1 and the
fact that —nzg ¢ G for n € N, there exists g. € G4 \ {0} such that

—x0+ g« ¢ Gy, (5.4)
—2z9 + 9= ¢ G-‘r'
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Since xg is minimal, g. — ¢ € G1. By (5.4) we know that g. — xg = xg, s0 g« = 220, a
contradiction to (5.5).

Theorem 5.1. Suppose that G is torsion-free, and for any sub-semigroup E containing
G, TY has the weakly universal property. Then (G,G ) is an ordered group.

Proof. By Proposition 5.1, it sufficies to verify that for any z¢ € G, 229 € G+ implies
xg € G1. Suppose that xo ¢ G. We will show that z( is unique, and then use Lemma 5.2
to conclude that 7%+ does not have the weakly universal property, which is contrary to the
assumption.
Let
Gl = G+ U (G+ + xo) and G2 = G+ @] (G+ \ {0} + xo).

Then G and G are two sub-semigroups containing G ;. Since Go \ {0} + 9 C G and 72
has the weakly universal property, by Theorem 2.1 we have

G=G2U(xg—Ga) = (G U(—G1)) U (G4 + x0) U (g — Gy). (5.6)

So for any y ¢ G U (—G4.), either y — 29 € G4 or zg —y € G

First, we prove 3z € G,. In fact, by the assumption 471G+ ~7.G+ exists as a C*-
morphism, where H[G4, —x0] = G4+ U (G4 — xg). Therefore there exists g. € G4 \ {0} such
that

—Zo + g« € G+7
_2370 =+ 9x ¢ G+7
—3x0+ 9. ¢ G4 (5.7)

We assert —2xg + g« ¢ —G4; indeed, if —2xg + g, = —t for some t € G, then xg —t =
—20+ g« € Gy, 80 g = (xg —t) +t € G4, yielding a contradiction. Therefore, —2x¢ + g, ¢
G4 U (—G4), hence either (—2x0 4 g«) — 20 € G4 or g — (—2x9 + g«) € G4. By (5.7) we
know 3z — g« € G4, 80 3z9 = (39 — g«) + g« € G4

Next, we prove for any ¢ € G4 \ {0}, t + z¢ € G4+, therefore G4 \ {0} +z¢ C G4.

Case 1. t — 229 € G4. In this case, t + x¢ = (t — 2z9) + 3z € G+.
Case 2. 2x¢ —t € G. By the assumption 7“1:¢+ exists as a C*-morphism, therefore
there exists g. € G4 \ {0} such that

2o + g. € Gy, (5.8)
To—t+ G ¢ G+a .
g ¢ G (5.10)

We assert g —t+g. ¢ —G.; otherwise xg— g, = (2z0—t)+(—20+t—g«) € G4+ +G4+ C G,
which implies that 2o € G, a contradiction. By (5.6), (5.9) and (5.10) we have t —g. € G,
and then ¢t + z¢ € G4 follows from (5.8).

Case 3. 2x0—t ¢ G+ U (—G4). Since g ¢ G4, by (5.6) we have t — zg € G4, so
t+x9g=2x0+ (t — x()) € G+.

Finally, since G4 \ {0} + 2o C G4, we know from (5.6) that for any y ¢ G4+ U (—G4),
xg —y € G4. Now if 21 € G such that 227 € G4 but 1 ¢ G4, then 21 ¢ G4 U (—G4), so
xo — x1 € G,. Exchanging x¢ with x1, we have 1 — z¢ € G, so x1 = x¢.
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Remark 5.1. (1) Let G be a discrete abelian group, G4 a sub-semigroup of G such
that 0 € G4 and G = G4 — G4 (G4 N (—G4) is not necessarily {0}). Given any subset
E with Gy C E and G4 + E C E, a natural isometric representation V : G4 — TE
can be induced by V(g) = TgE for any ¢ € G,. So if T+ has the universal property
for isometric representations of G';, then there is a C*-morphism 7y : 7¢+ — T such
that WV(TgGJr) = Tf for any g € G;. Moreover, since G = G1 — G4, we know for any
t € G, t=g—h for some g,h € G4, so Wv(TtG+) = WV((T}?Jr)*TgG*) =TETF =TF, ie,
v = vEC+ | therefore in this case 7¢+ has the weakly universal property. In view of this
and [5, Theorem 3.5] we know that the reverse of Theorem 5.1 is also true.

(2) Many examples indicate that the following conjecture seems to be true:

Conjecture. Let G be a discrete torsion-free abelian group, and (G,G4) a partial-
ordered group (for the definition, see (4.2)) which is not totally ordered . If there exists some
xo ¢ Gy such that 2z € G, then TC+ fails to have the weakly universal property.
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