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Abstract

Let L be a meet continuous lattice. It is proved that the category Top of topological
spaces can be embedded in the category of stratified L-topological spaces as a concretely
both reflective and coreflective full subcategory if and only if L is a continuous lattice.
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§ 1 . Introduction and Preliminaries

Let L be a complete lattice. An L-topology on a set X is a subset τ of LX closed with
respect to finite meets and arbitrary joins. (X, τ) is called an L-topological space. The L-
topology τ is called stratified if it contains all the constant maps from X to L, and in this case
(X, τ) is called a stratified L-topological space. A continuous map between two L-topological
spaces (X, τX) and (Y, τY ) is a function f : X −→ Y such that f←(λ) = λ ◦ f ∈ τX for each
λ ∈ τY . The category of L-topological spaces is denoted by L-Top and the full subcategory of
stratified L-topological spaces is denoted by SL-Top. Both L-Top and SL-Top are topological
categories over Set.

Lattice valued topology, or fuzzy topology, is intended to be an extension of classical
topology. This makes sense in two quite different way. The first is that by replacing 2
={0, 1} by an arbitrary complete lattice L (sometimes with extra structures) we obtain
a new category of a topological nature; and when L reduces to 2, we come back to the
classical topology. So every theorem about L-topological spaces is a theorem about classical
topological spaces. The second way is much subtler and more interesting. In order to explain
it, we recall the Lowen functors at first.

In 1976 Lowen [10] introduced a pair of functors: ω : Top −→ S[0, 1]-Top and ι : S[0, 1]-
Top−→Top as follows: ω maps every topological space (X, T ) to (X, ω(T )), where ω(T )
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denotes the collection of the lower semicontinuous functions from X to [0, 1]; and the functor
ι takes every [0,1]-topological space (X, Δ) to (X, ι(Δ)), where ι(Δ) is the coarsest topology
on X making all λ ∈ Δ lower semicontinuous. These two functors play a prominent role in
fuzzy topology, and are called the Lowen functors in the literature. It is well known that ι

is a right adjoint of ω and that ω also has a concrete left adjoint. So, ω embeds Top in the
category S[0,1]-Top as a simultaneously reflective and coreflective full subcategory (see [13,
10, 14, 16]).

Besides Top, S[0,1]-Top contains other full subcategories which are both concretely re-
flective and coreflective. The importance of the existence of such subcategories lies in that,
as observed by Lowen and Wuyts [14], each such subcategory is closed under the formation
of initial and final structures in S[0,1]-Top, hence gives rise to a perfectly viable and natural
autonomous theory of fuzzy topology. The best example is the theory for the category of
fuzzy neighborhood spaces initiated by Lowen [11, 12]. This phenomenon sharply distin-
guishes fuzzy topology from classical topology on the categorical level, since the category
Top of topological spaces contains no nontrivial such subcategories (see [7]).

Therefore, fuzzy topology should consist of a system of theories corresponding to the both
initially and finally closed subcategories of S[0,1]-Top with the classical theory of topology
corresponding to the subcategory ω(Top) ∼= Top. This is the second way that fuzzy topology
can be regarded as an extension of classical topology. This also explains to some extent why
one can find very often in the literature that there are many quite different generalizations
of the same concept in topology to the fuzzy setting, they are invented for different subcat-
egories of S[0,1]-Top which are both initially and finally closed. We refer the reader to [17]
for an analysis in this spirit of the interrelationship between different notions of uniformity
in fuzzy set theory.

Then, a natural question is: For a complete lattice L, is the theory of L-topological
spaces an extension of classical topology in the second sense? Clearly, the answer to this
question reduces to that whether Top can be embedded in the category SL-Top as a both
initially and finally closed full subcategory.

In 1990, replacing the lower semicontinuous functions by Scott continuous functions,
Warner [15] generalized the construction of the Lowen functors to the case L is a distributive
continuous lattice. In 1992, Kubiak [9], Kotzé and Kubiak [8] generalized the construction
to a general setting when L is a complete lattice by considering a suitable topology on L.

Let L be a continuous lattice. Write ωL : Top −→ SL-Top for the functor which maps
every topological space (X, T ) to (X, ωL(T )), where ωL(T ) denotes the collection of the
continuous functions from X to L with respect to the Scott topology. Then ωL is a full
embedding and has simultaneously a concrete left adjoint and a concrete right adjoint.
Therefore, Top can be embedded in the category SL-Top as a both initially and finally
closed full subcategory.

In this note, we show that if L is a meet continuous lattice, then Top can be embedded in
SL-Top as a both initially and finally closed full subcategory if and only if L is continuous.

This note is arranged as follows. In Section 2 we prove a general result about Galois
connections between categories of L-topological spaces. This result will be employed in



ON THE EMBEDDING OF TOP IN THE CATEGORY 221

Section 3 to prove our main result in this note.
We refer to [1] for category theory and to [5] for lattice theory. However, we recall here

some basic ideas about continuous lattices.
Let L be a complete lattice and a, b ∈ L. We say that a is way below b, in symbols,

a � b, or b � a, if for every directed subset D ⊆ L,
∨

D ≥ b implies a ≤ d for some d ∈ D.
A complete lattice L is said to be continuous if every element in L is the join of all the
elements way below it. An upper set U in L is called Scott open if for every directed subset
D ⊆ L,

∨
D ∈ U implies U ∩ D �= ∅. All the Scott open sets form a topology on L, called

the Scott topology on L, denoted by σ(L). It is well known that in a continuous lattice L,
{⇑ a | a ∈ L} is a base for the Scott topology, where ⇑a = {b ∈ L | b � a}.

Suppose X is a set and U ⊆ X, a ∈ L. We define a function a ∧ U : X −→ L by
a ∧ U(x) = a if x ∈ U and a ∧ U(x) = 0 if x �∈ U . Functions of this form will be called one
step functions in short.

§ 2 . Galois Connections

By a Galois connection between two concrete categories we mean a Galois connection
of the third kind introduced in [6] or a Galois correspondence in [1]. Precisely, a Galois
connection between two concrete categories A and B is a pair of concrete functors F :
A−→B, G : B−→A such that {idY : FG(Y ) −→ Y | Y ∈B} is a natural transformation
from the functor F ◦ G to the identity functor on B and {idX : X −→ GF (X) | X ∈A} is
a natural transformation from the identity functor on A to G ◦ F . We refer the reader to
[1, 6] for more about Galois connections between concrete categories.

Suppose L1, L2 are complete lattices and Δ ⊆ LL2
1 is a stratified L1-topology on L2.

Given a stratified L1-topological space (X, τ), let ωΔ(τ) be the stratified L2-topology on X

generated as a subbase by

{f : (X, τ) −→ (L2, Δ) | f is continuous}.

Clearly, in this way we obtain a concrete functor ωΔ : SL1-Top−→ SL2-Top. Conversely,
given a stratified L2-topological space (X, η), let ιΔ(η) be the stratified L1-topology on X

generated as a subbase by {δ ◦ λ | δ ∈ Δ, λ ∈ η}. Then, we obtain a concrete functor
ιΔ : SL2-Top−→ SL1-Top.

Theorem 2.1. (cf. [18]) (1) The pair (ωΔ, ιΔ) is a Galois connection if and only
if for each stratified L1-topological space (X, τ), ωΔ(τ) = {f : (X, τ) −→ (L2, Δ) | f is
continuous}, that is to say, the collection of the continuous functions from (X, τ) to (L2, Δ)
is already an L2-topology on X .

(2) Suppose that F: SL1-Top−→SL2-Top, G : L2-Top−→ L1-Top are concrete functors
and that (F, G) is a Galois connection. Then there is a unique stratified L1-topology Δ on
L2 such that F = ωΔ, G = ιΔ.

Corollary 2.1. Suppose that the stratified L1-topology Δ on L2 has a subbase consist-
ing of maps which preserve binary meets and non-empty joins. Then (ωΔ, ιΔ) is a Galois
connection.
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Note 2.1. Suppose Δ is an L1-topology on L2. It is possible that (ωΔ, ιΔ) is not a
Galois connection, but ωΔ is the left adjoint part of a Galois connection. For example, let L

be a continuous lattice and Γ be a topology on L finer than the Scott topology Σ. If every
element in Γ is an upper set, it is routine to check that ωΣ = ωΓ. Thus, (ωΓ, ιΣ) is a Galois
connection, but (ωΓ, ιΓ) is not whenever Γ �= Σ (Theorem 2.1).

Galois connections abound in fuzzy topology, with the Lowen adjunction (ω, ι) (see [10])
being the primary example, and they play an important role in the investigation of the
relationship between different categories of L-topological spaces. Several examples were
listed in [18]. Here we present some Galois connections between the category of [0, 1]-
topological spaces and the category of intuitionistic fuzzy topological spaces which receive
attention recently in the literature. Note that Theorem 2.1 is also valid for the Galois
connections between categories of L-topological spaces which are not necessarily stratified.
Of course, we do not require the L-topology Δ to be stratified in this case.

Example 2.1. Let X be a set. An intuitionistic fuzzy set (see [2]) A of X is a pair
(μA, γA) of ([0, 1]-)fuzzy subsets of X such that 0 ≤ μA(x) + γA(x) ≤ 1 for all x ∈ X , or
equivalently, μA(x) ≤ 1−γA(x) for all x ∈ X . μ(x) is interpreted as the degree that x has the
property A; γ(x) as the degree that x does not have the property A; and 1−μ(x)− γ(x) as
the ‘hesitation degree’ (see [4]). Suppose A = (μA, γA), B = (μB, γB) are two intuitionistic
fuzzy sets of X . Define A ≤ B iff μA ≤ μB, γA ≥ γB. Then under the partial ordering ≤,
all the intuitionistic fuzzy sets of X form a completely distributive lattice with an order-
reversing involution (μ, γ) �→ (γ, μ). An intuitionistic fuzzy topology (see [3]) on X is a
subset of intuitionistic fuzzy sets on X which are closed under finite meets and arbitrary
joins.

Let L = {(a, b) ∈ [0, 1] × [0, 1]|a ≤ b}. Clearly L is a completely distributive lattice
with an order-reversing involution (a, b) �→ (1 − b, 1 − a). For each intuitionistic fuzzy set
A = (μA, γA), let e(A) ∈ LX be defined by e(A)(x) = (μA(x), 1−γA(x)). Then e establishes
a lattice isomorphism between the complete lattice of intuitionistic fuzzy sets of X and
the complete lattice LX (see [4]). Thus, an intuitionistic fuzzy topology on X is just an
L-topology on X .

Let f1, f2, f3 : [0, 1] −→ L be defined by f1(a) = (a, a); f2(a) = (0, a); f3(a) = (a, 1).
Let Δ1 = {0, f1, 1}; Δ2 = {0, f2, 1}; Δ3 = {0, f3, 1}. Then all of (ωΔi, ιΔi), i ≤ 3, are
Galois connections between the category of [0, 1]-topological spaces and the category of
intuitionistic fuzzy topological spaces (= L-topological spaces). And all of ωΔi , i ≤ 3, are
full embeddings.

It is showed in [18] that if L1 is a complete Heyting algebra and (ωΔ, ιΔ) is a Galois
connection between L1-Top and L2-Top, then every function f ∈ Δ is necessarily order-
preserving. The following question is raised in [18].

Question. Let L1, L2 be complete lattices and Δ be an L1-topology on L2 such that
(ωΔ, ιΔ) is a Galois connection. Then, is every element λ in Δ necessarily a Scott continuous
function L2 −→ L1?

In the following we will see that the answer to this question is positive if L1 is meet
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continuous.
Let 2 = {0, 1} be the complete chain of two elements and L be a complete lattice. A

function f : 2 −→ L can be simply denoted as a pair (a, b) of elements in L, precisely,
f(0) = a, f(1) = b. Thus, an L-topology on 2 can be regarded as a subset Γ ⊆ L×L closed
under finite meets and arbitrary joins.

Let L be a complete lattice and Λ = {(a, b) ∈ L × L | a ≤ b}. Then Λ is a stratified
L-topology on 2 and by Corollary 2.1, (ωΛ, ιΛ) is a Galois connection between SL-Top and
Top. Thus, ωΛ : SL-Top−→Top is a left adjoint of ιΛ : Top −→ SL-Top. Clearly, for each
topological space (X, T ), ιΛ(T ) is the stratified L-topology on X generated as a subbase by
{a∧U | a ∈ L, U ∈ T }. We will write πL for the functor ιΛ : Top −→ SL-Top in the sequel.

Lemma 2.1. A complete lattice L is meet continuous if and only if for every topological
space (X, T ), the collection {a ∧ U | a ∈ L, U ∈ T } is a base for πL(T ). In this case,
πL : Top −→ SL-Top is a right inverse of ωΛ, and embeds Top in SL-Top as a concretely
reflective full subcategory.

Proof. ⇐. Suppose D ⊆ L is a directed set and a ∈ L. We need only show that
a ∧

∨
D ≤

∨
a ∧ D.

Without loss of generality, we can assume that D is also a lower set , i.e., D =↓D.
Let X = L and T denote the topology on X generated as a base by {↑ d | d ∈ D}. By

assumption, the collection of functions X −→ L of the form
∨

t∈T

at ∧ Ut is an L-topology

τ on X , where at ∈ L, Ut ∈ T . Clearly f = a ∧
∨

d∈D

(d∧ ↑ d) ∈ τ. Therefore, there exist

{as | s ∈ S} ⊆ L and {Us | s ∈ S} ⊆ T such that f =
∨

s∈S

as ∧ Us.

For each s ∈ S, there is some d ∈ D such that ↑d ⊆ Us, thus

as ≤ as ∧ Us(d) ≤ f(d) = a ∧
∨

{y ∈ D |y ∈ D, y ≤ d} = a ∧ d.

Therefore
a ∧

∨
D = f

(∨
D

)
≤

∨
s∈S

as ≤
∨

d∈D

a ∧ d.

⇒. Let (X, T ) be a topological space and τ , the collection of functions X −→ L of the
form

∨
t∈T

at ∧ Ut, is an L-topology on X , where at ∈ L, Ut ∈ T . We need only show that τ

is closed under binary meets.
Suppose f1 =

∨
s∈S

as ∧ Us ∈ τ and f2 =
∨

t∈T

bt ∧ Vt ∈ τ .

Let S<ω = {F ⊆ S | F is finite} and T <ω = {G ⊆ T | G is finite}.
Since for all F ∈ S<ω, G ∈ T <ω, we have

∨
s∈F

as ∧ Us =
∨

K⊆F

(( ∨
s∈K

as

)
∧

⋂
s∈K

Us

)
,

∨
t∈G

bt ∧ Vt =
∨

H⊆G

(( ∨
t∈H

bt

)
∧

⋂
t∈H

Vt

)
,

and thus( ∨
s∈F

as ∧ Us

)
∧

( ∨
t∈G

bt ∧ Vt

)
=

∨
K⊆F,H⊆G

( ∨
s∈K

as ∧
∨
t∈H

bt

)
∧

( ⋂
s∈K

Us ∩
⋂
t∈H

Vt

)
.
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Therefore, by meet continuity of L,

f1 ∧ f2 =
( ∨

F∈S<ω

∨
s∈F

as ∧ Us

)
∧

( ∨
G∈T <ω

∨
t∈G

bt ∧ Vt

)

=
∨

F∈S<ω,G∈T <ω

( ∨
s∈F

as ∧
∨
t∈G

bt

)
∧

( ⋂
s∈F

Us ∩
⋂
t∈G

Vt

)

∈ τ.

The second half of the conclusion is straightforward.

The following two lemmas have been proved in [18] when L is a complete Heyting algebra.
We include here the proofs, which are similar to those in [18], for the convenience of the
reader.

Lemma 2.2. Suppose L1, L2 are complete lattices and Δ ⊆ LL2
1 is a stratified L1-

topology on L2 such that (ωΔ, ιΔ) is a Galois connection between SL1-Top and SL2-Top.
Suppose L ⊆ L2 is a subset closed with respect to finite meets and arbitrary joins. Let Δ∗ be
the restriction of Δ on L, i.e. (L, Δ∗) is a subspace of (L2, Δ). Then, the pair of functors
(ωΔ∗ , ιΔ∗) is a Galois connection between SL1-Top and SL-Top.

Proof. Given a stratified L1-topological space (X, τ), a function f : (X, τ) −→ (L, Δ∗)
is continuous if and only if f is continuous regarded as a function from (X, τ) to (L2, Δ).
Thus, the set {f : (X, τ) −→ (L, Δ∗) | f is continuous} is closed under finite meets and
arbitrary joins since (ωΔ, ιΔ) is a Galois connection. Hence, (ωΔ∗ , ιΔ∗) is a Galois connection
by Theorem 2.1.

Lemma 2.3. If L1 is a meet continuous lattice and Γ ⊆ L1 × L1 is a stratified L1-
topology on 2 such that (ωΓ, ιΓ) is a Galois connection between SL1-Top and Top, then

Γ ⊆ {(a, b) | a ≤ b}.

Proof. Suppose there is some (a, b) ∈ Γ such that a �≤ b. Let (X, T ) be a crisp
topological space with a family of clopen sets {Ut | t ∈ T } such that F =

⋂
t∈T

Ut is not open.

Let τ = πL1(T ), i.e., λ ∈ τ if and only if there exists a family {Us | s ∈ S} of open sets
in (X, T ) and {as | s ∈ S} ⊆ L1 such that λ =

∨
s∈S

as ∧ Us. By the above lemma, τ is a

stratified L1-topology on X .
For each t ∈ T , define ft : X −→ 2 by

ft(x) =

{
0, x ∈ Ut;

1, x �∈ Ut.

Since Ut is clopen, ft : (X, τ) −→ (2, Γ) is continuous. Indeed, for all (c, d) ∈ Γ, f←t (c, d) =
(c ∧ Ut) ∨ (d ∧ (X\Ut)). Hence ft is continuous.

Let f =
∨

t∈T

ft. Then

f(x) =

⎧⎪⎨
⎪⎩

0, x ∈
⋂

t∈T

Ut;

1, x �∈
⋂

t∈T

Ut.



ON THE EMBEDDING OF TOP IN THE CATEGORY 225

We say that f : (X, τ) −→ (2, Γ) is not continuous. To this end, we show that

f←(a, b) =
(
a ∧

⋂
t∈T

Ut

)
∨

(
b ∧

(
X\

⋂
t∈T

Ut

))
= (a ∧ F ) ∨ (b ∧ (X\F )) �∈ τ.

Suppose, on the contrary, that f←(a, b) ∈ τ . Then there exists a family {Us | s ∈ S} of
open sets in (X, T ) and {as | s ∈ S} ⊆ L1 such that

(a ∧ F ) ∨ (b ∧ (X\F )) =
∨
s∈S

as ∧ Us.

Thus, F =
⋃
{Us | as �≤ b} is open, contradictory to the assumption that F is not open.

Therefore, {f : (X, τ) −→ (2, Γ) | f is continuous} is not a 2-topology since it is not
closed under joins. Consequently, (ωΓ, ιΓ) cannot be a Galois connection between SL1-Top
and Top by Theorem 2.1, a contradiction.

Theorem 2.2. Let L1 be a meet continuous lattice and L2 a complete lattice. If Δ ⊆ LL2
1

is a stratified L1-topology on L2 such that (ωΔ, ιΔ) is a Galois connection between SL1-Top
and SL2-Top, then every element λ ∈ Δ is Scott continuous.

Proof. (1) Every λ ∈ Δ is order-preserving. The proof of this conclusion is similar to
Theorem 3.3 in [18], we repeat it here for the convenience of the reader.

Suppose there is some λ ∈ Δ and α, β ∈ L2 such that α < β but λ(α) �≤ λ(β), where, α

is allowed to be 0 and β to be 1.
Clearly, L = {α, β} ∪ {0, 1} is a complete sublattice of L2. Let Δ∗ be the restriction of

Δ on L. Then, by Lemma 2.1, the pair of functors (ωΔ∗ , ιΔ∗) is a Galois connection. On
the other hand, let τ be the L1-topology on X as defined in Lemma 2.2 and replace 0 by α

if 0 �= α, and 1 by β if 1 �= β in the definition of ft’s in Lemma 2.2. Then, it can be checked
that ft : (X, τ) −→ (L, Δ∗) is continuous for each t ∈ T , but f←(λ) �∈ τ , where f is the join
of ft’s. Thus, (ωΔ∗ , ιΔ∗) cannot be a Galois connection by Theorem 2.1(1), a contradiction.

(2) λ is Scott continuous.
Suppose that λ is not Scott continuous. Then there is a directed subset D ⊆ L2 such

that λ(
∨

D) �=
∨

d∈D

λ(d). By (1), λ preserves order, thus, λ(
∨

D) ≥
∨

d∈D

λ(d). Hence

λ(
∨

D) �≤
∨

d∈D

λ(d).

Since λ is order-preserving, we can assume that D = ↓D. Write T for the topology on
L2 generated as a base by {↑ d | d ∈ D} and let τ be the L1-topology on L2 consisting of
functions L2 −→ L1 of the form

∨
t∈T

at ∧ Ut, where at ∈ L1, Ut ∈ T .

For each d ∈ D, let fd : (L2, τ) −→ (L2, Δ) be defined by fd = d∧ ↑ d. Then fd is
continuous since for each μ ∈ Δ,

f←d (μ) = μ ◦ fd = (μ(0) ∧ (L2\ ↑d)) ∨ (μ(d)∧ ↑d) = (μ(0) ∧ L2) ∨ (μ(d)∧ ↑d) ∈ τ.

Let f =
∨

d∈D

fd. Clearly f is the identity when restricted to ↓(
∨

D). We assert that f is

not continuous. Otherwise, there exist a subset {as | s ∈ S} ⊂ L1 and a family of open sets
{Us | s ∈ S} in (L2, T ) such that f←(λ) =

∨
s∈S

as ∧ Us.
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For each s ∈ S, there is some ds ∈ Us ∩ D since {↑ d | d ∈ D} is a base for T .
Thus as = (as ∧ Us)(ds) ≤

∨
s∈S

(as ∧ Us)(ds) = f←(λ)(ds) = λ ◦ f(ds) = λ(ds). Therefore∨
s∈S

as ≤
∨

d∈D

λ(d). On the other hand,

λ
( ∨

D
)

= λ
(
f
(∨

D
))

=
( ∨

s∈S

as ∧ Us

)( ∨
D

)
≤

∨
s∈S

as.

Hence λ(
∨

D) ≤
∨

d∈D

λ(d), a contradiction to λ(
∨

D) �≤
∨

d∈D

λ(d).

Therefore the collection of continuous functions from (L2, τ) to (L2, Δ) is not an L2-
topology, hence (ωΔ, ιΔ) cannot be a Galois connection.

Corollary 2.2. Let L1 be a meet continuous lattice and L2 a complete lattice. If Δ ⊆ LL2
1

is a stratified L1-topology on L2 such that for every stratified L1-topological space (X, τ), the
collection of all the continuous functions (X, τ) −→ (L2, Δ) is closed under arbitrary joins,
then every element λ ∈ Δ is Scott continuous.

Note 2.2. The condition that L is meet continuous in Theorem 2.2 is indispensable.
For example, suppose that L is a complete lattice, a ∈ L and D ⊆ L is a directed set with
a ∧

∨
D �=

∨
d∈D

a ∧ d. Let Δ be the stratified L-topology on L generated as a subbase by

{idL} ∪ {b ∧ L | b ∈ L}. Then (ωΔ, ιΔ) is a Galois connection between SL-Top itself and
a ∧ idL ∈ Δ. Clearly, a ∧ idL ∈ Δ is not Scott continuous.

§ 3 . The Main Result

Before proving our main result, we present at first a characterization of continuous lat-
tices.

Lemma 3.1. Let L be a complete lattice. The following conditions are equivalent:
(1) L is continuous.
(2) For every topological space X, a function f : X −→ (L, σ(L)) is continuous if and only

if there exists a family {Ut}t∈T of open sets in X and {at}t∈T ⊆ L such that f =
∨

t∈T

at∧Ut.

(3) There is a topology Γ on L such that for every topological space X, a function f :
X −→ (L, Γ) is continuous if and only if there exists a family {Ut}t∈T of open sets in X

and {at}t∈T ⊆ L with f =
∨

t∈T

at ∧ Ut.

Proof. (1)⇒(2). Suppose f : X −→ (L, σ(L)) is continuous. Then

f =
∨
a∈L

a ∧ f−1(⇑a).

Conversely, suppose there exists a family {Ut}t∈T of open sets in X and {at}t∈T ⊆ L such
that

f =
∨
t∈T

at ∧ Ut.

If f(x) � a, then ∨
{at | x ∈ Ut} � a,
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thus there exists some ai, i ≤ n, such that∨
i≤n

ai ≥ a and x ∈
⋂
i≤n

Ui.

Hence ⋂
i≤n

Ui ⊆⇑ a,

thus, f is continuous.
(2)⇒ (3). Trivial.
(3)⇒ (1). Let L1 = 2 and L2 = L in Corollary 2.2. We obtain that Γ is coarser than

the Scott topology on L. Since idL : (L, Γ) −→ (L, Γ) is continuous, there exist a family
{Ut}t∈T of open sets in Γ and {at}t∈T ⊆ L such that

idL =
∨
t∈T

at ∧ Ut.

Hence for each a ∈ L,

a =
∨

U∈Γ,a∈U

∧
b∈U

b.

Thus, for each a ∈ L,

a =
∨

U∈σ(L),a∈U

∧
b∈U

b

since Γ is coarser than σ(L). Therefore, L is continuous.
Now, we are in a position to prove the main theorem in this note.

Theorem 3.1. Let L be a meet continuous lattice. The following conditions are equiv-
alent:

(1) L is continuous.
(2) Top can be embedded in SL-Top as a concretely both reflective and coreflective full

subcategory.

Proof. We need only prove that (2) ⇒ (1). Suppose F : Top−→ SL-Top is an embedding
which has a concrete left adjoint G and a concrete right adjoint H . Then both of the pairs
(F, G) and (H, F ) are Galois connections. Thus, there exists a topology Γ on L and an
L-topology Δ on 2 such that

F = ωΓ = ιΔ.

By Theorem 2.2, we obtain that Δ ⊆ {(a, b) | a ≤ b} and Γ is coarser than the Scott
topology on L. Hence, for each topological space (X, T ),

πL(T ) ⊆ ωΓ(T ) = F (T ) = ιΔ(T ) ⊆ πL(T ).

Therefore, a function f : (X, T ) −→ (L, Γ) is continuous if and only if there exists a family
{Ut}t∈T of open sets in X and {at}t∈T ⊆ L such that

f =
∨
t∈T

at ∧ Ut.



228 LAI, H. L. & ZHANG, D. X.

Thus, L is continuous by Lemma 3.1(3).

It can be seen from the above theorem that when L is a continuous lattice, there is
exactly one way to embed Top in SL-Top as a concretely both reflective and coreflective
full subcategory, the embedding functor is the Lowen functor ωL (see [15]) which coincides
with πL. This explains, to some extent, the importance played by the Lowen functors in the
development of fuzzy topology.
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[ 6 ] Herrlich, H. & Hušek, M., Galois connections categorically, J. Pure Appl. Algebra, 68(1990), 165–180.

[ 7 ] Kannan, V., Reflexive cum coreflexive subcategories in topological spaces, Math. Ann., 195(1972),
168–174.
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1992, 276–305.

[10] Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(1976) 623–633.

[11] Lowen, R., Fuzzy uniform spaces, J. Math. Anal. Appl., 82(1981), 370–385.

[12] Lowen, R., Fuzzy neighbourhood spaces, Fuzzy Sets and Systems, 7(1982), 165–189.

[13] Lowen, E., Lowen, R. & Wuyts, P., The categorical topology approach to fuzzy topology and fuzzy
convergence, Fuzzy Sets and Systems, 40(1991), 347–373.

[14] Lowen, R. & Wuyts, P., Stable subconstructs in FTS I, J. Fuzzy Math., 1(1993), 475–489.

[15] Warner, M. W., Fuzzy topology with respect to continuous lattices, Fuzzy Sets and Systems, 35(1990),
85–91.

[16] Wuyts, P., Lowen, R. & Lowen, E., Reflectors and coreflectors in the category of fuzzy topological
spaces, Comput. Math. Appl., 16(1988), 823–836.

[17] Zhang, D., A comparison of various uniformities in fuzzy topology, Fuzzy Sets and Systems, 140(2003),
399–422.

[18] Zhang, D., Galois connections between categories of L-topological spaces, Fuzzy Sets and Systems, to
appear.


