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Abstract

The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa-
tions, which can be called attractor bifurcation. It is proved that as the control pa-
rameter crosses certain critical value, the system bifurcates from a trivial steady state
solution to an attractor with dimension between m and m + 1, where m + 1 is the
number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory
presented in this article generalizes the existing steady state bifurcations and the Hopf
bifurcations. It provides a unified point of view on dynamic bifurcation and can be
applied to many problems in physics and mechanics.
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§ 1 . Introduction

A key problem in the study of problems in mathematical physics and mechanics is to
understand and predict patterns and their transitions/evolutions. In fluid mechanics, for
instance, it is important to study the periodic, quasi-periodic, aperiodic, and fully turbulent
characteristics of flows; bifurcation theory enables one to determine how qualitatively differ-
ent flow regimes appear and disappear as control parameters vary; it provides us, therefore,
an important method to explore the theoretical limits of predicting these flow regimes.

As we know, the steady state bifurcation to multiple equilibria and to periodic solutions
(the Hopf bifurcation) are two typical bifurcations for nonlinear evolution equations (see
among others, [1, 9]). In this article, we introduce a new notion of dynamic bifurcation,
which we call attractor bifurcation. We show that as the control parameter crosses certain
critical value when there are m + 1 (m ≥ 0) eigenvalues crossing the imaginary axis, the
system bifurcates from a trivial steady state solution to an attractor with dimension between
m and m + 1, provided the critical state is asymptotically stable. This new bifurcation
concept generalizes the aforementioned known bifurcation concepts.
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There are a few important features of the attractor bifurcation. First, the bifurcation
attractor does not include the trivial steady state, and is stable, hence it is physically
important.

Second, the attractor contains a collection of solutions of the evolution equation, includ-
ing possibly steady states, periodic orbits, as well as homoclinic and heteroclinic orbits.

Third, it provides a unified point of view on dynamic bifurcation and can be applied to
many problems in physics and mechanics. One of the main advantages of the main theorems,
Theorems 3.1 and 4.3, is that the verification of the eigenvalue conditions is much easier
than classical bifurcation theorems in many application problems, including applications
to Bénard problem in fluid mechanics, Ginzburg-Landau equations of superconductivity,
and the Kuramoto-Sivashinsky equation for combustion theory, which will be reported in
subsequent papers.

Fourth, from the application point of view, the Krasnoselskii-Rabinowitz theorem re-
quires the number of eigenvalues m + 1 crossing the imaginary axis being an odd integer,
and the Hopf bifurcation is for the case where m+1 = 2. However, the new attractor bifur-
cation theorem obtained in this article can be applied to cases for all m ≥ 0. In addition,
the bifurcated attractor, as mentioned earlier, is stable, which is another subtle issue for
other known bifurcation theorems. Of course, the price to pay here is the verification of the
asymptotic stability of the critical state, in addition to the analysis needed for the eigenval-
ues problems in the linearized problem. On the other hand, as we shall see in subsequent
articles, both the asymptotic stability of the critical state and the attractor bifurcation can
be derived for many important physical problems including the Bénard problem and the
Taylor problem in fluid mechanics, Ginzburg-Landau equations of superconductivity, and
the Kuramoto-Sivashinsky equation (see [7, 8]).

Fifth, the main idea of the bifurcation theory presented in this article comes from an orbit
stability lemma, Lemma 3.1, first introduced and used by the authors in [6], which plays also
important roles in authors’ recent work on boundary layer separations. The main results
are achieved by using the center manifold theorem for both finite and infinite dimensional
systems.

This article is organized as follows. Section 2 provides some preliminaries on invari-
ant sets, attractors, center manifolds and stable manifolds. Sections 3 and 4 provide the
bifurcation theory in both finite and infinite dimensional cases.

§ 2 . Preliminaries

2.1. Invariant sets and attractors
Let H and H1 be two Hilbert spaces, and H1 ↪→ H be dense inclusion. A linear mapping

L : H1 → H is called a completely continuous field if L = A + B where A : H1 → H is a
linear homeomorphism and B : H1 → H is a linear compact operator.

Consider the following abstract nonlinear evolution equation⎧⎨⎩
du

dt
= Lλu + G(u, λ),

u(0) = ϕ,
(2.1)
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where λ ∈ R is a parameter, and

Lλ : H1 → H is a linear completely continuous field,

G( · , λ) : H1 → H is a continuous operator,

G(x, λ) = o(‖x‖H1), ∀λ ∈ R.

Let {S(t)}t≥0 be an operator semigroup generated by Equation (2.1), which enjoys the
following properties:

(1) For any t ≥ 0, S(t) : H1 → H is a continuous linear operator;
(2) S(0) = I, the identity on H1;
(3) S(t + s) = S(t) · S(s), for any t, s ≥ 0.
Then the solution of (2.1) can be expressed as

u(t, ϕ) = S(t)ϕ, ∀t ≥ 0.

Definition 2.1. A set Σ ⊂ H1 is called an invariant set of (2.1) if S(t)Σ = Σ (∀ t ≥ 0).
An invariant set Σ ⊂ H1 of (2.1) is called an attractor if Σ is compact and there exists a
neighborhood U ⊂ H1 of Σ such that for any ϕ ∈ U , we have

dist(u(t, ϕ), Σ) −→ 0 in H-norm as t → ∞. (2.2)

The largest open set U satisfying (2.2) is called the basin of attraction of Σ.

For a set Σ ⊂ H1, we define the ω-limit set of Σ by

ω(Σ) =
⋂
s≥0

⋃
t≥s

S(t)Σ,

where the closures are taken in H . Likewise, when it exists, the α-limit set of Σ ⊂ H1 is
defined by

α(Σ) =
⋂
s≥0

⋃
t≥s

S(−t)Σ.

The following lemmas can be found in [2] or [11].

Lemma 2.1. Suppose that for some subset Σ ⊂ H1, Σ 	= 0, and for some t0 > 0, the
set

⋃
t≥t0

S(t)Σ is relatively compact in H. Then ω(Σ) is nonempty, compact, and invariant.

Similarly, if the sets S(−t)Σ (t → 0) are nonempty and for some t0 > 0,
⋃

t≥t0

S(−t)Σ is

relatively compact, then α(Σ) is nonempty, compact, and invariant.

Definition 2.2. Let Σ ⊂ H1 be a subset and U be an open set containing Σ. U is called
an absorbing set of Σ if the orbit of any bounded set of U enters into Σ after a certain time
(which may depend on the set). Namely, for any bounded B0 ⊂ U , there exists a t0 = t0(B0)
such that for all t ≥ t0(B0), S(t)B0 ⊂ Σ.

Lemma 2.2. Suppose that the semigroup {S(t)}t≥0 is uniformly compact for t large,
i.e., for any bounded set B there exists t0 such that

⋃
t≥t0

S(t)B is relatively compact in H.
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We also assume that there exist an open set U and a bounded set B of U such that B is
absorbing in U . Then the ω-limit set of B, Σ = ω(B) is an attractor which attracts the
bounded sets of U , and it is the maximum attractor in U . Furthermore, if U is connected,
then Σ is connected, too.

2.2. Center manifolds and stable manifolds in Rn

Consider a system of ordinary differential equations⎧⎪⎨⎪⎩
dx

dt
= Ax + G1(x, y, λ),

dy

dt
= By + G2(x, y, λ),

(2.3)

where x ∈ Rm, y ∈ Rn−m (0 < m ≤ n), A and B are the m×m and (n−m)×(n−m) matrices
respectively, Gi(x, y, λ) (i = 1, 2) are continuous on λ, and Cr (r ≥ 1) on (x, y) ∈ Rm×Rn−m.
Moreover

Gi(x, y, λ) = o(|x|, |y|), ∀λ ∈ R (i = 1, 2). (2.4)

The following is the center manifold theorem (see among others [1]).

Theorem 2.1. Suppose that all eigenvalues of A have non-negative (resp. non-positive)
real parts, and all eigenvalues of B have negative (resp. positive) real parts. Then for the
system (2.3) with the condition (2.4), there exists a Cr function

h( · , λ) : D −→ R
n−m, D ⊂ R

m a neighborhood of x = 0 ,

such that h(x, λ) is continuous on λ, and
( i ) h(0, λ) = 0, h′

x(0, λ) = 0;
( ii ) the set

Mλ = {(x, y) | x ∈ D ⊂ R
m, y = h(x, λ)},

called the center manifold, is a local invariant manifold of (2.3);
(iii) if Mλ is positive invariant (resp. negative invariant), namely z(t, ϕ) ∈ Mλ (resp.

z(−t, ϕ) ∈ Mλ), ∀ t ≥ 0, then Mλ is an attracting set of (2.3) (resp. a repelling set), i.e.,
there is a neighborhood U ⊂ Rn of Mλ such that for ϕ ∈ U we have

lim
t→∞dist(z(t, ϕ), Mλ) = 0 (resp. lim

t→∞dist(z(−t, ϕ), Mλ) = 0)

where z(t, ϕ) = (x(t, ϕ), y(t, ϕ)) is the solution of (2.3) with the initial value z(0, ϕ) = ϕ.

Property (i) means that the center manifold Mλ ⊂ Rn is tangent to the eigenspace Rm

of A at z = (x, y) = 0.
Although, as we know, the local center manifold Mλ may not be unique, the following

theorem makes it applicable (see [1]).

Theorem 2.2. There is a neighborhood U ⊂ Rn of z = 0 such that every invariant set
of (2.3) in U belongs to the intersection of all local center manifolds in U .

In the following, we introduce the stable manifold theorem (see [4]), which will be used
in the attractor bifurcation theorems.
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Theorem 2.3. Let all eigenvalues of A have positive real parts, and all eigenvalues of
B have negative real parts. Then there exist two unique manifolds Mu and M s, called the
unstable manifold and stable manifold of (2.3) respectively, which are characterized by

Wu =
{
z ∈ R

n
∣∣∣ lim

t→∞S(−t)z = 0
}
,

W s =
{
z ∈ R

n
∣∣∣ lim

t→∞S(t)z = 0
}
,

where S(t) is the semigroup generated by (2.3). Moreover, Wu and W s are tangent to the
eigenspaces of A and B respectively at z = 0:

Tz=0W
u = R

m, Tz=0W
s = R

n−m,

therefore, the stable manifold W s and the unstable manifold Wu are transversal at z = 0.

§ 3 . Finite Dimensional Vector Fields

3.1. Attractor bifurcation
We consider the dynamic bifurcation problem for the finite dimensional systems given

by
dx

dt
= Aλx + G(x, λ), λ ∈ R, x ∈ R

n (n ≥ 2), (3.1)

where G : Rn × R → Rn is Cr (r ≥ 1) on x ∈ Rn, and continuous on λ ∈ R,

G(x, λ) = o(|x|), ∀ λ ∈ R, (3.2)

and

Aλ =

⎛⎜⎝a11(λ) · · · a1n(λ)
...

...
an1(λ) · · · ann(λ)

⎞⎟⎠ (3.3)

is an n × n matrix, aij(λ) are continuous functions of λ.
Let all eigenvalues (counting the multiplicities) of (3.3) be denoted by

β1(λ), · · · , βn(λ). (3.4)

We know that the eigenvalues βi(λ) (1 ≤ i ≤ n) are continuous on λ.

Definition 3.1. (1) We say that the system (3.1) bifurcates from (x, λ) = (0, λ0) an
invariant set Ωλ with 0 /∈ Ωλ, if there exists a sequence of invariant sets {Ωλn} such that
lim

n→∞λn = λ0, lim
n→∞ d(Ωλn , 0) = lim

n→∞ max
x∈Ωλn

|x| = 0.

(2) If the invariant sets Ωλ are attractors of (3.1), then we call attractor bifurcation.
(3) If the invariant sets Ωλ are attractors of (3.1), which are homotopic to an m-

dimensional sphere, then we say that the system (3.1) has an Sm-attractor bifurcation at
(0, λ0).

We remark here that the classical definition of bifurcation from the trivial solution u =
0 of an evolution equation (3.1) at λ0 is as follows. The evolution equation (3.1) has a
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bifurcation from the trivial solution u = 0 at λ = λ0 if there are a sequence λn 	= λ0 with
λn → λ0 and a sequence of solutions Σn of (3.1) such that 0 /∈ Σn and

d(Σn, 0) → 0, as n → 0.

In the classical steady state bifurcation, Σn contains steady state solutions, and in the
Hopf bifurcation, Σn contains a periodic solution. It is easy to see that our definition
of bifurcation, Definition 3.1, fits this classical definition, and the corresponding Σn is an
invariant set of (3.1). It is this new way of looking at Σn that leads to wide applications of
the theory, which will appear in subsequent articles.

Assume

Re βi(λ)

⎧⎪⎨⎪⎩
< 0, λ < λ0,

= 0, λ = λ0, if 1 ≤ i ≤ m + 1,

> 0, λ > λ0,

(3.5)

Re βj(λ0) < 0, if m + 2 ≤ j ≤ n, (3.6)

where 0 ≤ m ≤ n − 1.
We denote the eigenspace of Aλ at λ0 by

E0 = {x ∈ R
n | Ak

λ0
x = 0, k = 1, 2, · · · }.

It is known that dimE0 = m + 1.
The main results in this section are the following Sm-attractor bifurcation theorems for

the finite dimensional system (3.1).

Theorem 3.1. (Attractor Bifurcation Theorem) Assume (3.2)–(3.6). If x = 0 is locally
asymptotically stable for (3.1) at λ = λ0, then the following assertions hold true.

(1) The system (3.1) bifurcates from (0, λ0) an attractor Ωλ with m ≤ dim Ωλ ≤ m +
1,which is connected when m ≥ 1;

(2) Ωλ is a limit of a sequence of (m + 1)-dimensional annulus Mk with Mk+1 ⊂ Mk,

i.e., Ωλ =
∞⋂

k=1

Mk;

(3) If Ωλ is a finite simplicial complex, then Ωλ is a deformation retract of (m + 1)-
annulus; hence Ωλ has the homotopy type of Sm;

(4) For any xλ ∈ Ωλ, xλ can be expressed as

xλ = zλ + o(|zλ|), zλ ∈ E0;

(5) If the singular points of (3.1) in Ωλ are finite, then we have the following index
formula ∑

x∈Ωλ

ind[−(Aλ + G), x] =

{
2, m = even ,

0, m = odd .

Theorem 3.2. Assume (3.2)–(3.6). If x = 0 is globally asymptotically stable for (3.1)
at λ = λ0, then for any bounded open set U ⊂ R

n with 0 ∈ U , there is an ε > 0 such that
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as λ0 < λ < λ0 + ε, the attractor Ωλ of (3.1) bifurcated from (0, λ0) attracts U/Γ, i.e., for
any x0 ∈ U/Γ the solution x(t, x0) with initial value x(0, x0) = x0 satisfies

lim
t→∞dist(x(t, x0), Ωλ) = 0,

where Γ ⊂ R2 is the stable manifold of x = 0 with dim Γ = n−m− 1. Furthermore, if (3.1)
has global attractor for any λ, then we can take U = Rn.

Remark 3.1. Theorem 3.1 can be regarded as a united version of the two types of static
and dynamic bifurcations. When m = even, the Sm-attractor Ωλ must contain singular
points of the vector field Aλ + G, which is an assertion of the Krasnoselskii theorem. When
m = 1 and β1(λ0) = β̄2(λ0) = i, this theorem gives the classical Hopf bifurcation.

Remark 3.2. In general, the attractors Ωλ in Theorem 3.2 are not global. For example,
the system

dx

dt
= λx − x3(1 − e−1/x4

), x ∈ R
1,

satisfies the conditions of Theorem 3.2 with λ0 = 0. But, for any λ > 0 sufficiently small,
Ωλ contains two singular points x1,2 ∼ ±λ1/2 of the function λx − x3(1 − e−1/x4

). Then it
is easy to see that Ωλ is certainly not a global attractor since there are two more singular
points x̄1,2 ∼ ±λ−1/2, bifurcated from infinity, which are not in Ωλ.

3.2. Stability of attractors

In order to prove the attractor bifurcation theorems, we first introduce the stability
theorem of attractors, which is crucial in the proof of Theorems 3.1 and 3.2. To this end,
we start with a technical lemma on stability of extended orbits for vector fields.

Let v ∈ Cr(U, Rn) be a vector field where U ⊂ Rn is an open set. A curve γ ⊂ U is
called an extended orbit of v, if γ is a union of curves γ =

⋃
i=1

γi such that either γi is an

orbit of v, or γi consists of singular points of v, and if γi and γi+1 are orbits of v, then the
ω-limit set of γi is the α-limit set of γi+1,

ω(x) = α(y), ∀x ∈ γi, y ∈ γi+1.

Namely, endpoints of γi are singular points of v, and the starting endpoint of γi+1 is the
finishing endpoint of γi (see Fig. 3.1).

p

p

p
γ1

γ2

γi

1

2

i

Fig. 3.1



192 MA, T. & WANG, S. H.

Then we have the following stability lemma of extended orbits. The result of this lemma
has been proved and used in Step 2 of the proof of Lemma 4.5 in [6]. Here we only state the
result as a lemma.

Lemma 3.1. (Stability of Extended Orbits) (cf. [6]) Let vk ∈ Cr(U, Rn) be a sequence
of vector fields with lim

k→∞
vk = v0 ∈ Cr(U, Rn). Suppose that γk ⊂ U is an extended orbit of

vk with finite length uniformly with respect to k, and the starting points pk
1 of γk converge

to p1, then the extended orbits γk of vk converge, up to taking a subsequence, to an extended
orbit γ of v0 with starting point p1.

Remark 3.3. The stability lemma of extended orbits is useful for orbit analysis of vector
fields, which is a basic tool to solve some problems in fluid dynamics.

The following is the stability theorem of attractors.

Theorem 3.3. Let vn ∈ Cr(U, Rn) (r ≥ 1) be a sequence of vector fields such that
lim

n→∞ vn = v0 ∈ Cr(U, Rn). Let Σ0 ⊂ U be an attractor of v0 and D ⊂ U be the basin of
attraction for Σ0. Then the following assertions hold true.

(1) For each n sufficiently large, vn has an attractor Σn ⊂ D, and

lim
n→∞ d(Σn, Σ0) = lim

n→∞ sup
x∈Σn

dist(x, Σ0) = 0.

(2) If the basin of attraction D ⊂ U of Σ0 is unbounded, then for any bounded open set
O ⊂ D there is an N sufficiently large such that O is in the basins of attraction of Σn for
all n > N .

Proof. Let D0 ⊂⊂ D be a bounded open set with Σ0 ⊂ D0. Then the ω-limit set for v0

of D0 is the attractor Σ0, i.e.,
Σ0 = ω(D0). (3.7)

To complete the proof, by Lemma 2.2 it suffices to prove that⎧⎪⎪⎨⎪⎪⎩
lim

n→∞ d(ωn(D0), Σ0) = lim
n→∞ sup

x∈ωn(D0)

dist(x, Σ0) = 0,

ωn(D0) =
⋂

τ≥0

⋃
t≥τ

Sn(t)D0,
(3.8)

where Sn(t) is the operator semigroup generated by vn.
By Lemma 2.1, ωn(D0) is an invariant set of vn. If (3.8) is false, then at least one of the

following two cases must occur:
(a) There exist a number δ > 0 and points pn ∈ ωn(D0) such that pn → p0 ∈ Σ0

(n → ∞) and the extended orbits Γn ⊂ ωn(D0) of vn starting at pn with bounded length
satisfy that

d(Γn, Σ0) = sup
x∈Γn

dist(x, Σ0) > δ. (3.9)

(b) There exist extended orbits Γn ⊂ ωn(D0) and a number δ > 0 such that

dist(Γn, Σ0) > δ, ∀n ∈ N. (3.10)
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For the case (a), by Lemma 3.1 the extended orbits Γn converge, up to taking a subse-
quence, to an extended orbit Γ0 of v0 with the starting point p0 ∈ Σ0:

Γn −→ Γ0 (n → ∞). (3.11)

From (3.9) and (3.11) it follows that

d(Γ0, Σ0) = sup
x∈Γ0

dist(x, Σ0) ≥ δ > 0. (3.12)

On the other hand, Σ0 is an invariant set of v0; therefore Γ0 ⊂ Σ0, a contradiction to (3.12).
If only the case (b) occurs, then by the definition of ω-limit set, we infer from (3.7) and

(3.10) that there exist a number δ1 > 0 and points pn ∈ D0 with pn → p0 ∈ D0 (n → ∞)
such that the orbits xn(t) of vn with the initial value xn(0) = pn satisfy

dist(xn(t), Σ0) > δ1, ∀ 0 ≤ t < ∞. (3.13)

By Lemma 3.1, from (3.13) we derive that the (extended) orbit x0(t) of v0 starting at
p0 ∈ D0 satisfies

dist(x0(t), Σ0) ≥ δ1, ∀ 0 ≤ t < ∞.

Here the inequality holds true for all t ∈ [0,∞) is due to the fact that for any time T > 0,
the arc-lengths of xn(t)

αn(T ) =
∫ T

0

|vn(t)|dt

is uniformly bounded independent of n.
It is a contradiction to (3.7).
Hence the equality (3.8) holds true. The proof is complete.

3.3. Proofs of Theorems 3.1 and 3.2

It is easy to see that Theorem 3.2 is a direct corollary of Theorem 3.1 and Assertion 2
of Theorem 3.3. Hence we only need to prove Theorem 3.1. We proceed in several steps as
follows.

Step 1. Under a proper coordinate transformation, the system (3.1) can be rewritten
as follows ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= Bλx + g1(x, y, λ),

dy

dt
= Cλy + g2(x, y, λ),

(3.14)

where x ∈ Rm+1, y ∈ Rn−m−1, and Bλ is the (m + 1)× (m + 1) matrix with eigen-
values β1(λ), · · · , βm+1(λ), Cλ is the (n − m − 1)× (n − m − 1) matrix with eigenvalues
βm+2(λ), · · · , βn(λ), and

gi(x, y, λ) = o(|x|, |y|), ∀λ ∈ R (i = 1, 2). (3.15)
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For simplicity, we assume that λ0 = 0, i.e.,

Re βi(λ)

⎧⎪⎨⎪⎩
< 0, λ < 0,

= 0, λ = 0, if 1 ≤ i ≤ m + 1,

> 0, λ > 0,

Re βj(0) < 0, if m + 2 ≤ j ≤ n.

Let h(x, λ) be the center manifold function defined as in Theorem 2.1, and Mλ = {(x, y) |
y = h(x, λ), x ∈ D ⊂ Rm+1} be a center manifold of (3.14). It is known that the topological
structure of the orbits of (3.14) in Mλ is equivalent to that of the following system in
D ⊂ R

m+1,
dx

dt
= Bλx + f(x, λ), x ∈ D ⊂ R

m+1, (3.16)

where
f(x, λ) = g1(x, h(x, λ), λ).

By (3.15) and Theorem 2.1, we have

f(x, λ) = o(|x|), ∀λ ∈ R.

Step 2. Proof of Assertion (1)
Let vλ = Bλ + f(·, λ). By assumption, z = (x, y) = 0 is asymptotically stable for (3.14)

at λ0 = 0. Hence x = 0 is an attractor of v0.
By Theorem 3.3, there exist constants r, λ1 > 0 such that for all 0 < λ < λ1, the set

Br = {x ∈ Rm+1 | |x| < r} is an absorbing set of vλ, and the ω-limit set

Aλ = ωλ(Br) ⊂ Br (0 < λ < λ1) (3.17)

is an attractor of vλ in some open set D ⊂ Rm+1 (Br ⊂ D).
In addition, by the stable manifold theorem (Theorem 2.3), the unstable manifold Wu

λ

of vλ contains an open neighborhood of x = 0 in R
m+1 for all 0 < λ < λ1. From (3.17) we

see that
Wu

λ ⊂ Aλ ⊂ Br, ∀ 0 < λ < λ1.

By the definition of unstable manifolds, we obtain that

Aλ\Wu
λ ⊂ D ⊂ R

m+1 is an attractor of (3.16) in D\{0},

which implies that ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ωλ is an attractor of (3.14),

m ≤ dim Ωλ ≤ m + 1,

0 /∈ Ωλ,

lim
λ→0+

d(Ωλ, 0) = lim
λ→0+

sup
x∈Ωλ

|x| = 0,

(3.18)

where Ωλ is defined by

Ωλ = {(x, y) ∈ R
n | x ∈ Aλ\Wu

λ , y = h(x, λ)}.
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Here m ≤ dim Ωλ follows from Corollary 2 on p.46 in [5]1. Therefore, Assertion (1) is proved.

Step 3. Proof of Assertion (2)
Let Σλ = Aλ\Wu

λ be the attractor of (3.16) in D\{0}. Obviously, there is an rλ > 0
sufficiently small such that the disk Brλ

⊂ Wu
λ , and the annulus Rλ = Br\Brλ

is absorbing
in D\{0}. Hence, by Lemma 2.2, the attractor Σλ of (3.16) in D\{0} is given by

Σλ =
⋂
τ≥0

⋃
t≥τ

Sλ(t)Rλ . (3.19)

As Σλ ⊂ Rλ is invariant under the action of the semigroup {Sλ(t)}t≥0, for any t0 ≥ 0,

Σλ ⊂ Sλ(t0)Rλ. (3.20)

It follows from (3.19) and (3.20) that there is a sequence {tn} with tn+1 > tn > 0 and
tn → ∞ (n → ∞) such that⎧⎪⎨⎪⎩

Sλ(tn+1)Rλ ⊂ Sλ(tn)Rλ,

Σλ = lim
n→∞Sλ(tn)Rλ =

∞⋂
n=1

Sλ(tn)Rλ.

We know that Sλ(t)Rλ is homeomorphic to an (m + 1)-annulus for any t ∈ R
1; hence

Assertion (2) is proved.

Step 4. Proof of Assertion (3)
Let M ⊂ Rm+1 be an (m + 1)-dimensional smooth manifold with boundary. For each

point x ∈ ∂M we define

z(x, s) = the point z ∈ M , which lies on the inward normal line

starting at x, and the arc length from z to x is s (s ≥ 0).

Obviously, z(x, 0) = x.
By Assertion (2), we can take a sequence of smooth (m + 1)-dimensional annulus {Mn}

in Rλ = Br\Brλ
such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

Σλ ⊂ Mn+1 ⊂ Mn ⊂ Rλ, ∀n ≥ 1,

Mn are deformation retracts of Rλ, and

lim
n→∞ Mn = Σλ.

(3.21)

Moreover, the sequence {Mn} enjoys the following properties:
(1) for any point x ∈ ∂Mn, there exists a number λn(x) ≥ 0 such that for all x, y ∈ ∂Mn,

x 	= y, the line segment
�x = {z(x, λ) | 0 ≤ λ ≤ λn(x)}

1Here one can view the dimension as either the topological dimension or the Hausdorff dimension, thanks
to

Hausdorff dimX ≥ dim X

given on p.107 in [5].
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does not intersect with the line segment �y;
(2) the points in the line segment �x (x ∈ ∂Mn) satisfy

z(x, λ) ∈ Mn+1, 0 ≤ λ < λn(x) as λn(x) > 0; and

z(x, λn(x)) ∈ ∂Mn+1 (if λn(x) = 0, then x ∈ ∂Mn ∩ ∂Mn+1).

These properties can be achieved by letting the smooth manifold Mi = Rλ shrink along
its inward normal direction, and by taking properly the intercepted manifold Mi+1, induc-
tively.

Thus, ∀x ∈ ∂M1 we can define a curve

Lx =
∞⋃

n=1

�xn , x1 = x, xn+1 = z(xn, λn(xn)).

Namely, Lx is the union of the line segments �xn , where the endpoint xn+1 of �x is the
starting point of �xn+1.

Since Σλ is a finite simplicial complex, the length of Lx is finite for any x ∈ ∂M1;
otherwise the number of simplices in Σλ can not be finite. It is easy to see that

Lx ∩ Ly = ∅, ∀x 	= y, x, y ∈ ∂M1,

and by (3.21) the endpoint qx of Lx =
∞⋃

n=1

�xn satisfies

lim
n→∞ yn = qx ∈ Σλ (yn ∈ �xn),

since Lx has finite length.
On the other hand, we see that

M1 = Σλ

⋃( ⋃
x∈∂M1

Lx

)
.

Then we define a mapping H : M1 × [0, 1] → M1 by

H(y, t) =

⎧⎨⎩y, y ∈ Σλ,

p(y, t), y ∈ Lx,

where p(y, t) is the point p ∈ Lx such that the arc length along Lx from y to p is t × r(y)
where r(y) is the length of the arc in Lx from y to qx ∈ Σλ the endpoint of Lx. It is clear
that H is continuous, and

H( · , 0) = id : M1 −→ M1,

H( · , 1) : M1 −→ Σλ,

H ◦ i = id : Σλ −→ Σλ,

where i : Σλ → M1 is an inclusion mapping. Hence Σλ is a deformation retract of M1 = Rλ.
Assertion (3) is proved.
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Step 5. Proof of Assertion (4)
By (3.18) we see that the attractor Ωλ of (3.14) is in the center manifold Mλ for 0 < λ <

λ1. Since the eigenspace E0 is tangent to Mλ (0 < λ < λ1) at x = 0, Assertion (4) follows.

Step 6. Proof of Assertion (5)
By the topological degree theory, the degree of the vector fields in (3.1) satisfies

deg(−(Aλ + G),Br, 0) = 1, ∀ − λ1 < λ < λ1, (3.22)

where λ1 > 0 and Br are defined as in (3.17).
Since Ωλ is the maximum attractor of (3.1) in Br\{0}, all nonzero singular points of

Aλ + Gλ in Br are in Ωλ. Then we have

deg(−(Aλ + Gλ),Br, 0) = ind(−(Aλ + Gλ), 0) +
∑

xi∈Ωλ

ind(−(Aλ + Gλ), xi). (3.23)

On the other hand, by (3.5) and (3.6) we obtain

ind(−(Aλ + Gλ), 0) =

⎧⎨⎩ 1, m = odd,

−1, m = even,
(0 < λ < λ1). (3.24)

Hence Assertion (5) follows from (3.22)–(3.24).
The proof of Theorem 3.1 is complete.

3.4. Pitchfork bifurcation

A related interesting question is to address that under what conditions the attractors
Ωλ in Theorem 3.1 are homeomorphic to an m-dimensional sphere. In this subsection, we
consider the case where m = 0, which corresponds to the classical pitchfork bifurcation.

Theorem 3.4. Assume that the conditions (3.5) and (3.6) with m = 0 hold true, G(x, λ)
is analytic at x = 0, and x = 0 is locally asymptotically stable for (3.1) at λ = λ0. Then
there exists an open set U ⊂ Rn with 0 ∈ U , such that as λ > λ0 the system (3.1) bifurcates
from (0, λ0) exactly two equilibrium points x1, x2 ∈ U , and the open set U is decomposed
into two open sets U1

λ and U2
λ,

U = U
1

λ + U
2

λ, U1
λ ∩ U2

λ = ∅ and 0 ∈ U
1

λ ∩ U
2

λ

with xi ∈ U i
λ (i = 1, 2), such that

lim
t→∞x(t, ϕ) = xi as ϕ ∈ U i

λ (i = 1, 2),

where x(t, ϕ) is the solution of (3.1) with x(0, ϕ) = ϕ.

Proof. System (3.1) can be rewritten as follows⎧⎪⎪⎨⎪⎪⎩
dz

dt
= β1(λ)z + g1(z, y, λ),

dy

dt
= Bλy + g2(x, y, λ),

(3.25)
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where z ∈ R1, y ∈ Rn−1, Bλ is an (n − 1) × (n − 1) matrix, and

gi(x, y, λ) = o(|z|, |y|), ∀λ ∈ R
1 (i = 1, 2). (3.26)

By Theorem 2.1, the center manifold function h( · , λ) : I = (−a, a) → Rn−1 with a > 0
is C∞, and the bifurcation problem of (3.25) is equivalent to the bifurcation of the following
equation

dz

dt
= β1(λ)z + g1(z, h(z, λ), λ), z ∈ I = (−a, a), (3.27)

where β1(λ) satisfies that

β1(λ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0, λ < λ0,

= 0, λ = λ0,

> 0, λ > λ0.

We need to show that there is an integer k ≥ 2 and some α 	= 0 such that

g1(z, h(z, λ0), λ0) = αzk + o(|z|k). (3.28)

By assumption, z = 0 is asymptotically stable for (3.27) at λ = λ0. Hence we have

g1(z, h(z, λ0), λ0) 	= 0, ∀ |z| > 0 sufficiently small. (3.29)

For simplicity, we drop the dependence on λ0, e.g., we write gi(z, y) = gi(z, y, λ0), h(z)
= h(z, λ0), and B = Bλ0 . We know that the center manifold function h(z) satisfies

dh

dz
=

Bh + g2(z, h)
g1(z, h)

, |z| < a. (3.30)

If (3.28) is not true, then

dk(g1(z, h(z)))
dzk

∣∣∣
z=0

= 0, ∀ k < ∞,

i.e.,
g1(z, h(z)) = o(|z|∞). (3.31)

We infer from (3.30) that
Bh(z) + g2(z, h) = o(|z|∞). (3.32)

In the following, we shall show from (3.32) that there exists an analytic h1(z) (h1(0) = 0,
h′

1(0) = 0) satisfying

Bh1(z) + g2(z, h1(z)) = 0 for |z| < ε sufficiently small, (3.33)

h(z) = h1(z) + o(|z|∞). (3.34)

Since B is a nondegenerate matrix and g2(z, y) is analytic, by the implicit function
theorem and (3.26), there is a unique analytic function h1(z) with h1(0) = 0, h′

1(0) = 0
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satisfying (3.33) for |z| ≤ ε sufficiently small. We define a mapping B + g : C1[−ε, ε] →
C1[−ε, ε] by

(B + g)y = By + g2(z, y)

for any y ∈ C1[−ε, ε]. Thanks to h1(0) = 0 and h′
1(0) = 0, we can take ε > 0 sufficiently

small such that the Frechèt derivative of B + g at h1(z) ∈ C1[−ε, ε] given by

B + Dg(h1) = B +
∂

∂y
g2(z, h1(z)) : C1[−ε, ε] → C1[−ε, ε]

is a linear homeomorphism. Hence, by the inverse function theorem it follows from (3.33)
that there exists a unique function

h(z) = h1(z) + h2(z) ∈ C1[−ε, ε]

satisfying (3.32). Moreover h2 is C∞ at x = 0 and h2(z) = o(|z|∞). Thus, the center
manifold function h(z) satisfies (3.33) and (3.34). Since g1(z, y) is analytic, from (3.31) and
(3.34) we can deduce that

g1(z, h1(z)) = 0, ∀ |z| < ε.

It means that all points on the curve {(z, h1(z)) | |z| < ε} are the singular points of
(3.25) at λ = λ0, a contradiction to the assumption that x = 0 is asymptotically stable for
(3.25) at λ = λ0.

Therefore, the equality (3.28) holds true. By the stability of z = 0 for (3.27) at λ = λ0,
we infer that the constants in (3.28) are as follows

k = an odd number, and α < 0. (3.35)

From (3.28) and (3.35) it follows that the equation⎧⎨⎩β1(λ)z + g2(z, h(z), λ) = β1(λ)z + α(λ)zk + o(|z|k) = 0,

α(λ0) = α < 0, k = odd,

bifurcates from (0, λ0) exactly two singular points z1, z2 ∈ (−a, a) for λ > λ0, i.e., the
equation (3.26) bifurcates from (0, λ0) exactly two asymptotically stable equilibrium points
z1 and z2. Therefore, the two points xi = (zi, h(zi)) ∈ R

n are the attractors of (3.25) in
an open set U ⊂ Rn. By the stable manifold theorem (Theorem 2.3), there is an (n − 1)-
dimensional stable manifold W s of (3.25) at x = 0 dividing the open set U into two parts
U1

λ and U2
λ such that xi ∈ U i

λ and xi attracts U i
λ (i = 1, 2). This proof is complete.

Remark 3.4. It is still an open question whether the analytic condition of vector fields
is sufficient for the bifurcated attractor Ωλ of (3.1) to be homeomorphic to an m-dimensional
sphere with m ≥ 1.

3.5. Minimal attractors

It is easy to see that a subset Γλ ⊂ Ωλ may be an attractor as well. The minimal
attractor Γλ contained in Ωλ is called the bifurcated minimal attractor of (3.1). In general,
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the bifurcated attractor Ωλ may have no minimal attractors. We are interested here in the
existence problem of minimal attractors.

In this subsection, we always assume that the conditions of Theorem 3.1 hold. If the
bifurcated attractor Ωλ of (3.1) is homeomorphic to a sphere Sm, we denote it by Ωλ = Sm

for simplicity.

Theorem 3.5. Assume that m = 1 and Ωλ = S1 contains singular points of (3.1) which
are all nondegenerate. Then the following assertions hold true.

(1) The number of singular points on Ωλ = S1 is 2k for some integer k ≥ 1, and there
are exactly k singular points {xi | 1 ≤ i ≤ k} ⊂ Ωλ such that each xi forms a bifurcated
minimal attractors of (3.1);

(2) There is an open set D ⊂ Rn which can be decomposed into k open sets Di (1 ≤ i ≤ k)

such that Ωλ

⋃{0} ⊂ D, D =
k∑

i=1

Di, Di

⋂
Dj = ∅ (i 	= j), 0 ∈

k⋂
j=1

Dj and xi ∈ Di attracts

Di. Moreover the projection of D and Di on the center manifold is as shown in Fig. 3.2 for
k = 2.

z2

x2

x1

z1

U

U2

1

Fig. 3.2

Proof. Since all singular points in Ωλ = S1 are nondegenerate, the singular points in
Ωλ are either attractors or repellors. The attractors and repellors on Ωλ are alternately
positioned, hence the number of singular points in Ωλ is even, i.e., 2k (k ≥ 1), with k

attractors and k repellors.
Let {xi | 1 ≤ i ≤ k} be the attractors, and {zi | 1 ≤ i ≤ k} be the repellors. Obviously,

{xi | 1 ≤ i ≤ k} are the minimal attractors in Ωλ of (3.1), and {zi | 1 ≤ i ≤ k} are the
saddle points of (3.1). It is easy to see that in the two dimensional center manifold, there is
an open set U which can be decomposed into k open sets Ui (1 ≤ i ≤ k) such that (see Fig.
3.2)
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(1) U =
k∑

i=1

U i, Ui

⋂
Uj = ∅ (i 	= j), 0 ∈

k⋂
i=1

U i,

(2)
k⋃

i=1

∂Ui

⋂
U consists of the stable manifolds of the saddles zj (1 ≤ j ≤ k), and

(3) xi ∈ Ui and attracts Ui (1 ≤ i ≤ k).

Therefore, the open sets D = {(x, h(x)) | x ∈ U} and Di = {(x, h(x)) | x ∈ Ui} are as
desired by this theorem. This proof is complete.

Theorem 3.6. Let m = 2 in (3.5). If the bifurcated attractor Ωλ of (3.1) contains exactly
two singular points which are nondegenerate, then only one of the following two assertions
holds true.

(1) Ωλ contains at least a periodic orbit.
(2) The set of minimal attractors consists of one singular point x0 ∈ Ωλ, and there is an

open set D ⊂ Rn with Ωλ ∪ {0} ⊂ D such that x0 attracts D.
Especially, if the vector field in (3.1) is odd, i.e., G(−x, λ) = −G(x, λ), then Ωλ must

contain a periodic orbit.

Proof. By Theorem 3.1, Ωλ is a limit of a sequence of three dimensional annulus. Hence,
Ωλ must contain a two dimensional invariant set Σ, where the Poincaré-Bendixon theorem
is valid. Thus, by the regularity of singular points in Ωλ, for any point x ∈ Σ, the ω-limit
set ω(x) is either a singular point or a periodic orbit.

If Σ contains no periodic orbits, then as a two dimensional invariant closed set, all
points in Σ are interior points of Σ. Hence Σ = S2. By assumption we can derive that
Ωλ = Σ = S2, otherwise by the Poincaré-Hopf index theorem, Ωλ must contain more than
two singular points. Since Ωλ = S2 contains only two nondegenerate singular points, by
Theorem 3.1, their indices are +1. Therefore, the two singular points are either attractors or
repellors in Ωλ = S2 (since Ωλ contains no periodic orbits). Due to the Poincaré-Bendixon
theorem, we can deduce that one of the two singular points is an attractor and another is a
repellor, furthermore, the attractor attracts Ωλ\{x1}, where x1 is the repellor in Ωλ.

When the vector field G(x, λ) in (3.1) is odd, the two singular points in Ωλ have the
same eigenvalues. Hence they have the same local topological structure, which implies, by
the above conclusion, that Ωλ must contain a periodic orbit. The proof is complete.

3.6. Generalized Hopf bifurcation

Now, let us consider the more general bifurcation. Let the eigenvalues (3.4) satisfy that

Reβi(λ)

⎧⎪⎨⎪⎩
< 0 (or > 0), λ < λ0,

= 0, λ = λ0, ∀ 1 ≤ i ≤ m + 1,

> 0 (or < 0), λ > λ0,

(3.36)

Reβj(λ0) 	= 0, ∀m + 2 ≤ j ≤ n. (3.37)

It is known that if m = even, the system (3.1) must bifurcate from (0, λ0) a singular
point. When m = 1, the Hopf bifurcation amounts to saying that if β1(λ) = β̄2(λ) with
Im β1(λ0) 	= 0, then under the conditions (3.36) and (3.37) the system (3.1) bifurcates from
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(0, λ0) a periodic orbit. Our next question is to see whether (3.1) bifurcates from (0, λ0)
an invariant set assuming only (3.36) and (3.37) with m = odd are valid, i.e., without the
asymptotic stability assumption. In general, we shall see later, this statement is not true.
However, we can still derive a generalized version of the Hopf bifurcation as follows.

Under the conditions (3.36) and (3.37) we know that there exists an (m+1)-dimensional
center manifold of (3.1) at λ = λ0,

Mm+1
c =

{
(x, y) ∈ R

n | x ∈ Ω ⊂ R
m+1, y = h(x, λ0)

}
which is invariant under the flows of (3.1) at λ = λ0.

We say the center manifold Mm+1
c is stable (resp. is unstable) if the ω-limit set (resp.

the α-limit set) of Mm+1
c is

ω(Mm+1
c ) = 0 (resp. α(Mm+1

c ) = 0).

Theorem 3.7. Let the conditions (3.36) and (3.37) hold true. If the center manifold
Mm+1

c of (3.1) at λ = λ0 is stable or unstable, then (3.1) must bifurcate from (0, λ0) an
invariant set Γλ with λ 	= λ0, and Γλ has the homotopy type of Sm provided Γλ being a
finite simplicial complex. Especially, as m = 1, if there are no singular points in Γλ, then
Γλ must contain a periodic orbit.

The proof of Theorem 3.7 is similar to that of Theorem 3.1, so we omit the details.

Remark 3.5. If m = 1 in (3.36) and (3.37) and β1(λ) = β̄2(λ) with Imβ1(λ0) 	= 0, then
the center manifold M2

c of (3.1) must be one of the three cases: (i) stable, (ii) unstable, (iii)
containing infinite periodic orbits which implies the bifurcation of periodic orbits. Hence,
the Hopf bifurcation is included in Theorem 3.7.

The following flows as shown in Fig. 3.3 (a)–(c) provide an example which shows schemat-
ically that under only conditions (3.36) and (3.37), bifurcations to invariant sets may not
occur.

x0x0.
(a)                                                                          (b)                                                                (c)

.x0

Fig. 3.3. (a) λ < λ0 (b) λ = λ0 (c) λ > λ0

The parametrized vector field v(x, λ) illustrated by Fig. 3.3(a) has a stable focus x0 at
λ < λ0, and v(x, λ) illustrated by Fig. 3.3(c) has an unstable focus x0 at λ > λ0, which is
nondegenerate. v(x, λ0) as shown in Fig. 3.3(b) has a degenerate singular point x0 with the
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elliptic-hyperbolic structure. The flows of v(x, λ) in a neighborhood of x0 has no invariant
sets except the singular point x0.

§ 4 . Infinite Dimensional Systems

In this section, we generalize the attractor bifurcation theorems for finite dimensional
vector fields to infinite dimensional systems defined in Hilbert spaces. These generalizations
can be applied to bifurcation problems of various types for nonlinear time dependent partial
differential equations in physics and mechanics.

4.1. Center manifold theorems
First, we recall an infinite dimensional version of the center manifold theorem without

proof (see among others [3]). Let H and H1 be two Hilbert spaces, and H1 ↪→ H be a dense
inclusion embedding. We consider the nonlinear evolution equations given by⎧⎪⎨⎪⎩

du

dt
= Lλu + G(u, λ), u ∈ H1, λ ∈ R1,

u(0) = ϕ,

(4.1)

where Lλ : H1 → H are parameterized linear completely continuous fields continuously
depending on λ ∈ R1, which satisfy⎧⎪⎨⎪⎩

Lλ = −A + Bλ is a sectorial operator,
A : H1 → H a linear homeomorphism,

Bλ : H1 → H the parameterized linear compact operators.
(4.2)

It is easy to see (see [3, 10]) that Lλ generates an analytic semi-group {e−tLλ}t≥0. Then we
can define fractional power operators Lα

λ for any 0 ≤ α ≤ 1 with domain Hα = D(Lα
λ) such

that Hα1 ⊂ Hα2 if α1 > α2, and H0 = H .
Furthermore, we assume that the nonlinear terms G( · , λ) : Hα → H for some 1 > α ≥ 0

are a family of parameterized Cr bounded operators (r ≥ 1) continuously depending on the
parameter λ ∈ R1, such that

G(u, λ) = o(‖u‖Hα), ∀λ ∈ R
1. (4.3)

We assume that the spaces H1 and H can be decomposed into⎧⎨⎩H1 = Eλ
1 ⊕ Eλ

2 , dimEλ
1 < ∞, near λ0 ∈ R1,

H = Ẽλ
1 ⊕ Ẽλ

2 , Ẽλ
1 = Eλ

1 , Ẽλ
2 = closure of Eλ

2 in H,
(4.4)

where Eλ
1 and Eλ

2 are the invariant subspaces of Lλ, i.e., Lλ can be decomposed into Lλ =
Lλ

1 ⊕ Lλ
2 such that for any λ near λ0,⎧⎨⎩Lλ

1 = Lλ|Eλ
1

: Eλ
1 → Ẽλ

1 ,

Lλ
2 = Lλ|Eλ

2
: Eλ

2 → Ẽλ
2 ,

(4.5)
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where the eigenvalues of Lλ
2 possess the negative real parts, and the eigenvalues of Lλ

1 possess
the non-negative real parts at λ = λ0.

Thus, for λ near λ0, Equation (4.1) can be rewritten as⎧⎪⎪⎨⎪⎪⎩
dx

dt
= Lλ

1x + G1(x, y, λ),

dy

dt
= Lλ

2y + G2(x, y, λ),
(4.6)

where u = x + y ∈ H1, x ∈ Eλ
1 , y ∈ Eλ

2 , Gi(x, y, λ) = PiG(u, λ), and Pi : H → Ẽi are
canonical projections.

Let Sλ(t) : Ẽλ
2 → Ẽλ

2 be the analytic semi-groups generated by Lλ
2 . We have the following

center manifold theorem for (4.1) (see among others [3, 11]).

Theorem 4.1. Assume (4.2)–(4.5). Then there exist a neighborhood of λ0 given by
|λ − λ0| < δ for some δ > 0, a neighborhood Bλ ⊂ Eλ

1 of x = 0, and a C1 function
h( · , λ) : Bλ → Eλ

2 (α) depending continuously on λ, where Eλ
2 (α) is the completion of Eλ

2

in the Hα-norm (0 ≤ α < 1 as in (4.3)), such that
(1) h(0, λ) = 0, Dxh(0, λ) = 0;
(2) the set

Mλ = {(x, y) ∈ H1 | x ∈ Bλ, y = h(x, λ) ∈ Eλ
2 },

called center manifold, is locally invariant for (4.1), i.e., ∀ϕ ∈ Mλ,

uλ(t, ϕ) ∈ Mλ, ∀ 0 ≤ t < tϕ,

for some tϕ > 0, where uλ(t, ϕ) is the solution of (4.1);
(3) if (xλ(t), yλ(t)) is a solution of (4.6), then there is a βλ > 0 and kλ > 0 with kλ

depending on (xλ(0), yλ(0)) such that

‖yλ(t) − h(xλ(t), λ)‖H ≤ kλe−βλt.

If we only consider the existence of the local center manifold, then the conditions in
(4.5) can be modified in the following fashion. Let the operator Lλ = Lλ

1 ⊕ Lλ
2 and Lλ

2 be
decomposed into ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lλ
2 = Lλ

21 ⊕ Lλ
22,

Eλ
2 = Eλ

21 ⊕ Eλ
22, Ẽλ

2 = Ẽ21 ⊕ Ẽλ
22,

dimEλ
21 = dim Ẽλ

21 < ∞,

Lλ
2i : Eλ

2i → Ẽλ
2i are invariant (i = 1, 2),

(4.7)

such that at λ = λ0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
eigenvalues of Lλ

1 : Eλ
1 → Ẽλ

1 have zero real parts;

eigenvalues of Lλ
21 : Eλ

21 → Ẽλ
21 have positive real parts;

eigenvalues of Lλ
22 : Eλ

22 → Ẽλ
22 have negative real parts.

(4.8)
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Then we have the following center manifold theorem.

Theorem 4.2. Assume (4.2)–(4.4), (4.7) and (4.8). Then the conclusions (1) and (2)
in Theorem 4.1 hold true.

4.2. Attractor bifurcation for infinite dimensional systems
We consider the attractor bifurcation of (4.1). Let the inclusion H1 ↪→ H be compact.

For the linear operator Lλ = −A+Bλ we assume that there exists a real eigenvalue sequence
{ρk} ⊂ R1 and an eigenvector sequence {ek} ⊂ H1 of A:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Aek = ρkek,

0 < ρ1 ≤ ρ2 ≤ · · · ,

ρk → ∞ (k → ∞)

(4.9)

such that {ek} is an orthogonal basis of H .
For the compact operator Bλ : H1 → H , we also assume that there is a constant 0 < θ < 1

such that
Bλ : Hθ −→ H bounded, ∀λ ∈ R

1. (4.10)

A number λ = α + iβ ∈ C is called an eigenvalue of a linear mapping L : H1 → H if
there exist x, y ∈ H1 with x 	= 0 such that Lz = λz, z = x + iy; and the space Eλ = {x, y ∈
H1 | (L − λI)nz = 0, z = x + iy} is called an eigenspace of L corresponding to λ, and the
elements x, y ∈ Eλ are called eigenvectors of L.

Let the eigenvalues (counting multiplicity) of Lλ be {β1(λ), β2(λ), · · · } with βk(λ) ∈ C

such that

Re βi(λ)

⎧⎪⎪⎨⎪⎪⎩
< 0, λ < λ0,

= 0, λ = λ0, ∀ 1 ≤ i ≤ m + 1,

> 0, λ > λ0,

Re βj(λ0) < 0, ∀m + 2 ≤ j.

(4.11)

Now we are in position to state the attractor bifurcation theorem for the infinite dimen-
sional system (4.1).

Theorem 4.3. Assume conditions (4.3) and (4.9)–(4.11). If u = 0 is a locally asymp-
totically stable equilibrium point of (4.1) at λ = λ0, then the following assertions hold true.

(1) The system (4.1) bifurcates from (0, λ0) an attractor Ωλ with m ≤ dim Ωλ ≤ m + 1,
which is connected when m > 0.

(2) Ωλ is a limit of a sequence of (m + 1)-dimensional annulus Mk with Mk+1 ⊂ Mk;
especially, if Ωλ is a finite simplicial complex, then Ωλ has the homotopy type of Sm.

(3) For any uλ ∈ Ωλ, uλ can be expressed as uλ = vλ + o(‖vλ‖1), vλ ∈ E0 = {v ∈ H1 |
Lk

λ0
v = 0, k = 1, 2, · · · }.
(4) If G : H1 → H is compact, and the number of equilibrium points of (4.1) in Ωλ is

finite, then we have the index formula

∑
ui∈Ωλ

ind[−(Lλ + G), ui] =

{
2, m = even ,

0, m = odd .
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(5) If u = 0 is globally stable, then for any bounded open set U ⊂ H1 with 0 ∈ U there
is an ε > 0 such that as λ0 < λ < λ0 + ε, the attractor Ωλ attracts U\Γ, where Γ is the
stable manifold of u = 0 with codimension m + 1. Furthermore, if (4.1) has global attractor
for any λ, then we can take U = H.

Proof. Under (4.11), the linear completely continuous field Lλ can be decomposed as
follows: Lλ = Lλ

1 ⊕ Lλ
2 , for λ near λ0, H1 = Eλ

1 ⊕ Eλ
2 , H = Ẽλ

1 ⊕ Ẽλ
2 , dimEλ

1 = dim Ẽλ
1 =

m+1, Lλ
1 : Eλ

1 → Ẽλ
1 , Lλ

2 : Eλ
2 → Ẽλ

2 . Moreover, Lλ
1 has the eigenvalues β1(λ), · · · , βm+1(λ),

and Lλ
2 have the eigenvalues βj(λ) (m + 2 ≤ j).

By (4.9) and (4.10), it is known that Lλ generates an analytic semigroup Tλ(t) which
can be decomposed into Tλ(t) = Sλ

1 (t) ⊕ Sλ
2 (t), where Sλ

i (t) is generated by Lλ
i . Therefore

Sλ
2 (t) is also an analytic semigroup.

Thus the system (4.1) can be decomposed into the form (4.6), and the center manifold
theorem is valid for (4.6). Let hλ : Bλ → Eλ

2 be a center manifold function of (4.6), Bλ ⊂ Eλ
1

is a neighborhood of x = 0. Then the bifurcation problem of (4.1) is equivalent to that of
the following equations

dx

dt
= Lλ

1x + G1(x, hλ(x), λ), x ∈ Bλ ⊂ Eλ
1 . (4.12)

Since u = 0 is asymptotically stable for (4.1), x = 0 is asymptotically stable for (4.12). Then
this theorem follows from Theorems 3.1 and 3.2, and the attractor stability theorem in [11].
This proof is complete.
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