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Abstract

The authors prove the Hardy-Littlewood-Sobolev theorems for generalized fractional
integrals L=/2 for 0 < a < n/m, where L is a complex elliptic operator of arbitrary
order 2m on R".
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§1. Introduction

Let L be a homogeneous elliptic operator on L?(R™) of order 2m in divergence form
L=(=1)" > 0%(aap0"), (1.1)
loe|=]B]=m

where we assume aq,8 € L*(R™; C) for all o, . The operator L is associated to the following
form Q(f,g) defined on the Sobolev space H™(R™) by

/ S anale)d s
al=|gl=
We assume that

Q(f.g) <A™ fllIv™ gl and ReQ(f,f) = M v™ f13 (1.2)

for some A > 0 and A < 400 independent of f,g € H™(R"). Here ™ f = (0“f)|a|=m and
17 Sl = (| T Jenlo®SP )"

la]=m
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By the holomorphic functional calculus theory (see [11]), L has a unique fractional power
L=%/2 for 0 < o < n/m, defined by

L)) = g |, ¢ @ (13)

When n < 2m, we can follow the standard harmonic analysis as in [12, Chapter 5] to
obtain the Hardy-Littlewood-Sobolev theorems that the operator L=%/2,0 < o < n/m is
bounded from LP(R"™) to LI(R™) for 1 < p < n/ma and 1/q¢ = 1/p — ma/n, since the
semigroup e ~** generated by L has a kernel p;(z,y) satisfying a Gaussian upper bound (see
[2, pp.58-59]), that is,

2m
c T — Y|\ Tt
Ipe(z, )| < W—Qmexp{ - ﬁ(%) ’ 1} for some [ >0, (1.4)

for all t > 0, and all z,y € R™. Unfortunately, if n > 2m, the operator L as in (1.1)
generally fails to have a heat kernel (1.4) (see [6]), hence the method as in [12, Chapter 5]
does not work in this case. Recently, by using an approach of Blunck and Kunstmann the
first and third authors proved that when L is a second order elliptic operator, the Hardy-
Littlewood-Sobolev theorems for L~/ are still true for n > 2. In this paper, we generalize
the results in [8] to an arbitrary elliptic operator L of order 2m by using an idea of Hofmann

and Martell. The method here is different from that in [8]. Precisely, we have

2
Theorem 1.1. Let n > 2m and 0 < a < iy We assume that pg = i , P11 =
) . ) ) m n—+2m
(n m+@) and—:——@, Then
2n q p n
(i) L=%/? is bounded from LP(R™) to LY(R™) for po < p < p1;
1 -1
(ii) When p = po and qo = (— — @) , L=%/% is of weak-type (po, qo), that is,
Po n

e L7/ (@)] > )| < o (L™

for all A > 0.

The paper is organized as follows. In Section 2 we prove some technical estimates that

will be used in the sequel. The proof of Theorem 1.1 will be given in Section 3.

§2. Preliminaries

We are given an elliptic operator as in (1.1) with ellipticity constants A and A in (1.2).
The identity operator will be written as Z. For any two closed sets F and F' of R", we set
d = dist(E, F) as the distance between E and F. In this section, we prove some technical
estimates, which will be used in the next section.

Firstly, Theorem 1.1 is true for p = 2.
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Lemma 2.1. Let L be as in (1.1). Assume that n > 2m and 0 < o < 1. Then, there

exists a positive constant C independent of f such that

mao

a 1
IL72fllgy < Cfll2, — =
q2

" .

|~

Proof. This lemma is a direct result from [1, Theorem 1.5]. In fact, P. Auscher et
al have proved ||L™V2f[| gy = || 7™ L7V2fll2 < C|[f]l2. Note that [Lf[2 = [ f]2-
A complex interpolation theorem in [10] implies the estimates HL‘a/QHH,,W(Rn) < ClIfll2
for any 0 < o < 1. By the classical embedding theorem H™*(R™) — L%(R"),1/q2 =

1/2 — ma/n, we have
12772 llgs < CUL™"2 | jrmazny < CII 2,

where C' is a positive constant independent of f.
Lemma 2.2. Let E and F be two closed sets of R™, and, suppf C E. Then

o _ d(E, F)\ =22
(1) He th||L2(F) —|— HtLe thHLQ(F) S CHfHLZ(E)eXp{ — C(W> }7

) . d(E, F)\ 722
(i) VIV fll oy < Cllfllmene] — (S ) ™}

where ¢ > 0 depends only on A\, A, and C on n, \, A.

Proof. For its proof, we refer to [5, Theorem 8] for the details. See also [4, Theorem
1.2].

Lemma 2.3. Let v > « be an integer. Let E and F be two closed sets of R™, and
suppf C E. Then

d(E, F) — o2y (v+3)
) 1 1z2e,

VAV (L% (T = )Y flaeey < CtF (S

where C' depends only on A\, A.

The proof of Lemma 2.3 is based on the following lemma, whose proof is similar to that
of [9, Lemma 2.3]. We omit the details here.

Lemma 2.4. Let {Ai}is0 and {Bi}tiso be two families of operators. Assume that for
all closed sets E, F, for all f such that, suppf C E and for all t > 0, we have the following
estimate

d(E, F)\ 522
|4 ey + 1B fllzaey < Cllflxmexn{ - o(S752) ™ }-

Then, for all t,s > 0, we have

d(E,F) ) T }

[A¢Bsfllzz(r) < HfHLz(E)eXP{ - C(W
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Proof of Lemma 2.3. We follow an idea of [9] to prove this lemma. Note that L—%/2

as in (1.3) can be rewritten as

ds
7012 —(v 2SL
Lo/ cm/ D) (@)

This gives

VLT~ ) () = G [ T (e T — ety () —
0 S

_Cw</0t...+/t°°...) = Cyally +11).

For the first one, using the following formula

( —tL Z Ck k —ktL Z Ck Ve—ktL,

we obtain

—(v sL* * ds
It—ZCkl,/ Ve ALt o —ktL (f)s a/2+1 ZC’“’I““

k=0
By Lemma 2.2 for L*,

! m_—(v sL* ds
Mol < [ 1976 (1) ooy =i

‘ iom —sL* —vsL* —sL* a—1ds
< ; [(s2V™e " )o (e Jo (e N HllL2mys = —

S
< Ml [ 5% o] —o( Lo )T} &
d(E,

a1 [0 1 F)\ 722 L Y ds
<ot ™™ [ s exn{ —c (tmm))z L mr) &

(d(E F)) 2 (v +)

t1/2m

< Ct'T

Ilfllz2(m)-
Now, fix 1 < k < v. Then by Lemmas 2.2 and 2.4,

—(y X g ds
ekl z2(r) < / [V e F R M () 2y =

/ I( \f Ve H ) o (T o () ()|
< Ct 3| fll 2y /0 t stexp{ - c(idf;f ){kt,s}l/Qm) L

S
L d(E, F)\ 225y [t o ds
SCt 2||f||L2(E)eXp{_C(W> }/0 S2 —

2 ads
2

r2(ry \ kt s

S

a1t (d(E, F — g2y (vt+3)
5 ( ( )) 2 1 2 HfHLz(E)
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Using the following inequality of [9]:

S sL* —(s+t)L* d(E F) 2m T
[femes ety < com{ = (G Yol
we obtain
m 75L —sL” —(s+t)L*yv -
[Mel[z2r) < © VsV Jo(e™™™ —e Vo e ) iz =

< Cllf ey / e - o(AEIN) Y (LY e
< C”f”L?(E)?faT_1 /01 exp{ - c(%) ZnT }SV—()(J,-% ds

d(E F) zm 1(”+ ) s v— aJrl ds
< Cllf eyt (tmm) | et
11122,

d(E, F)\ -~ 7225 (v+3)
t1/2m )

<ct'r (
which completes the proof of Lemma 2.3 by collecting the estimates of Iy and II;.
§3. Proof of Theorem 1.1

It suffices to prove Theorem 1.1 in the case 0 < a < 1 since for 1 < @ < n/m, the proof
of this theorem is obtained by using the formula L~+7)/2 = [=8/2. [=7/2_ Recall that

_2n _(1 ma)*l _(1 moz)*l
po_n+2m7 QO— bl QQ— 2 n .

We will prove that the operator L=%/2 is of weak type (po,q0). Applying Lemma 2.1 and
Marcinkiewicz interpolation theorem, we obtain that L~=%/? is bounded from LP(R") to
Li(R™), where py < p < 2 and 1/¢ = 1/p—ma/n. Then by a standard duality argument we
see that L~%/2 maps LP(R") to L9(R™) boundly for all 2 < p < ((n — 2m)/2n + ma/n)~!
and 1/¢ =1/p — ma/n.

We begin to prove that L=%/2 is of weak-type (po,qo), that is,

o Lo @) > A < o) B.)

for all A > 0.
Let us write M for the Hardy-Littlewood maximal function. We use a version of

Calderén-Zygmund decomposition for f(x)P° at height 8P°, where

8= 1l (1L]e) 75

See [7, p.247]. Then, there exists a collection of pairwise disjoint cubes {Q;} such that

{weR": M(f™)m0 > 5y =,
7
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and they satisfy the following property

Qj

One writes f =g+ b=g+>_b;, where
J

pe(~ /Q F@)mda) <

J

g(x) = f(x)X]R"\UQj + Z PQj (f)(x)XQj (1[,‘),

bj(x) = (f(z) = Po,(f)(z))xa, (¥),

where Pg,(f)(z) is a polynomial with order m — 1 with the properties
| () = Poy 1)@z =0
i

for 0 <|a] <m —1, and for any z € Q;,
1
|QJ| Qj

The standard arguments yield 0 < g(z) < ¢f for almost every z € R™. Besides, for
0 S |Oé| S m — 1)

|Po,; (f)(x)] < C [/ (y)ldy.

bj(z)z%dz =0 and ||bj,, < CBIQ;IYP°. (3.2)
Qj

For each j, we write t; = [(Q;)*™, where [(Q;) stands for the side length of the cube Q.
We then decompose Y b; = hi + ha, where
J

hi=Y (T—(Z—e ")) and hy =Y (IT—e %) b;.
J J

Here v will be chosen later. One writes

[z [L72f(2)] > 3A} < [{z: [L72g(2)] > M} + ) Ha o [L72hi(a)] > A},
k=1

Since the operator L=%/? is bounded from L?(R") to L% (R™), we obtain

/ L )y < C(/R |g(y)|2cly)qz/2

< C(/uczj Ig(:L/)IQdy)(D/2 + C</w\9@j Ig(y)lzdy)(p/2

q2/2
< 05Q2(Z|Qj|) +Cﬁ(2—po)q2/2||f||58q2/2
J

q0/2—q0/po)q2

<l (e



FRACTIONAL INTEGRATION ASSOCIATED TO HIGHER ORDER ELLIPTIC OPERATORS 235

Noting that 1/go = 1/po—ma/n and 1/q2 = 1/2—ma/n, we have q¢o = [14+(1/2—1/po)qo]q2
This leads to

o [L722g(x)] > A} < A / L=/ (g) ()| dx

n

Hf”po [1+(1/2=1/po)qolaz
c(=52)

(e

We now estimate the second term, i.e. the term involving hqy = > (Z — (Z — e~ %L)¥)b;.
J

IN

IN

We obtain

{z o IL7*ha(2)] > A} < A"12/ L2 () ()| 2 dx

2 2/2
S@-z- e—th)”)bj‘ x) ”
J

< cx@(/n
<oxny y ( / ”;Ze—wb\ i)

We fix 1 <k <v. Then

—kt; L —kt; L
E J bH = ‘/ E b;( d
H j e ill, s%p ‘ e (z)dzx|,

where the supremum is taken over all functions h € L? with ||h|| 2 = 1. For each j, we set
S(Oaj)zzQ]7 S(l7.7):21+1Qj\2lQ]a Z:1527 ’

and h j)(7) = h(x)xsq,j) (x). In this way, by (3.2)

|22,
—sup‘ZZ/ ktﬂLb (z)h ) (z)dx
J

—sw|323 L B iy @) = P (¢

e 1 _ % — )L *
< Csup Y3 IQs17 €M) gy () = Py (7M™ ) ha )l 2
joi=1

where Pg(f) is a polynomial with order m — 1 satisfying the Sobolev-Poincaré inequality.
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See [13, Chapter 4]. Now we are going to use the following Sobolev-Poincaré inequality,
1((e™ 5 E) b gy (x) = P, ((e™7%) ha )]
< CIv™ (e ) ha gl

12 dist(S(L, ), Q)N 72
< et exp{ —o( TR ) " Hhas sy

Note that for [ > 1, we get dist(S(, ), Q;) > 2!721(Q;) and plo = % + 2. We have

‘/ 4 —kt; L ( )h(a:)da:‘

2n
L7=2m (Q;)

<CQZZ|Q3 vot S exp{—comi TN L2

joi=1
S o —-m 2l |ol+1 ) (4 1 2, V"2
<O D1 P UQ) M exp{—e2 T H2HQ, ¥ (s [h(y) dy)
o 21Q;] Jar+ag,

<CﬁZ|Qj|ess 1nf M(|h?) Zexp{ 27T 11}21277

<Cp [ M(hP)(y)?de
LJ_JQ;‘

<os|Ue| "
J

which yields [l ]|z < CB(]|fllpo/A) ™, and then

|{£L‘Z |L—(y/2h1(x)| > )\}| S C(||f>|\|p0) 1+(1/2=1/po)aola (Hf“po)qo (33)

We turn to the estimation of the third term, i.e. the term involving hs. Denote Q] = 2Q);
and E = (UQ;). Let D; = L~/%(T — e~tL) ;. We have
J

{z: [L7%ha(2)] > A} SZIQ}‘HAQ/(UQ LT (ho) ()P da

SCO(IRR)" 007 gy 17t

<o) o2 (sw| [ Y Dtswnwa])’

where the supremum is taken over all functions h € L*(E*) with ||A[|2(g~) = 1. By (3.2),

we have

[ S D] < ¢3S bl llD; s @) — Po, (D5l i
o Jj =1
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where Py (f) is a polynomial with order m — 1 satisfying the Sobolev-Poincaré inequality.

By Sobolev-Poincaré inequality again and Lemma 2.3,
107 R (W) = Po; (Diha i)l o o,

<™ Dihagllezsa.
<o (dlst( (z,j),@j))*zi—’iﬂ”@

1/2m
J

lhapllzzsa.

[ 2m

3o (v+3)]
< Ct; 7 27T b ol aes ) -

We choose v sufficiently large such that

(D) -3

and then

‘ / ZDjbj(x)h(x)dx‘

<CQZZ|Q |”°t PRSI Db llLas iy
J

1/2 o
|h(y)|2dy> o—l722 (v+1)]

(o]
14 ma 1
<CBY S IQu R (
J =0

1
241Q;] Jarg,

< CﬂZ@j

n

Q]|ess 1nf M(|h|?) %ZQ Uy (v+3)—
=1

mao

<os(Tial)* "
J

The same arguments as in (3.3) give

{z: |L7%hy(z)] > A} < C(%)qo +)\_2/<UQ*.)C IL=/2(hy)(z) |2da
o=y v en[o( L ie) T

J
C(||f)|\|po)‘10 +C(%)[2+2qo(m”

C’( ||f>|\|p0)qo

IN

]

IN

IN

since qg = (pio — %)_1.

Hence, we have obtained (3.1), and then the proof of Theorem 1.1.



238 DENG, D. G., XU, M. & YAN, L. X.

Remark 3.1. Consider complex bounded measurable coefficients a3 on R™ such that

the form Q(f, g) = / Z e 3(2)0° f ()02 g(x)dx satisfies
"

al,|B|<m
QUf,9) <A™ FIIl V™ gll + K11 fll2llgll2;

the Garding inequality, and

Re Q(f, f) = A v™ fI5 = KII£II3

for some A > 0, k, ¥ > 0 and A < +oo independent of f, g € H™(R™). We define an

inhomogeneous elliptic operator on L?(R") of order 2m in divergence form by

L= Y (-1)*0"(aa,pd"). (3.4)

lel,|B]<m

For the above operator L, we have similar results as in Lemma 2.2 (see [3, Remark 3.1]).
So, Theorem 1.1 is true for the fractional integrals L=%/2 of the operator L as in (3.4). For

the proof, we omit its details here.
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