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Abstract

This paper gives some sufficient conditions for the commutativity of quasi-toral
restricted Lie algebras and characterizes some properties on semisimple quasi-toral
restricted Lie algebras.
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§ 1 . Introduction

In the theory of associative ring there are a number of known sufficient conditions for
the commutativity of an associative ring R, some in the form of a polynomial identity.
For instance, it is a well-known result that if every element x of R satisfies xn(x) = x for
some n(x) > 1, then R is abelian (see [1, p.73]). It is a remarkably wide generalization of
Wedderburn’s theorem.

The concept of a restricted Lie algebra is attributable to N. Jacobson [8] in 1943. It is well
known that [7] the Lie algebras associated with algebraic groups over a field of characteristic
p are restricted Lie algebras. According to [15], the classification of the simple restricted
Lie algebras is equivalent to the classification of the simple Lie algebras. Moreover, Terrell
L. Hodge [17] defined a restricted structure for Lie triple systems in the characteristic p > 2
setting, akin to the restricted structure for Lie algebras, and initiated a study of theory of
restricted modules in 2001. Now, restricted Lie algebras attract more and more attentions.

The presence of a p-power operator in theory of restricted Lie algebras motivates a study
of analogous conditions within this category. Jacobson conjectured (see [2, p.196]) that
every restricted Lie algebra (L, [p]) satisfying the requirement x[p]n(x)

= x for any x ∈ L

is abelian, where n(x) ∈ N . An early result relating the commutativity of a restricted Lie
algebra to conditions imposed on the p-mapping was obtained by Chew [3]. Rolf Farsteiner
[4, 5] gave some proofs of Jacobson’s conjecture in some special cases. Now, the conjecture
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is still an open problem. In fact, the conjecture is a conjecture on properties of restricted
Lie algebras with quasi-toral elements. So the study of quasi-toral elements will be useful
for solving Jacobson’s conjecture.

It is well known that solvable Lie algebras have played an important role over the last
years both in the domain of algebras and in the domain of differential geometry. In this
paper, we give a necessary and sufficient condition of solvable Lie algebras and obtain some
sufficient conditions for the commutativity of restricted Lie algebras. Moreover, we give
some elementary proofs of Jacobson’s conjecture in some special cases and generalize Rolf
Farnstener’s results. In addition, we characterize some properties on semisimple quasi-toral
restricted Lie algebras.

Throughout this paper, all algebras are assumed to be finite-dimensional over a field F
of positive characteristic p ≥ 3.

Definition 1.1. (cf. [7]) Let L be a Lie algebra over F. A mapping [p] : L → L, a → a[p]

is called a p-mapping if
(1) ada[p] = (ada)p for any a ∈ L;

(2) (αa)[p] = αpa[p] for any a ∈ L, α ∈ F;

(3) (a + b)[p] = a[p] + b[p] +
p−1∑
i=1

si(a, b) for any a, b ∈ L, where si satifies (ad (a ⊗ x +

b ⊗ 1))p−1(a ⊗ 1) =
p−1∑
i=1

isi(a, b) ⊗ xi−1 in L ⊗F F[x] for any a, b ∈ L.

The pair (L, [p]) is referred to as a restricted Lie algebra.

Moreover, it is well known (see [4, p.42]) that if (L, [p]) is a restricted Lie algebra, then

(a + b)[p]n = a[p]n + b[p]n +
pn−1∑

i=1

s
(n)
i (a, b), for any a, b ∈ L,

where (ad (a⊗ x + b⊗ 1))pn−1(a⊗ 1) =
pn−1∑
i=1

is
(n)
i (a, b)⊗ xi−1 in L⊗F F[x] for any a, b ∈ L.

Definition 1.2. (cf. [4]) Let (L, [p]) be a restricted Lie algebra over F. A mapping
[p]n : L → L is called p-semilinear if it is p-semilinear with respect to the homomorphism
α → αpn

.

Definition 1.3. (cf. [5]) A restricted Lie algebra (L, [p]) is called quasi-toral if there
exists a positive integer n(x) such that x[p]n(x)

= x for any element x ∈ L.

Definition 1.4. (cf. [8]) L is called a torus algebra if adx is semisimple for all x ∈ L.

Definition 1.5. (cf. [7]) Let (L, [p]) be a restricted Lie algebra over F. An element x

∈ L is called semisimple if x =
m∑

i=1

αix
[p]i , αi ∈ F.

Definition 1.6. (cf. [7]) Let (L, [p]) be a restricted Lie algebra over F. A subalgebra
H ⊆ L is called a torus if

(1) T is an abelian p-subalgebra;
(2) x is semisimple for all x ∈ T .
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We now state some results used in the paper.

Lemma 1.1. (cf. [4]) Let (L, [p]) be a restricted Lie algebra over F such that card (F)
≥ pn. If [p]n is a p-semilinear mapping, then L[p]n ⊆ C(L).

Lemma 1.2. (cf. [5]) Let (L, [p]) be a restricted Lie algebra. Let G ⊆ L be quasi-toral
and let x be an element of G such that Fpn(x) is contained in F. Then x lies centrally in G.

Lemma 1.3. (cf. [4]) Let (L, [p]) be a restricted Lie algebra over F of positive characte-
ristic p ≥ 3. If L is quasi-toral, then (L, [p]) does not contain a three-dimensional simple
Lie algebra.

Lemma 1.4. (cf. [7]) Let T be a torus of the finite-dimensional restricted Lie algebra
(L, [p]). Then any T -invariant subspace W ⊆ L decomposes into W = CW (T ) + [T, W ].

Lemma 1.5. (cf. [7]) Let (L, [p]) be a finite dimensional restricted Lie algebra over a
field F. Then the following statements are equivalent:

(1) [p] is nonsingular and F is perfect;
(2) [p] is injective and F is perfect;
(3) [p] is surjective.

§ 2 . Main Results

Theorem 2.1. If x = x[p]n + (ady)pn−1(x), (adx)pn

(y) = 0 and x is a quasi-toral
element, then y is a quasi-toral element if and only if x + y is a quasi-toral element.

Proof. Since x is quasi-toral, there exists m ≥ n such that x[p]m = x. Then

[x, y] = [x[p]m , y] = (adx)pm

(y) = (adx)pm−pn

(adx)pn

(y) = 0.

⇒. Since y is quasi-toral, there is k ∈ N such that y[p]k = y. By virtue of a routine
computation, we obtain x[p]km

= x, y[p]mk

= y. Then

(x + y)[p]km

= x[p]km

+ y[p]km

+
pkm−1∑

i=1

s
(km)
i (x, y) = x + y,

by means of [x, y] = 0. So x + y is a quasi-toral element.
⇐. Since x + y is quasi-toral, there is u ∈ N such that (x + y)[p]u = x + y. Then

(x + y)[p]u = x[p]u + y[p]u +
pu−1∑

i=1

s
(u)
i (x, y) = x[p]u + y[p]u ,

by virtue of [x, y] = 0. So we obtain x + y = (x + y)[p]um

= x[p]um

+ y[p]um

and x[p]um

= x

since x[p]m = x. Hence y[p]um

= y, i.e., y is a quasi-toral element.

Remark 2.1. (1) By means of Theorem 2.1, if x and y are quasi-toral elements such
that [x, y] = 0, then x + y is quasi-toral.

(2) By virtue of the remark in [5, p.1480], a quasi-toral subalgebra of a restricted subal-
gebra is not necessarily a p-subalgebra.
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Theorem 2.2. Let (L, [p]) be a finite-dimensional restricted Lie algebra over a finite
field F satisfying the requirement x[p]n(x)

= x for any x ∈ L, where n(x) ∈ N . Then there is
n ∈ N such that x[p]n = x for any x ∈ L.

Proof. By virtue of our present assumption, the number of elements in the Lie algebra
is finite. Let x[p]n(x)

= x and y[p]n(y)
= y. Obviously, if z is quasi-toral, then z[p]k·n(z)

= z

for any k ∈ N . So x[p]n(x)·n(y)
= x and y[p]n(y)·n(x)

= y. Let m = n(x) · n(y). Then x[p]m = x

and y[p]m = y. Using induction on the number of elements in the Lie algebra, we obtain the
desired result.

We will give some sufficient conditions for the commutativity of quasi-toral restricted
Lie algebras.

Theorem 2.3. Let (L, [p]) be a quasi-toral restricted Lie algebra over F. If there is
m ∈ N such that L(m) := [L[p]m , L[p]m ] = {0}, then the following statements hold:

(1) L is abelian;
(2) L[p] = L. In particular, if e1, e2, · · · , en is a basis of L, then e

[p]
1 , e

[p]
2 , · · · , e

[p]
n is

a basis of L.

Proof. (1) Since there is m ∈ N such that L(m) = [L[p]m , L[p]m ] = {0}, if x[p]n(x)
= x

for all x ∈ L, then x[p]tn(x)
= (· · · (x[p]n(x)

) · · · )[p]n(x)
= x for all x ∈ L. As there is k ∈ N

such that 1 ≤ n(x) ≤ k, x[p]k!
= x for all x ∈ L.

( i ) If m ≤ k!, then [L[p]k!
, L[p]k!

] = {0} by L(m) = [L[p]m , L[p]m ] = {0}.
Since 1 ≤ n(x) ≤ k and x[p]k!

= x for all x ∈ L, [L, L] = {0}, i.e., L is abelian.
(ii) If m > k!, then there exist u, v such that m = uk! + v, 0 ≤ v < k!.
Since 1 ≤ n(x) ≤ k and x[p]k!

= x for all x ∈ L, L[p]k!
= L, {0} = L(m) = [L[p]m , L[p]m ] =

[L[p]uk!+v

, L[p]uk!+v

] = [L[p]v , L[p]v ]. Since 0 ≤ v < k!, we have [L, L] = {0} by virtue of (i),
i.e., L is abelian.

(2) Let x be a nonzero element of L. Since x is quasi-toral, αx = (αx)[p]n(x)
=

αpn(x)
x[p]n(x)

= αpn(x)
x, i.e., αn(x) = α for all α ∈ F. So F is perfect. Obviously, [p]

on L is nonsingular. By virtue of Lemma 1.5, [p] is injective and surjective. Hence L[p] = L.
Suppose that

∑
cie

[p]
i = 0 where ci ∈ F (1 ≤ i ≤ n). Since L is abelian and F is perfect,

there is di ∈ F such that dp
i = ci for 1 ≤ i ≤ n and 0 =

∑
dp

i e
[p]
i = (

∑
diei)[p]. By the

preceding proof,
∑

diei = 0 and di = 0 for 1 ≤ i ≤ n. Thus ci = 0 and e
[p]
1 , e

[p]
2 , · · · , e

[p]
n

is a basis of L.

Lemma 2.1. Let (L, [p]) be a quasi-toral restricted Lie algebra over F. Then L is a
torus algebra.

Proof. Since L is quasi-toral, there is n(x) ∈ N such that x[p]n(x)
= x for all x ∈

L. Then (adx)pn(x)
= adx. Let mx(X) ∈ F [X ] be the minimum polynomial of adx. So

there is f(X) ∈ F [X ] such that f(X) · mx(X) = Xpn(x) − X . Taking the derivative we
obtain f(X)′mx(X) + f(X)mx(X)′ = −1 since F is of characteristic p, which means adx is
semisimple for any x ∈ L. Hence L is a torus algebra.

Theorem 2.4. Let (L, [p]) be a quasi-toral restricted Lie algebra over F. Then L is
solvable if and only if L is abelian.
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Proof. ⇐. It is obvious.
⇒. Let J be an ideal of L such that [J, J ] ⊆ C(L). For any x ∈ J we have (adx)3 = 0.

By virtue of Lemma 2.1, we therefore have adx = 0, then J ⊆ C(L), i.e., if J is an ideal of
L such that [J, J ] ⊆ C(L), then J ⊆ C(L). Since L is solvable, there is k ∈ N such that
L(k) = [L(k−1), L(k−1)] = {0}. Obviously, L(m) is an ideal of L for any 1 ≤ m ≤ k − 1.
Since [L(k−1), L(k−1)] = {0}, L(k−1) = [L(k−2), L(k−2)] ⊆ C(L). Then L(k−2) ⊆ C(L), i.e.,
L(k−2) = [L(k−3), L(k−3)] ⊆ C(L). So L(k−3) ⊆ C(L). Using the same methods, we have
L(0) ⊆ C(L), i.e., L is abelian.

Corollary 2.1. Let (L, [p]) be a finite-dimensional solvable restricted Lie algebra over
F. If L is not abelian, then there is x ∈ L such that x is not a quasi-toral element of L.

Proof. If every element x ∈ L is a quasi-toral element, then L is abelian since L is
solvable by virtue of Theorem 2.4. We have arrived at a contradiction since L is not abelian.

Remark 2.2. It is well known that if (L, [p]) is a finite-dimensional restricted Lie algebra
over F, then for all x ∈ L there is k ∈ N such that x[p]k is semisimple. But the theorem
does not hold for quasi-toral elements by Corollary 2.1, i.e., if (L, [p]) is a finite-dimensional
restricted Lie algebra over F, then there is x ∈ L for any k ∈ N such that x[p]k is not
quasi-toral.

Corollary 2.2. Let (L, [p]) be a nonsolvable quasi-toral restricted Lie algebra over F.
Then C(L) is a maximal solvable ideal of L and L/C(L) is semisimple.

Proof. Let A be an abelian ideal of L. For any x ∈ A, y ∈ L, we have [x[p], y] =
(adx)p(y) = [x, · · · , [x, [x, y]], · · · , ]. Since A is an abelian ideal of L, we have [x, y] ∈ A

and [x[x, y]] = 0. Then [x[p], y] = 0. As x[p]n(x)
= x for any x ∈ L, we have [x, y] =

[x[p]n(x)
, y] = 0. So A ⊆ C(L). If A is a maximal abelian ideal of L, then C(L) ⊆ A. Hence

A = C(L). Obviously, C(L) is restricted. By virtue of Theorem 2.4, C(L) is a maximal
solvable ideal of L, then L/C(L) is semisimple.

Corollary 2.3. Let (L, [p]) be a quasi-toral restricted Lie algebra over F. If H is a
Cartan subalgebra of L such that each adh (h ∈ H) has all its characteristic roots in F, then
L is not semisimple.

Proof. Since H is a Cartan subalgebra of L such that each adh (h ∈ H) has all its
characteristic roots in F , H is a maximal abelian subalgebra of L by virtue of Theorem 2.4
and L = H

⊕∑
Lφ, φ ∈ 
, where 
 is a root system of L with respect to H .

If d is the dimension of Lφ, then for any x ∈ Lφ, y ∈ H , (ady − φ(y)I)dx = 0. Choose k

such that pk ≥ d; then (ady)pnk

x − φ(y)pnk

x = 0 since y[p]nk

= y.
By virtue of the proof of Theorem 2.3(2), F is perfect. So there is φ(h) = φ(y)pnk

. Since
y[p]nk

= y, we have [y, x] = φ(h)x. For any x ∈ Lφ, y ∈ H , [x, y] = [x[p]nk

, y] = 0. Then
we have [H, L] = [H, H

⊕∑
Lφ] = {0}. Hence H is an abelian ideal of L. We obtain the

desired result.

The following theorem will generalize Rolf Farnstener’s result.

Theorem 2.5. Let (L, [p]) be a restricted Lie algebra over F such that card (F) ≥ pn.
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If L satisfies the requirement x[p]n = βx for any x ∈ L, β ∈ F fixed and �= 0, then L is
abelian.

Proof. Since x[p]n = βx for any x ∈ L, αx = (αx)[p]n = αpn

βx. Then for any α ∈ F,
we have αpn

= α. Since (αx + y)[p]n = β(αx + y) = αpn

βx + βy = (αx)[p]n + y[p]n , [p]n is
a p-semilinear mapping. By virtue of Lemma 1.1, we have L[p]n ⊆ C(L), i.e., L is abelian
since x[p]n = βx.

By Theorem 2.5, we obtain some sufficient conditions for the commutativity of restricted
Lie algebras.

Corollary 2.4. Every restricted Lie algebra (L, [p]) over an infinite field F satisfying
the requirement x[p]n(x)

= αx, α ∈ F fixed and �= 0, for any x ∈ L, is abelian.

Corollary 2.5. Every restricted Lie algebra (L, [p]) over F satisfying the requirement
x[p] = αx, α ∈ F fixed and �= 0, for any x ∈ L, is abelian.

Corollary 2.6. Every restricted Lie algebra (L, [p]) over F satisfying the requirement
x[p]2 = x, for any x ∈ L, is abelian.

Proof. If there is a nonzero element u of L such that x + x[p] = u, it is clear that
u[p] = u by a routine computation. Since Fp is contained in F, u lies centrally in L by
virtue of Lemma 1.2. Since u is not zero, we have C(L) �= 0. If L is not abelian, then L

is nonsolvable and L = L/C(L) �= {0} by Theorem 2.4. By Corollary 2.2, L = L/C(L) is
semisimple. Since y[p]2 = y for any y ∈ L, (y + C(L))[p]2 = y + C(L), i.e., ȳ[p]2 = ȳ and
ȳ + ȳ[p] = 0 since x + x[p] = u. Then ȳ[p] = −ȳ for any ȳ ∈ L. Owing to Corollary 2.5,
L = L/C(L) is abelian. We have arrived at a contradiction. Hence L is abelian.

If for any x ∈ L, x + x[p] = 0 holds, i.e., x[p] = −x for any x ∈ L, then L is abelian by
means of Corollary 2.5. We obtain the desired result.

Theorem 2.6. Let (L, [p]) be a four-dimensional restricted Lie algebra over F such that
(i) x[p]n(x)

= x for any x ∈ L, (ii) there is a nonzero element u of L such that x + x[p] +
· · · + x[p]n(x)−1

= u. Then L is abelian.

Proof. Owing to Theorem 2.4, the statement holds for 1-dimensional and 2-dimensional
restricted Lie algebra over F. It is known that 3-dimensional restricted Lie algebra is simple
or solvable (cf. [6, p.34]). By virtue of Lemma 1.3, 3-dimensional restricted Lie algebra such
that x[p]n(x)

= x for any x ∈ L is solvable. Owing to Theorem 2.4, 3-dimensional restricted
Lie algebra such that x[p]n(x)

= x for any x ∈ L is abelian.
Since there is a nonzero element u of L such that x + x[p] + · · · + x[p]n−1

= u, it is clear
that u[p] = u by a routine computation. Since Fp is contained in F , u lies centrally in L by
virtue of Lemma 1.1. Since u is not zero, we have C(L) �= 0. If L is not abelian, then L

is nonsolvable and L = L/C(L) �= {0} by Theorem 2.4. By Corollary 2.2, L = L/C(L) is
semisimple. Since y[p]n(y)

= y for any y ∈ L, (y + C(L))[p]n(y)
= y + C(L), i.e., ȳ[p]n(y)

= ȳ

for any ȳ ∈ L and dim(L/C(L)) ≤ 3, L/C(L) is abelian. we have arrived at a contradiction.
As a result, L is ablian.

Remark 2.3. There are no restricted Lie algebras (L, [p]) over F satisfying the require-
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ment x[p]2 = −x for any x ∈ L.

Proof. If there is a nonzero element u of L such that x+x[p] = u, it is clear that u[p] = u

by a routine computation. Then there is a nonzero element u of L such that u[p]2 = u. This
contradicts our present assumption. If x+x[p] = 0 for any x ∈ L, then x[p] = −x. Obviously,
x[p]2 = x for any x ∈ L. This also contradicts our present assumption. We obtain the desired
result.

Owing to Theorem 2.5, every finite-dimensional quasi-toral restricted Lie algebra over an
infinite field F is abelian. The following major results illustrate some properties on quasi-
toral restricted Lie algebras over a finite field F. The following F is assumed to be a finite
field of positive characteristic p ≥ 3.

Theorem 2.7. Let (L, [p]) be a minimal-dimensional restricted Lie algebra over F such
that (i) L is quasi-toral and (ii) C(L) = {0}. If L is not simple. Then the following
statements hold:

(1) Let J be a proper ideal of L. Then J is characteristic and semisimple, and L/J is
abelian.

(2) Let J be a maximal ideal of L. Then codimensionJ = 1.

(3) [L, L] is simple and DerF[L, L] is simple complete.

(4) L has more than one proper ideals.

Proof. (1) Assume that H is a proper restricted ideal of L. Since L is a minimal-
dimensional restricted Lie algebra over F such that (i) and (ii) hold, C(H) �= {0}. By virtue
of Corollary 2.2, H := H/C(H) is semisimple, i.e., the central of H is zero. Let x̄ ∈ H =
H/C(H). Since x[p]n(x)

= x for any x ∈ L, where n(x) ∈ N , (x + C(H))[p]n(x)
= x + C(H),

i.e., x̄[p]n(x)
= x̄ for any x̄ ∈ L. Then H = H/C(H) �= {0} such that (i) and (ii) hold. Since

dimH < dimL, this contradicts the choice of dimL. Consequently, L has not any proper
restricted ideal.

Let J be a proper ideal of L. Since J is not restricted, there is x1 ∈ J such that x
[p]
1 /∈ J .

Since [J+̇ Fx
[p]
1 , L] ⊆ J ⊆ J+̇ Fx

[p]
1 , J+̇ Fx

[p]
1 is an ideal of L. If J+̇ Fx

[p]
1 �= L, then

J+̇ Fx
[p]
1 is not restricted, i.e., there is x2 ∈ J+̇ Fx

[p]
1 such that x

[p]
2 /∈ J+̇ Fx

[p]
1 . Then

J+̇ Fx
[p]
1 +̇ Fx

[p]
2 is an ideal of L. By using the same methods, there are x1 ∈ J, x2 ∈

J, · · · , xn ∈ J such that x
[p]
1 /∈ J, x

[p]
2 /∈ J, · · · , x

[p]
n /∈ J and L = J+̇ Fx

[p]
1 +̇ Fx

[p]
2 +̇ · · · +̇

Fx
[p]
n since L is finite dimensional. By a routine computation, we obtain [L, L] ⊆ J . Hence

L/J is abelian.

Let D ∈ DerL and a, x ∈ L. If A is the transformation x → [a, x] and B is the
transformation x → [D(a), x], then A = ada, B = ad(D(a)). We can prove (adA)k(B) =
k∑

i=0

(−1)k−iCi
kAiBAk−i by induction on k.

Then by the result, we have

(adA)p−1(B) =
p−1∑

i=0

(−1)p−1−iCi
p−1A

iBAp−1−i.
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Since

Ci
p−1 =

(p − 1)(p − 2) · · · (p − i)
i · (i − 1) · · · · 1 =

(−1)(−2) · · · (−i)
i · (i − 1) · · · · 1 = (−1)i,

we have (−1)p−1−iCi
p−1 = (−1)p−1 = 1. So BAp−1 + ABAp−2 + · · · + Ap−1B = [A, · · · [A,

B] · · · ].
Then

D[a[p], x] = D[a, · · · [a, x] · · · ]
= [D(a), · · · [a, x] · · · ] + · · · + [a, · · · [a, D(x)] · · · ]
= [a[p], D(x)] + [a, a · · · [a, D(a)], · · ·x].

On the other hand, we have D[a[p], x] = [D(a[p]), x] + [a[p], D(x)] since D is a derivation.
Hence [D(a[p]), x] = [a, a · · · [a, D(a)], · · ·x] for all x ∈ L. Since C(L) = {0}, we obtain
(ada)p−1(D(a)) − D(a[p]) = 0. Thus (ada)p−1(D(a)) = D(a[p]) and every D ∈ DerL is a
restricted derivations of L. Let J be a proper ideal of L.

If D ∈ DerL, a ∈ J , for all n(a) ∈ N , then D(a[p]n(a)
) = (ada)pn(a)−1(D(a)) = [a,

· · · [a, [a, D(a)]], · · · ] ∈ J. So we can obtain D(J) ⊆ J , i.e., J is a characteristic ideal of L.
Let J be a proper ideal of L and I be an abelian ideal of J . Then there are x1 ∈ J, x2 ∈

J, · · · , xn ∈ J such that x
[p]
1 /∈ J, x

[p]
2 /∈ J, · · · , x

[p]
n /∈ J and L = J+̇ Fx

[p]
1 +̇ Fx

[p]
2 +̇ · · · +̇

Fx
[p]
n . So [I, L] = [I, J+̇ Fx

[p]
1 +̇ Fx

[p]
2 +̇ · · · +̇ Fx

[p]
n ] ⊆ I, i.e., I is also an abelian ideal of

L. By means of Corollary 2.2, C(L) is a maximal abelian ideal of L. Then I = C(L) = {0}.
Hence J is semisimple.

(2) Let J be a maximal ideal of L. Since J is not a proper restricted ideal of L, there is
x ∈ J such that x[p] /∈ J . According to adx[p](J) ⊆ (adx)p(J) = [x, · · · , [x, [x, J ]], · · · ] ⊆ J ,
we obtain [Fx[p]+̇ J, Fx[p]+̇ J ] ⊆ J ⊆ Fx[p]+̇ J . Then Fx[p]+̇ J is a subalgebra of L. As
[Fx[p]+̇ J, L] ⊆ J , Fx[p]+̇ J is a nontrivial ideal of L. If J is a maximal ideal of L, then
L = Fx[p]+̇ J . So dimJ = dimL − 1 = n − 1, i.e., codimensionJ = 1.

(3) Due to the proof of (1), [L, L] is a minimal proper nonrestricted ideal of L. Let I be
a nonzero ideal of [L, L]. Then there are x1 ∈ [L, L], x2 ∈ [L, L], · · · , xn ∈ [L, L] such that
x

[p]
1 /∈ [L, L], x[p]

2 /∈ [L, L], · · · , x
[p]
n /∈ [L, L] and L = [L, L]+̇ Fx

[p]
1 +̇ Fx

[p]
2 +̇ · · · +̇ Fx

[p]
n .

So [I, L] = [I, [L, L]+̇ Fx
[p]
1 +̇ Fx

[p]
2 +̇ · · · +̇ Fx

[p]
n ] ⊆ I, i.e., I is an ideal of L. According

to the proof of (1), we obtain I ⊇ [L, L] and I = [L, L]. As a result, [L, L] is simple. In the
light of this (cf. [9]), it is obvious that DerF[L, L] is simple complete.

(4) By virtue of (1) and (3), [L, L] is a minimal simple proper ideal of L. If L has a unique
proper ideal, then [L, L] is uniquely an ideal of L. By means of (2), codimension([L, L]) = 1.
So there exists x �∈ [L, L] such that L = [L, L]+̇ Fx. Hence [L, L] = [[L, L]+̇ Fx, [L, L]+̇
Fx] = L(2)+̇ [Fx, [L, L]]. Since [L, L] is simple, L(1) = L(2) and [Fx, [L, L]] = {0}. Then
[Fx, L] = [Fx, [L, L]+̇ Fx] = {0}. Thus Fx ⊆ C(L) and we have arrived at a contradiction
since C(L) = {0}. Hence L has necessarily more than one proper ideals.

Theorem 2.8. Let (L, [p]) be a minimal-dimensional restricted Lie algebra over F such
that (i) L is quasi-toral and (ii) C(L) = {0}. If L is simple, then the following statements
hold:
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(1) All proper subalgebras of L are abelian.
(2) D ∈ DerFL is semisimple.
(3) If H is a maximal proper subalgebra of L, then H is a Cartan subalgebra of L.
(4) If H is a maximal proper subalgebra of L, then L = H + [H, L].

Proof. (1) Let H be a maximal subalgebra of L. If H is not a restricted subalgebra of
L, then there is x ∈ H such that x[p] /∈ H . Since H is a maximal subalgebra of L, we have
L = 〈x[p], H〉.

For any h ∈ H , we have [x[p], h] = (adx)p(h) = [x, · · · , [x, [x, h]], · · · ] ∈ H . So [Fx[p]+̇
H, Fx[p]+̇ H ] ⊆ H ⊆ Fx[p]+̇ H . Then Fx[p]+̇ H is a subalgebra of L. According to the
maximality of H , we have L = 〈x[p], H〉 = Fx[p]+̇ H . As [H, L] = [H, Fx[p]+̇ H ] ⊆ H , H is
a nonzero maximal ideal of L. We have arrived at a contradiction since L has not nontrivial
ideal. Hence H is a restricted subalgebra of L.

We claim that all the proper restricted subalgebras of L are abelian. Let J be a proper
restricted subalgebra of L. Then J is a quasi-toral restricted subalgebra of L. If J is
nonabelian, then J is nonsolvable by Theorem 2.4. Since J is a restricted proper subalgebra
of L and L is minimal-dimensional such that (i) and (ii) hold, C(J) �= {0}. According to
Corollary 2.2, J/C(J) �= {0} is semisimple. Then the central of J/C(J) �= {0} is zero.

Let x̄ ∈ J = J/C(J). Since x[p]n(x)
= x for any x ∈ L, where n(x) ∈ N , (x+C(J))[p]n(x)

=
x + C(J), i.e., x̄[p]n(x)

= x̄ for any x̄ ∈ L, where n(x) ∈ N . So J = J/C(J) �= {0} satisfies
x̄[p]n(x)

= x̄ for any x̄ ∈ L, where n(x) ∈ N , and the central of J/C(J) is zero. Since
dimJ < dimL, this contradicts the choice of dimL. Hence J is abelian.

We claim that all proper nonrestricted subalgebra of L are abelian. Let M be a proper
nonrestricted subalgebra of L. Then M is not a maximal subalgebra of L since all maximal
subalgebras of L is a restricted subalgebra of L. So there exists x1 ∈ M such that x

[p]
1 /∈ M .

Let M1 = M+̇Fx
[p]
1 . It is clear that M1 is a subalgebra of L. If M1 is restricted, then

M1 is abelian by the above proof. So it is clear that M is abelian. If M1 is nonrestricted,
then there exists x2 of M such that x

[p]
2 /∈ M . Let M2 = M1+̇ Fx

[p]
2 . Obviously, M2

is a subalgebra of L. Using the same methods, there exist x1, x2, · · · , xk ∈ M such that
x

[p]
1 /∈ M, x

[p]
2 /∈ M, · · · , x

[p]
k /∈ M and Mk = M+̇ Fx

[p]
1 +̇ , · · · ,+̇ Fx

[p]
k is a maximal

subalgebra of L if Mk−1 = M+̇ Fx
[p]
1 +̇ , · · · ,+̇ Fx

[p]
k−1 is nonrestricted for some k ∈ N . As

every maximal subalgebra is restricted, Mk is also restricted. So Mk is abelian. It is clear
that M is abelian.

Thus all proper subalgebras of L are abelian.
(2) Let D ∈ DerF(L) be a nonzero nilpotent derivation of L and let Dn = 0, Dn−1 �= 0.

Let Vm := kerDm, 1 ≤ m ≤ n.
Since Dm+1(Vm+1) = {0}, i.e., Dm(D(Vm+1)) = {0}, D(Vm+1) ⊆ Vm.
Obviously, V1 ⊆ V2 ⊆ · · · ⊆ Vn = L.
We will show that for all m ∈ N (1 ≤ m ≤ n − 1), Vm is a proper subalgebra of L by

induction on m.
For the case m = 1.

Since D[V1, V1] = [D(V1), V1] + [V1, D(V1)] and V1 = kerD, D[V1, V1] = {0}. Then
[V1, V1] ⊆ kerD = V1, i.e., V1 is a proper subalgebra of L. So [V1, V1] = {0} by means of (1).
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Suppose that the statement holds for the case m = k, i.e., Vk is a proper subalgebra of
L of L for any k ∈ N , then [Vk, Vk] = {0} by virtue of (1).

For the case m = k + 1, we obtain

Dk+1[Vk+1, Vk+1]

=
k+1∑

i=0

Ci
k+1[D

i(Vk+1), Dk+1−i(Vk+1)]

=
k∑

i=1

Ci
k+1[D

i(Vk+1), Dk+1−i(Vk+1)] + [Dk+1(Vk+1), Vk+1] + [Vk+1, Dk+1(Vk+1)].

Since D(Vm+1) ⊆ Vm and V1 ⊆ V2 ⊆ · · · ⊆ Vn = L, Di(Vk+1) ⊆ Vk+1−i and Dk+1−i

(Vk+1) ⊆ Vi.
Then

k∑

i=1

Ci
k+1[D

i(Vk+1), Dk+1−i(Vk+1)] ⊆
k∑

i=1

Ci
k+1[Vk+1−i, Vi] ⊆

k∑

i=1

Ci
k+1[Vk, Vk] = {0}.

Since

Vk+1 = kerDk+1,

we have

[Dk+1(Vk+1), Vk+1] + [Vk+1, Dk+1(Vk+1)] = {0}.

So

Dk+1[Vk+1, Vk+1] =
k∑

i=1

Ci
k+1[D

i(Vk+1), Dk+1−i(Vk+1)]

+ [Dk+1(Vk+1), Vk+1] + [Vk+1, Dk+1(Vk+1)]

= {0}.

It is clear that Dk+1[Vk+1, Vk+1] = {0}, i.e., [Vk+1, Vk+1] ⊆ KerDk+1 = Vk+1. So Vk+1

is a proper subalgebra of L and [Vk+1, Vk+1] = {0} by means of (1). Thus we have proved
that Vm is a proper subalgebra of L for any m ∈ N (1 ≤ m ≤ n − 1).

It is obvious that Vn−1 ⊂ L is a proper subalgebra of L and [Vn−1, Vn−1] = {0}. Since
Vn = L and D(Vn) ⊆ Vn−1,

[D(L), D(L)] ⊆ [Vn−1, Vn−1] = {0}.

Since

m−1∑

i=1

Ci
m[Di(L), Dm−i(L)] ⊆

m−1∑

i=1

Ci
m[D(L), D(L)] = {0},
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we have

Dm[L, L] =
m∑

i=0

Ci
m[Di(L), Dm−i(L)]

=
m−1∑

i=1

Ci
m[Di(L), Dm−i(L)] + [Dm(L), L] + [L, Dm(L)]

= [Dm(L), L] + [L, Dm(L)].

So Dm is a derivation of L for any 1 ≤ m ≤ n − 1.
As

Dn−1[Vn−1, L] =
n−1∑

i=0

Ci
n−1[D

i(Vn−1), Dn−1−i(L)]

=
n−2∑

i=1

Ci
n−1[D

i(Vn−1), Dn−1−i(L)]

+ [Dn−1(Vn−1), L] + [Vn−1, D
n−1(L)]

and

n−2∑

i=1

Ci
n−1[D

i(Vn−1), Dn−1−i(L)] ⊆
n−2∑

i=1

Ci
n−1[D(L), D(L)] = {0},

we have Dn−1[Vn−1, L] = {0} since Vn−1 = kerDn−1, i.e., [Vn−1, L] ⊆ kerDn−1 = Vn−1.
Hence Vn−1 �= L is an ideal of L. Then Vn−1 = kerDn−1 = {0} since L is simple. But
Vn−1 is a proper subalgebra of L. We have arrived at a contradiction. Thus DerFL does
not contain any nonzero nilpotent elements. By virtue of Jordan-Chevalley decomposition
Theorem, D ∈ DerFL is semisimple.

(3) Let H be a maximal proper subalgebra of L. It is clear that H is a maximal abelian
subalgebra of L by means of (1). Let NorL(H) be a normalizer of H in L. Suppose that
x ∈ NorL(H) and x �∈ H . Since y[p]n(y)

= y for any y ∈ H ,

[y, x] = [y[p]n(y)
, x] = [y, [y, · · · , [y, x], · · · ]] = 0.

Then [x, H ] = {0}. So [H+̇ Fx, H+̇ Fx] = {0}, i.e., H+̇ Fx is a subalgebra of L. Then
L = Fx+̇ H by the maximality of H . Hence

[Fx, L] = [H+̇Fx, Fx] = {0}, i.e., Fx ⊆ C(L).

This contradicts C(L) = {0}. So
H ⊇ NorL(H).

It is clear that
H ⊆ NorL(H).

Then
NorL(H) = H.
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Therefore, H is a Cartan subalgebra of L.
(4) If H is a maximal proper subalgebra of L, then H is a maximal proper abelian

restricted subalgebra of L by virtue of (1). Since L is quasi-toral, every element of L is
semisimple. Then H is a torus of L. It is clear that L is a H-invariant subspace. So
L = CL(H) + [H, L] by means of Lemma 1.4.

Since H is abelian, H ⊆ CL(H). If there is x ∈ CL(H) and x �∈ H , then [H+̇ Fx, H+̇
Fx] = {0}, i.e., H+̇ Fx is an abelian restricted subalgebra of L. This contradicts the
maximality of H . So H = CL(H) and we obtain the desired result.
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