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SEMI-DEFINITE RELAXATION ALGORITHM
FOR SINGLE MACHINE SCHEDULING WITH

CONTROLLABLE PROCESSING TIMES

CHEN Feng∗ ZHANG Liansheng∗∗

Abstract

The authors present a semi-definite relaxation algorithm for the scheduling problem
with controllable times on a single machine. Their approach shows how to relate this
problem with the maximum vertex-cover problem with kernel constraints (MKVC).
The established relationship enables to transfer the approximate solutions of MKVC
into the approximate solutions for the scheduling problem. Then, they show how to
obtain an integer approximate solution for MKVC based on the semi-definite relaxation
and randomized rounding technique.

Keywords Scheduling with controllable times, Semi-definite programming, Ap-
proximation algorithm

2000 MR Subject Classification 90B35, 90C27, 68Q25

§ 1 . Introduction

Scheduling problems with controllable times on a single machine can be stated as follows.
Given a set of n jobs J = {1, 2, · · · , n}. Each job j ∈ J has a weight Wj ∈ Z+ and a normal
processing time pj ∈ Z+. The processing times of jobs are controllable in the following
manner. The normal processing time of job j can be reduced by up to uj units (uj ∈ z+

and uj ≤ pj) if its processing is speeded up. Each unit reduction of processing time of job
j requires a cost of cj due to the fact that some additional resources are necessary for the
speedup. In a given schedule , tj denotes the reduction of processing time and Pj = pj − tj
the actual processing time of job j. Let Cj denote the completion time of job j. Our goal is
to find a schedule of the jobs and a processing time reduction tj (tj ≤ uj) for each job j such
that the total cost including the total weight completion time of jobs and the total cost of
speedup, i.e.,

∑
j∈J

wjCj+
∑
j∈J

cjtj , is minimum, which can be denoted as 1/cpt/
∑

wjCj+cjtj ,

where the notion “cpt” stands for “controllable processing times”.
The problem 1/cpt/

∑
wjCj + cjtj is NP-hard (see [1]). Vickson [2] shows that for the

problem 1/cpt/
∑

wjCj + cjtj , there is an optimal schedule that satisfies the following all-
or-one property: the processing time of each job j ∈ J is either fully reduced or not reduced
at all, i.e., tj ∈ {0, uj}, and its actual processing time Pj ∈ {pj , pj − uj}. Huang and Zhang
[3] give a polynomial time algorithm for 1/cpt/

∑
wjCj + cjtj with uj ≡ u and cj ≡ c.
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Since the seminar work of Goemans and Williamson [4] for MAX-CUT, semidefinite
programming (SDP) relaxations have recently proved useful in obtaining improved approxi-
mation algorithms for several combinatorial problems, including MAX2SAT (see [4]), MAX
k-CUT and MAX BISECTION (see [5]), non-convex quadratic (see [6]), quadratic program-
ming (see [7]) and so on. A review is given in [8].

Semi-definite programming (SDP) can be stated as follows:

min C ·X.

s.t. Ai ·X = bi,

X º 0.

where, C, Ai (i = 1, · · · , m) are n× n real symmetric matrices, and Ai (i = 1, 2, · · · ,m) are
linear independent, b ∈ Rm, A · B =

∑
i,j

AijBij = Tr(AT B) denotes the inner product of

matrix A,B; X º 0 represents X is a semi-definite matrix. Semi-definite programming can
be solved by ellipsoid algorithm (see [9]) and interior-point polynomial-time methods (see
[?]).

It is known that Skutella is the first researcher who has successfully used the convex and
semidefinite programming techniques to design the approximation algorithms for schedul-
ing. In [?], Skutella presents a 3

2 -approximation for R//
∑

wjCj and 1.2752-approximation
for R2//

∑
wjCj . Inspired by the paper, Zhang, Tang and Chen [?] give a 3/2 approxima-

tion algorithm for a general problem based on convex quadratic programming relaxation,
1/cpt/

∑
wjCj + cjtj , as a special case, can also be solved by the methods. Recently, Xu

[?] also used the same technique occurring in [?] to get an improvement algorithm to 1.27-
approximation for 1/cpt/

∑
wjCj + cjtj .

Although it is difficult for us to solve minimum combinatorial optimization problems
directly by the technique of semi-definite programming relaxation, Skutella [?] gets a 1.122-
approximation for P2//

∑
wjCj by translating the problem P2//

∑
wjCj into a Max cut

problem. In this paper, we use the similar idea to develop a semi-definite relaxation algo-
rithm for 1/cpt/

∑
wjCj + cjtj .

This paper is organized as follows. In Section 2 we show that the problem 1/cpt/
∑

wjCj

+cjtj is equivalent to a maximum vertex-cover problem with kernel constraints (MKVC). In
Section 3, we point out that the algorithm for (MKVC) can be employed to solve the problem
1/cpt/

∑
wjCj + cjtj and has a better performance under some reasonable assumptions.

§ 2 . Equivalence of Two Problems

In the section, we will show that the problem 1/cpt/
∑

wjCj + cjtj is equivalent to
the maximum vertex-cover problem with kernel constraints which can be stated as follows.
Let G = (V,E) be an undirected graph where V = {1, 2, · · · , n} is the set of vertexes, E
is the set of edges. Given kernel sets K1,K2, · · · ,Km ⊂ V , each kernel set has just two
elements. There are weights wij = wji ∈ Z+ on edge (i, j) ∈ E and each vertex has a weight
wi ∈ Z+. The problem is to determine a subset S ⊂ V such that the sum of total weight
of the edges covered by S and the total weight of the vertex in S is maximized with kernel
constraints, i.e., just one element of Ki will be covered by S. We will denote this problem
by MKVC. Without loss of generality, we assume that no two kernel sets have common
element, otherwise there is not a feasible solution for MKVC. Let

xi =

{
1, if i ∈ S,

0, if i 6∈ S.
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Then the problem MKVC can be formulated as follows:

MKVC : max
S⊂V

∑

i or j∈S, i<j

wij +
∑

i∈S

wi

s.t. xe + xf = 1, e, f ∈ Ki, i = 1, · · · ,m,

xj ∈ {0, 1}, j = 1, · · · , n.

Based on the property of all-or-none, we can see that the 1/cpt/
∑

wjCj + cjtj is equiv-
alent to the following problem with non-controllable processing times. Given a set of 2n
jobs H = {1, 2, · · · , 2n}. Each job j ∈ H has a weight vj and a non-controllable process-
ing time Tj if it is processed on machine, where vj = wj , Tj = pj − µj if j ≤ n and
vj = wj−n, Tj = pj−n if j > n. If job j ∈ H is processed on the single machine, it incurs a
processing cost dj with dj = cjµj if j ≤ n and dj = 0 if j > n. The problem is to select a
subset of n jobs K ⊂ H and find a schedule for these jobs such that, for each j = 1, · · · , n,
exactly one of the two jobs {j, n+ j} is selected, and the sum of the total weight completion
time and the total processing cost of these jobs is minimum. We will focus on this equivalent
problem in the remainder of the paper.

We will show how an approximation algorithm for MKVC translates into an approxi-
mation algorithm for 1/cpt/

∑
wjCj + cjtj . Firstly, we associate with each instance of the

1/cpt/
∑

wjCj + cjtj problem a complete undirected G = (V,E) in the following way: the
vertex set V = {1, 2, · · · , 2n} corresponds to the job set {J1, J2, · · · , J2n}; and the weight
wij of the edge (i, j) ∈ E is given by

wij = min{viTj , Tivj} for i 6= j.

The reason for this setting is, for any single machine scheduling problem with our objective
function, the optimal schedule will assign the jobs with the order of nondecreasing Tj/vj .
Moreover, let the weight wi of vertex i be viTi+di. Given kernels Ki = {i, n+i}, i = 1, · · · , n,
we have constructed an instance of MKVC.

It is easy to see that any feasible schedule can be interpreted as a partition (S, V \S),
where S corresponds to the constraints that exactly one of the two jobs {j, n+j} is selected.
Moreover, the total weighted completion time of a feasible schedule can be represented by
the total weights of the edges with both endpoints in subset S plus a term

∑
j∈S

vjTj + dj .

One can verify

c(E) +
∑

j∈S

(vjTj + dj) =
∑

j∈S

(vjCj + dj) + W (V \S)−
∑

j∈V \S
(vjTj + dj), (2.1)

where c(E) =
∑

1≤i<j≤n

wij is the total weights of all edges of E; Cj is the completion time

of job Jj in the optimal schedule corresponding to the set S; and W (V \S) denotes the
objective function value corresponding to V \S for the above instance of MKVC, i.e.,

W (V \S) =
∑

i or j∈V \S
wij +

∑

j∈V \S
(vjTj + dj).

Furthermore, the equation (??) can be reformulated as

c(E) +
n∑

j=1

(vjTj + dj) =
∑

j∈S

(vjCj + dj) + W (V \S). (2.2)
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Note that, for a given instance of the 1/cpt/
∑

wjCj + cjtj , c(E) +
∑

1≤j≤2n

(vjTj + dj) is

a constant. Therefore, minimizing the total weighted completion time
∑
j∈S

(vjCj + dj) of the

schedule is equivalent to maximizing the vertex cover value of W (V \S). This illustrate that
any algorithm for MKVC can be employed to solve a minimum problem 1/cpt/

∑
wjCj+cjtj .

The minimal value of 1/cpt/
∑

wjCj +cjtj problem is denoted as Z∗ and the maximal value
of the corresponding W (V \S) is denoted as W ∗.

From the equivalence of the above two problems, we can claim that MKVC is NP-hard,
because of the NP-hardness of 1/cpt/

∑
wjCj + cjtj .

§ 3 . Approximation Algorithm

We should note that the problem MKVC presented in this paper differs from the tradi-
tional Max-Vertex-Cover (MVC) models, which was introduced by Petrank [?]. Although
no results on this problem have been reported in the literature, it is easily to know that
MKVC can be reduced to the MAX 2-SAT problem. Since that, we can also employ the
algorithms for MAX 2-SAT to solve MKVC with the same approximation ratio. Based on
semi-definite relaxation, Shiro Matuura1 and Tomomi Matsui [?] refined the rotation tech-
nique and proposed a 0.935-approximation for MAX 2-SAT which beats the 0.9310900680
approximation in [?]. For the reasons of brevity, here we omit the details of the algorithm.
For convenience, we denote the algorithm occurring in [?] as (SDP).

Let

k =
c(E) +

∑
1≤j≤2n

(VjTj + dj)

W ∗ .

We have

Theorem 3.1. The expect performance ratio of the semi-definite programming relaxation
algorithm (SDP) is at least 1 + 0.065

k−1 for 1/cpt/
∑

wjCj + cjtj.

Proof. Let W (V \S̄) corresponds to the solution by (SDP) such that E(W (V \S̄)) ≥
k−0.935

k−1 W ∗. By (??), we can see that

∑

j∈S

(vjCj + dj) + W (V \S̄) = Z∗ + W ∗,

then
E

( ∑

j∈S

(vjCj + dj)
)

= Z∗ + W ∗ − E(W (V \S))

≤ Z∗ + W ∗ − 0.935W ∗

≤ Z∗ + 0.065W ∗

≤
(
1 + 0.065

W ∗

Z∗

)
Z∗

≤
(

1 + 0.065
W ∗

c(E) +
∑

1≤j≤2n

(VjTj + dj)−W ∗

)
Z∗

=
(
1 + 0.065

1
k − 1

)
Z∗.
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This completes the proof.

Let WL
p = min{wipj : i, j = 1, · · · , n}, WU

p = max{wipj : i, j = 1, · · · , n} and rs = W U
p

W L
P

.

Theorem 3.2. If rs ≤ 1.29, then the expect performance ratio of algorithm SM for
1/cpt/

∑
wjCj + cjtj is at least 1.27 for sufficiently large n.

Proof. Note that

Z∗

W ∗ ≥
C2

nWL
p

C2
2nWU

p − C2
nWL

p

=
n(n− 1)WL

p

2n(2n− 1)WU
p − n(n− 1)WL

p

=
n2 − n

(4rs − 1)n2 − (2rs − 1)n
.

As n increases, n2−n
(4rs−1)n2−(2rs−1)n approaches 1

4rs−1 and therefore

Z∗

W ∗ ≥
1

4rs − 1
.

Moreover

k =
c(E) +

∑
1≤j≤2n

(VjTj + dj)

W ∗

=
Z∗ + W ∗

W ∗ = 1 +
Z∗

W ∗

≥ 1 +
1

4rs − 1
.

By simple calculation, Theorem ?? gives the desired result.

It should be noted that the above randomized algorithm (SDP) (see [?]) can be deran-
domized in polynomial time following the method of conditional probabilities, see [?] for
details.

From the proof of the theorem, we can see that the expect approximation ratio of the
algorithm (SDP) for 1/cpt/

∑
wjCj+cjtj is related to the parameter k. As k is increased, we

can obtain better algorithm for the problem 1/cpt/
∑

wjCj + cjtj . Though the lower bound
of k in the theorem is likely to be true for most instances, we can not determine the lower
bound of k exactly. In fact, we try to give the bound of k depending on the bound given
by the convex quadratic relaxation of 1/cpt/

∑
wjCj + cjtj . It is a pity that no satisfying

constant bound can be found. On the other hand, it is likely that we can not get a satisfying
bound because k may become very closed to 1 with the value of d increasing to very large.
However, if we assume that the {wipj |i, j = 1, · · · , n} values are not too disparate, i.e., rs is
not too large, the algorithm (SDP) is guaranteed to have the worst performance ratio better
than 1.27. We strongly believe that the algorithm (SDP) will performance better for most
instances of single machine scheduling with controllable processing times.
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