FRACTIONAL INTEGRATION ASSOCIATED TO HIGHER ORDER ELLIPTIC OPERATORS****

DENG DONGGAO* XU MING** YAN LIXIN***

Abstract

The authors prove the Hardy-Littlewood-Sobolev theorems for generalized fractional integrals $L^{-\alpha/2}$ for $0 < \alpha < n/m$, where L is a complex elliptic operator of arbitrary order 2m on \mathbb{R}^n .

Keywords Fractional integrals, Higher order elliptic operator, Hardy-Littlewood-Sobolev theorem
 2000 MR Subject Classification 42B20, 35J15

§1. Introduction

Let L be a homogeneous elliptic operator on $L^2(\mathbb{R}^n)$ of order 2m in divergence form

$$L = (-1)^m \sum_{|\alpha| = |\beta| = m} \partial^{\alpha} (a_{\alpha,\beta} \partial^{\beta}), \qquad (1.1)$$

where we assume $a_{\alpha,\beta} \in L^{\infty}(\mathbb{R}^n; \mathbb{C})$ for all α, β . The operator L is associated to the following form Q(f,g) defined on the Sobolev space $H^m(\mathbb{R}^n)$ by

$$Q(f,g) = \int_{\mathbb{R}^n} \sum_{|\alpha| = |\beta| = m} a_{\alpha,\beta}(x) \partial^{\beta} f(x) \overline{\partial^{\alpha} g(x)} dx.$$

We assume that

$$Q(f,g) \le \Lambda \| \bigtriangledown^m f \| \| \bigtriangledown^m g \| \quad \text{and} \quad \operatorname{Re} Q(f,f) \ge \lambda \| \bigtriangledown^m f \|_2^2 \tag{1.2}$$

for some $\lambda > 0$ and $\Lambda < +\infty$ independent of $f, g \in H^m(\mathbb{R}^n)$. Here $\nabla^m f = (\partial^\alpha f)_{|\alpha|=m}$ and $\|\nabla^m f\|_2 = \Big(\sum_{|\alpha|=m} \int_{\mathbb{R}^n} |\partial^\alpha f|^2\Big)^{1/2}$.

Manuscript received January 8, 2004.

^{*}Department of Mathematics, Zhongshan University, Guangzhou 510275, China.

E-mail: stsddg@zsulink.zsu.edu.cn

^{**}Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China. E-mail: stxmin@163.com

^{***}Department of Mathematics, Zhongshan University, Guangzhou 510275, China. **E-mail:** mcsylx@zsu.edu.cn

^{****}Project supported by the National Natural Science Foundation of China (No.10171111, No.10371734) and the Foundation of Advanced Research Center, Zhongshan University.

By the holomorphic functional calculus theory (see [11]), L has a unique fractional power $L^{-\alpha/2}$ for $0 < \alpha < n/m$, defined by

$$L^{-\alpha/2}(f)(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty e^{-tL}(f)(x) \frac{dt}{t^{-\alpha/2+1}}.$$
 (1.3)

When $n \leq 2m$, we can follow the standard harmonic analysis as in [12, Chapter 5] to obtain the Hardy-Littlewood-Sobolev theorems that the operator $L^{-\alpha/2}$, $0 < \alpha < n/m$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for $1 and <math>1/q = 1/p - m\alpha/n$, since the semigroup e^{-tL} generated by L has a kernel $p_t(x, y)$ satisfying a Gaussian upper bound (see [2, pp.58–59]), that is,

$$|p_t(x,y)| \le \frac{c}{t^{n/2m}} \exp\left\{-\beta \left(\frac{|x-y|}{t^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\} \quad \text{for some } \beta > 0,$$
(1.4)

for all t > 0, and all $x, y \in \mathbb{R}^n$. Unfortunately, if n > 2m, the operator L as in (1.1) generally fails to have a heat kernel (1.4) (see [6]), hence the method as in [12, Chapter 5] does not work in this case. Recently, by using an approach of Blunck and Kunstmann the first and third authors proved that when L is a second order elliptic operator, the Hardy-Littlewood-Sobolev theorems for $L^{-\alpha/2}$ are still true for n > 2. In this paper, we generalize the results in [8] to an arbitrary elliptic operator L of order 2m by using an idea of Hofmann and Martell. The method here is different from that in [8]. Precisely, we have

Theorem 1.1. Let
$$n > 2m$$
 and $0 < \alpha < \frac{n}{m}$. We assume that $p_0 = \frac{2n}{n+2m}$, $p_1 = \left(\frac{n-2m}{2n} + \frac{m\alpha}{n}\right)^{-1}$ and $\frac{1}{q} = \frac{1}{p} - \frac{m\alpha}{n}$. Then
(i) $L^{-\alpha/2}$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for $p_0 ;
(ii) When $p = p_0$ and $q_0 = \left(\frac{1}{p_0} - \frac{m\alpha}{n}\right)^{-1}$, $L^{-\alpha/2}$ is of weak-type (p_0, q_0) , that is,
 $|\{x: |L^{-\alpha/2}f(x)| > \lambda\}| \le C\left(\frac{\|f\|_{p_0}}{\lambda}\right)^{q_0}$$

for all $\lambda > 0$.

The paper is organized as follows. In Section 2 we prove some technical estimates that will be used in the sequel. The proof of Theorem 1.1 will be given in Section 3.

§2. Preliminaries

We are given an elliptic operator as in (1.1) with ellipticity constants λ and Λ in (1.2). The identity operator will be written as \mathcal{I} . For any two closed sets E and F of \mathbb{R}^n , we set $d = \operatorname{dist}(E, F)$ as the distance between E and F. In this section, we prove some technical estimates, which will be used in the next section.

Firstly, Theorem 1.1 is true for p = 2.

Lemma 2.1. Let L be as in (1.1). Assume that n > 2m and $0 < \alpha \le 1$. Then, there exists a positive constant C independent of f such that

$$||L^{-\alpha/2}f||_{q_2} \le C||f||_2, \qquad \frac{1}{q_2} = \frac{1}{2} - \frac{m\alpha}{n}.$$

Proof. This lemma is a direct result from [1, Theorem 1.5]. In fact, P. Auscher et al have proved $||L^{-1/2}f||_{\dot{H}^m(\mathbb{R}^n)} = || \bigtriangledown^m L^{-1/2}f||_2 \leq C||f||_2$. Note that $||L^0f||_2 = ||f||_2$. A complex interpolation theorem in [10] implies the estimates $||L^{-\alpha/2}||_{\dot{H}^{m\alpha}(\mathbb{R}^n)} \leq C||f||_2$ for any $0 < \alpha \leq 1$. By the classical embedding theorem $\dot{H}^{m\alpha}(\mathbb{R}^n) \hookrightarrow L^{q_2}(\mathbb{R}^n), 1/q_2 = 1/2 - m\alpha/n$, we have

$$\|L^{-\alpha/2}f\|_{q_2} \le C \|L^{-\alpha/2}f\|_{\dot{H}^{m\alpha}(\mathbb{R}^n)} \le C \|f\|_{2,q_2}$$

where C is a positive constant independent of f.

Lemma 2.2. Let E and F be two closed sets of \mathbb{R}^n , and, $\operatorname{supp} f \subset E$. Then

(i)
$$\|e^{-tL}f\|_{L^{2}(F)} + \|tLe^{-tL}f\|_{L^{2}(F)} \le C\|f\|_{L^{2}(E)} \exp\left\{-c\left(\frac{d(E,F)}{t^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\},$$

(ii) $\|\sqrt{t}\nabla^{m}e^{-tL}f\|_{L^{2}(F)} \le C\|f\|_{L^{2}(E)} \exp\left\{-c\left(\frac{d(E,F)}{t^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\},$

where c > 0 depends only on λ, Λ , and C on n, λ, Λ .

Proof. For its proof, we refer to [5, Theorem 8] for the details. See also [4, Theorem 1.2].

Lemma 2.3. Let $\nu > \alpha$ be an integer. Let E and F be two closed sets of \mathbb{R}^n , and $\operatorname{supp} f \subset E$. Then

$$\|\sqrt{t}\nabla^m (L^{-\frac{\alpha}{2}} (\mathcal{I} - e^{-tL})^{\nu})^* f\|_{L^2(F)} \le Ct^{\frac{\alpha}{2}} \left(\frac{d(E, F)}{t^{1/2m}}\right)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \|f\|_{L^2(E)},$$

where C depends only on λ, Λ .

The proof of Lemma 2.3 is based on the following lemma, whose proof is similar to that of [9, Lemma 2.3]. We omit the details here.

Lemma 2.4. Let $\{A_t\}_{t>0}$ and $\{B_t\}_{t>0}$ be two families of operators. Assume that for all closed sets E, F, for all f such that, supp $f \subset E$ and for all t > 0, we have the following estimate

$$\|A_t f\|_{L^2(F)} + \|B_t f\|_{L^2(F)} \le C \|f\|_{L^2(E)} \exp\left\{-c \left(\frac{d(E,F)}{t^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\}$$

Then, for all t, s > 0, we have

$$\|A_t B_s f\|_{L^2(F)} \le \|f\|_{L^2(E)} \exp\left\{-c\left(\frac{d(E,F)}{\max\{t,s\}^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\}$$

Proof of Lemma 2.3. We follow an idea of [9] to prove this lemma. Note that $L^{-\alpha/2}$ as in (1.3) can be rewritten as

$$L^{-\alpha/2}(f)(x) = C_{\nu,\alpha} \int_0^\infty e^{-(\nu+2)sL}(f)(x) \frac{ds}{s^{-\alpha/2+1}}$$

This gives

$$\nabla^m (L^{-\frac{\alpha}{2}} (\mathcal{I} - e^{-tL})^{\nu})^* (f) = C_{\nu,\alpha} \int_0^\infty \nabla^m \left(e^{-(\nu+2)sL} (\mathcal{I} - e^{-tL})^{\nu} \right)^* (f) \frac{ds}{s^{-\alpha/2+1}}$$
$$= C_{\nu,\alpha} \left(\int_0^t \dots + \int_t^\infty \dots \right) = C_{\nu,\alpha} (\mathrm{I}_t + \mathrm{II}_t).$$

For the first one, using the following formula

$$(\mathcal{I} - e^{-tL})^{\nu} = \sum_{k=0}^{\nu} C_{\nu}^{k} (-1)^{k} e^{-ktL} = \sum_{k=0}^{\nu} C_{k,\nu} e^{-ktL},$$

we obtain

$$\mathbf{I}_{t} = \sum_{k=0}^{\nu} C_{k,\nu} \int_{0}^{t} \nabla^{m} e^{-(\nu+2)sL^{*}} e^{-ktL^{*}}(f) \frac{ds}{s^{-\alpha/2+1}} = \sum_{k=0}^{\nu} C_{k,\nu} \mathbf{I}_{t,k}$$

By Lemma 2.2 for L^* ,

$$\begin{split} \|\mathbf{I}_{t,0}\|_{L^{2}(F)} &\leq \int_{0}^{t} \|\nabla^{m} e^{-(\nu+2)sL^{*}}(f)\|_{L^{2}(E)} \frac{ds}{s^{-\alpha/2+1}} \\ &\leq \int_{0}^{t} \|(s^{\frac{1}{2}}\nabla^{m} e^{-sL^{*}}) \circ (e^{-\nu sL^{*}}) \circ (e^{-sL^{*}})(f)\|_{L^{2}(F)} s^{\frac{\alpha-1}{2}} \frac{ds}{s} \\ &\leq C \|f\|_{L^{2}(E)} \int_{0}^{t} s^{\frac{\alpha-1}{2}} \exp\Big\{-c\Big(\frac{d(E,F)}{s^{1/2m}}\Big)^{\frac{2m}{2m-1}}\Big\} \frac{ds}{s} \\ &\leq C \|f\|_{L^{2}(E)} t^{\frac{\alpha-1}{2}} \int_{1}^{\infty} s^{\frac{1-\alpha}{2}} \exp\Big\{-c\Big(\frac{d(E,F)}{t^{1/2m}}\Big)^{\frac{2m}{2m-1}} \cdot s^{\frac{1}{2m-1}}\Big\} \frac{ds}{s} \\ &\leq C t^{\frac{\alpha-1}{2}} \Big(\frac{d(E,F)}{t^{1/2m}}\Big)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \|f\|_{L^{2}(E)}. \end{split}$$

Now, fix $1 \le k \le \nu$. Then by Lemmas 2.2 and 2.4,

4

$$\begin{split} \|\mathbf{I}_{t,k}\|_{L^{2}(F)} &\leq \int_{0}^{t} \|\nabla^{m} e^{-(\nu+2)sL^{*}} e^{-ktL^{*}}(f)\|_{L^{2}(E)} \frac{ds}{s^{-\alpha/2+1}} \\ &\leq \int_{0}^{t} \left\| \left(\sqrt{\frac{kt}{2}} \nabla^{m} e^{-\frac{kt}{2}L^{*}} \right) \circ \left(e^{-(\nu+2)sL^{*}} \right) \circ \left(e^{-\frac{kt}{2}L^{*}} \right)(f) \right\|_{L^{2}(F)} \sqrt{\frac{2}{kt}} s^{\frac{\alpha}{2}} \frac{ds}{s} \\ &\leq Ct^{-\frac{1}{2}} \|f\|_{L^{2}(E)} \int_{0}^{t} s^{\frac{\alpha}{2}} \exp\left\{ -c\left(\frac{d(E,F)}{\max}\{kt,s\}^{1/2m}\right)^{\frac{2m}{2m-1}} \right\} \frac{ds}{s} \\ &\leq Ct^{-\frac{1}{2}} \|f\|_{L^{2}(E)} \exp\left\{ -c\left(\frac{d(E,F)}{t^{1/2m}}\right)^{\frac{2m}{2m-1}} \right\} \int_{0}^{t} s^{\frac{\alpha}{2}} \frac{ds}{s} \\ &\leq Ct^{\frac{\alpha-1}{2}} \left(\frac{d(E,F)}{t^{1/2m}}\right)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \|f\|_{L^{2}(E)}. \end{split}$$

Using the following inequality of [9]:

$$\left\|\frac{s}{t}(e^{-sL^*} - e^{-(s+t)L^*})g\right\|_{L^2(F)} \le C \exp\left\{-c\left(\frac{d(E,F)}{t^{1/2m}}\right)^{\frac{2m}{2m-1}}\right\} \|g\|_{L^2(E)},$$

we obtain

$$\begin{split} |\Pi_t\|_{L^2(F)} &\leq C \int_t^\infty \|(\sqrt{s}\nabla^m e^{-sL^*}) \circ (e^{-sL^*} - e^{-(s+t)L^*})^\nu \circ (e^{-sL^*})f\|_{L^2(F)} s^{\frac{\alpha-1}{2}} \frac{ds}{s} \\ &\leq C \|f\|_{L^2(E)} \int_t^\infty \exp\Big\{ -c\Big(\frac{d(E,F)}{s^{1/2m}}\Big)^{\frac{2m}{2m-1}}\Big\}\Big(\frac{t}{s}\Big)^\nu s^{\frac{\alpha-1}{2}} \frac{ds}{s} \\ &\leq C \|f\|_{L^2(E)} t^{\frac{\alpha-1}{2}} \int_0^1 \exp\Big\{ -c\Big(\frac{sd(E,F)}{t^{1/2m}}\Big)^{\frac{2m}{2m-1}}\Big\} s^{\nu-\alpha+\frac{1}{2}} \frac{ds}{s} \\ &\leq C \|f\|_{L^2(E)} t^{\frac{\alpha-1}{2}} \Big(\frac{d(E,F)}{t^{1/2m}}\Big)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \int_0^\infty e^{-s} s^{\nu-\alpha+\frac{1}{2}} \frac{ds}{s} \\ &\leq C t^{\frac{\alpha-1}{2}} \Big(\frac{d(E,F)}{t^{1/2m}}\Big)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \|f\|_{L^2(E)}, \end{split}$$

which completes the proof of Lemma 2.3 by collecting the estimates of I_t and II_t .

§3. Proof of Theorem 1.1

It suffices to prove Theorem 1.1 in the case $0 < \alpha \leq 1$ since for $1 < \alpha < n/m$, the proof of this theorem is obtained by using the formula $L^{-(\beta+\gamma)/2} = L^{-\beta/2} \cdot L^{-\gamma/2}$. Recall that

$$p_0 = \frac{2n}{n+2m}, \quad q_0 = \left(\frac{1}{p_0} - \frac{m\alpha}{n}\right)^{-1}, \quad q_2 = \left(\frac{1}{2} - \frac{m\alpha}{n}\right)^{-1}.$$

We will prove that the operator $L^{-\alpha/2}$ is of weak type (p_0, q_0) . Applying Lemma 2.1 and Marcinkiewicz interpolation theorem, we obtain that $L^{-\alpha/2}$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where $p_0 and <math>1/q = 1/p - m\alpha/n$. Then by a standard duality argument we see that $L^{-\alpha/2}$ maps $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ boundly for all 2 $and <math>1/q = 1/p - m\alpha/n$.

We begin to prove that $L^{-\alpha/2}$ is of weak-type (p_0, q_0) , that is,

$$|\{x: |L^{-\alpha/2}f(x)| > \lambda\}| \le C \left(\frac{\|f\|_{p_0}}{\lambda}\right)^{q_0}$$
(3.1)

for all $\lambda > 0$.

Let us write M for the Hardy-Littlewood maximal function. We use a version of Calderón-Zygmund decomposition for $f(x)^{p_0}$ at height β^{p_0} , where

$$\beta = \|f\|_{p_0} \left(\frac{\|f\|_{p_0}}{\lambda}\right)^{-\frac{q_0}{p_0}}.$$

See [7, p.247]. Then, there exists a collection of pairwise disjoint cubes $\{Q_j\}$ such that

$$\{x \in \mathbb{R}^n : M(f^{p_0})^{\frac{1}{p_0}} > \beta\} = \bigcup_j Q_j$$

and they satisfy the following property

$$\beta \le \left(\frac{1}{Q_j} \int_{Q_j} |f(x)|^{p_0} dx\right)^{\frac{1}{p_0}} \le C\beta$$

One writes $f = g + b = g + \sum_{j} b_{j}$, where

$$g(x) = f(x)\chi_{\mathbb{R}^n \setminus \bigcup_j Q_j} + \sum_j P_{Q_j}(f)(x)\chi_{Q_j}(x),$$

$$b_j(x) = (f(x) - P_{Q_j}(f)(x))\chi_{Q_j}(x),$$

where $P_{Q_j}(f)(x)$ is a polynomial with order m-1 with the properties

$$\int_{Q_j} (f(x) - P_{Q_j}(f)(x)) x^\alpha dx = 0$$

for $0 \le |\alpha| \le m - 1$, and for any $x \in Q_j$,

$$|P_{Q_j}(f)(x)| \le C \frac{1}{|Q_j|} \int_{Q_j} |f(y)| dy.$$

The standard arguments yield $0 \leq g(x) \leq c\beta$ for almost every $x \in \mathbb{R}^n$. Besides, for $0 \leq |\alpha| \leq m-1$,

$$\int_{Q_j} b_j(x) x^{\alpha} dx = 0 \quad \text{and} \quad \|b_j\|_{p_0} \le C\beta |Q_j|^{1/p_0}.$$
(3.2)

For each j, we write $t_j = l(Q_j)^{2m}$, where $l(Q_j)$ stands for the side length of the cube Q_j . We then decompose $\sum_j b_j = h_1 + h_2$, where

$$h_1 = \sum_j (\mathcal{I} - (\mathcal{I} - e^{-t_j L})^{\nu}) b_j$$
 and $h_2 = \sum_j (\mathcal{I} - e^{-t_j L})^{\nu} b_j.$

Here ν will be chosen later. One writes

$$|\{x: |L^{-\alpha/2}f(x)| > 3\lambda\}| \le |\{x: |L^{-\alpha/2}g(x)| > \lambda\}| + \sum_{k=1}^{2} |\{x: |L^{-\alpha/2}h_k(x)| > \lambda\}|.$$

Since the operator $L^{-\alpha/2}$ is bounded from $L^2(\mathbb{R}^n)$ to $L^{q_2}(\mathbb{R}^n)$, we obtain

$$\begin{split} \int_{\mathbb{R}^n} |L^{-\alpha/2}(g)(y)|^{q_2} dy &\leq C \Big(\int_{\mathbb{R}^n} |g(y)|^2 dy \Big)^{q_2/2} \\ &\leq C \Big(\int_{\bigcup_j Q_j} |g(y)|^2 dy \Big)^{q_2/2} + C \Big(\int_{\mathbb{R}^n \setminus \bigcup_j Q_j} |g(y)|^2 dy \Big)^{q_2/2} \\ &\leq C \beta^{q_2} \Big(\sum_j |Q_j| \Big)^{q_2/2} + C \beta^{(2-p_0)q_2/2} ||f||_{p_0}^{p_0q_2/2} \\ &\leq C ||f||_{p_0}^{q_2} \Big(\frac{||f||_{p_0}}{\lambda} \Big)^{(q_0/2 - q_0/p_0)q_2}. \end{split}$$

Noting that $1/q_0 = 1/p_0 - m\alpha/n$ and $1/q_2 = 1/2 - m\alpha/n$, we have $q_0 = [1 + (1/2 - 1/p_0)q_0]q_2$. This leads to

$$\begin{split} |\{x: \ |L^{-\alpha/2}g(x)| > \lambda\}| &\leq \lambda^{-q_2} \int_{\mathbb{R}^n} |L^{-\alpha/2}(g)(x)|^{q_2} dx \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{[1+(1/2-1/p_0)q_0]q_2} \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0}. \end{split}$$

We now estimate the second term, i.e. the term involving $h_1 = \sum_j (\mathcal{I} - (\mathcal{I} - e^{-t_j L})^{\nu}) b_j$. We obtain

$$\begin{split} |\{x: \ |L^{-\alpha/2}h_1(x)| > \lambda\}| &\leq \lambda^{-q_2} \int_{\mathbb{R}^n} |L^{-\alpha/2}(h_1)(x)|^{q_2} dx \\ &\leq C\lambda^{-q_2} \Big(\int_{\mathbb{R}^n} \Big| \sum_j (\mathcal{I} - (\mathcal{I} - e^{-t_j L})^{\nu}) b_j \Big|^2 dx \Big)^{q_2/2} \\ &\leq C\lambda^{-q_2} \sum_{k=1}^{\nu} \Big(\int_{\mathbb{R}^n} \Big| \sum_j e^{-kt_j L} b_j \Big|^2 dx \Big)^{q_2/2}. \end{split}$$

We fix $1 \leq k \leq \nu$. Then

$$\left\|\sum_{j}e^{-kt_{j}L}b_{j}\right\|_{2} = \sup_{h}\left|\int_{\mathbb{R}^{n}}\sum_{j}e^{-kt_{j}L}b_{j}(x)h(x)dx\right|,$$

where the supremum is taken over all functions $h \in L^2$ with $||h||_{L^2} = 1$. For each j, we set

$$S(0,j) = 2Q_j;$$
 $S(l,j) = 2^{l+1}Q_j \setminus 2^l Q_j,$ $l = 1, 2, \cdots,$

and $h_{(l,j)}(x) = h(x)\chi_{S(l,j)}(x)$. In this way, by (3.2)

$$\begin{split} & \left\|\sum_{j} e^{-kt_{j}L} b_{j}\right\|_{2} \\ &= \sup_{h} \left|\sum_{j} \sum_{l=1}^{\infty} \int_{\mathbb{R}^{n}} e^{-kt_{j}L} b_{j}(x) h_{(l,j)}(x) dx\right| \\ &= \sup_{h} \left|\sum_{j} \sum_{l=1}^{\infty} \int_{Q_{j}} b_{j}(x) ((e^{-kt_{j}L})^{*} h_{(l,j)}(x) - P_{Q_{j}}((e^{-kt_{j}L})^{*} h_{(l,j)})) dx\right| \\ &\leq C \sup_{h} \beta \sum_{j} \sum_{l=1}^{\infty} |Q_{j}|^{\frac{1}{p_{0}}} \|(e^{-kt_{j}L})^{*} h_{(l,j)}(x) - P_{Q_{j}}((e^{-k(t_{j})^{m}L})^{*} h_{(l,j)})\|_{L^{\frac{2n}{p-2m}}(Q_{j})}, \end{split}$$

where $P_Q(f)$ is a polynomial with order m-1 satisfying the Sobolev-Poincaré inequality.

See [13, Chapter 4]. Now we are going to use the following Sobolev-Poincaré inequality,

$$\begin{aligned} &\|((e^{-kt_jL})^*h_{(l,j)}(x) - P_{Q_j}((e^{-kt_jL})^*h_{(l,j)}))\|_{L^{\frac{2n}{n-2m}}(Q_j)} \\ &\leq C\| \bigtriangledown^m (e^{-kt_jL})^*h_{(l,j)}\|_{L^2(Q_j)} \\ &\leq Ct_j^{-1/2} \exp\Big\{ -c\Big(\frac{\operatorname{dist}(S(l,j),Q_j)}{(kt_j)^{1/2m}}\Big)^{\frac{2m}{2m-1}} \Big\} \|h_{(l,j)}\|_{L^2(S(l,j))} \end{aligned}$$

Note that for $l \ge 1$, we get $dist(S(l, j), Q_j) \ge 2^{l-2}l(Q_j)$ and $\frac{1}{p_0} = \frac{1}{2} + \frac{m}{n}$. We have

$$\begin{split} & \left| \int_{\mathbb{R}^{n}} \sum_{j} e^{-kt_{j}L} b_{j}(x)h(x)dx \right| \\ & \leq C\beta \sum_{j} \sum_{l=1}^{\infty} |Q_{j}|^{\frac{1}{p_{0}}} t_{j}^{-\frac{1}{2}} \exp\{-c2^{\frac{2m}{2m-1}l}\} \|h\|_{L^{2}(S(l,j))} \\ & \leq C\beta \sum_{j} \sum_{l=1}^{\infty} |Q_{j}|^{\frac{1}{p_{0}}} l(Q_{j})^{-m} \exp\{-c2^{\frac{2m}{2m-1}l}\} |2^{l+1}Q_{j}|^{\frac{1}{2}} \left(\frac{1}{|2^{l+1}Q_{j}|} \int_{2^{l+1}Q_{j}} |h(y)|^{2}dy\right)^{1/2} \\ & \leq C\beta \sum_{j} |Q_{j}| \exp \inf_{y \in Q_{j}} M(|h|^{2})(y)^{\frac{1}{2}} \sum_{l=0}^{\infty} \exp\{-c2^{\frac{2m}{2m-1}l}\} 2^{\frac{ln}{2}} \\ & \leq C\beta \int_{\bigcup_{j}Q_{j}} M(|h|^{2})(y)^{\frac{1}{2}} dx \\ & \leq C\beta \left|\bigcup_{j}Q_{j}\right|^{1/2}, \end{split}$$

which yields $||h_1||_2 \leq C\beta (||f||_{p_0}/\lambda)^{q_0/2}$, and then

$$|\{x: |L^{-\alpha/2}h_1(x)| > \lambda\}| \le C \left(\frac{\|f\|_{p_0}}{\lambda}\right)^{[1+(1/2-1/p_0)q_0]q_2} \le C \left(\frac{\|f\|_{p_0}}{\lambda}\right)^{q_0}.$$
 (3.3)

We turn to the estimation of the third term, i.e. the term involving h_2 . Denote $Q_j^* = 2Q_j$ and $E = \left(\bigcup_j Q_j^*\right)$. Let $D_j = L^{-\alpha/2} (\mathcal{I} - e^{-t_j L})^{\nu} b_j$. We have

$$\begin{split} |\{x: \ |L^{-\alpha/2}h_2(x)| > \lambda\}| &\leq \sum_j |Q_j^*| + \lambda^{-2} \int_{\left(\bigcup_j Q_j^*\right)^c} |L^{-\alpha/2}(h_2)(x)|^2 dx \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} + \lambda^{-2} \int_{\left(\bigcup_j Q_j^*\right)^c} |L^{-\alpha/2}(h_2)(x)|^2 dx \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} + \lambda^{-2} \Big(\sup_h \Big| \int_{\mathbb{R}^n} \sum_j D_j b_j(y) h(y) dy \Big| \Big)^2, \end{split}$$

where the supremum is taken over all functions $h \in L^2(E^*)$ with $||h||_{L^2(E^*)} = 1$. By (3.2), we have

$$\left| \int_{\mathbb{R}^n} \sum_j D_j b_j(y) h(y) dy \right| \le C \sum_j \sum_{l=1}^\infty \|b_j\|_{L^{p_0}(Q_j)} \|D_j^* h_{(l,j)}(y) - P_{Q_j}(D_j^* h_{(l,j)})\|_{L^{p_0'}(Q_j)},$$

where $P_Q(f)$ is a polynomial with order m-1 satisfying the Sobolev-Poincaré inequality. By Sobolev-Poincaré inequality again and Lemma 2.3,

$$\begin{split} &\|D_{j}^{*}h_{(l,j)}(y) - P_{Q_{j}}(D_{j}^{*}h_{(l,j)})\|_{L^{p_{0}'}(Q_{j})} \\ &\leq \|\nabla^{m} D_{j}^{*}h_{(l,j)}\|_{L^{2}(S(l,j))} \\ &\leq Ct_{j}^{\frac{\alpha-1}{2}} \Big(\frac{\operatorname{dist}(S(l,j),Q_{j})}{t_{j}^{1/2m}}\Big)^{-\frac{2m}{2m-1}(\nu+\frac{1}{2})} \|h_{(l,j)}\|_{L^{2}(S(l,j))} \\ &\leq Ct_{j}^{\frac{\alpha-1}{2}} 2^{-l[\frac{2m}{2m-1}(\nu+\frac{1}{2})]} \|h_{(l,j)}\|_{L^{2}(S(l,j))}. \end{split}$$

We choose ν sufficiently large such that

$$\left[\frac{2m}{(2m-1)}\left(\nu+\frac{1}{2}\right)-\frac{n}{2}\right]>0,$$

and then

$$\begin{split} & \left| \int_{\mathbb{R}^{n}} \sum_{j} D_{j} b_{j}(x) h(x) dx \right| \\ &\leq C\beta \sum_{j} \sum_{l=1}^{\infty} |Q_{j}|^{\frac{1}{p_{0}}} t_{j}^{\frac{\alpha-1}{2}} 2^{-l[\frac{2m}{2m-1}(\nu+\frac{1}{2})]} \|h_{(l,j)}\|_{L^{2}(S(l,j))} \\ &\leq C\beta \sum_{j} \sum_{l=0}^{\infty} |Q_{j}|^{\frac{1}{2} + \frac{m\alpha}{n}} |2^{l+1}Q_{j}|^{\frac{1}{2}} \left(\frac{1}{|2^{l+1}Q_{j}|} \int_{2^{l+1}Q_{j}} |h(y)|^{2} dy \right)^{1/2} 2^{-l[\frac{2m}{2m-1}(\nu+\frac{1}{2})]} \\ &\leq C\beta \sum_{j} |Q_{j}|^{\frac{m\alpha}{n}} |Q_{j}| \operatorname{ess \, \inf_{y \in Q_{j}}} M(|h|^{2})(y)^{\frac{1}{2}} \sum_{l=1}^{\infty} 2^{-l[\frac{2m}{(2m-1)}(\nu+\frac{1}{2}) - \frac{n}{2}]} \\ &\leq C\beta \left(\sum_{j} |Q_{j}|\right)^{\frac{m\alpha}{n} + \frac{1}{2}}. \end{split}$$

The same arguments as in (3.3) give

$$\begin{split} |\{x: \ |L^{-\alpha/2}h_2(x)| > \lambda\}| &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} + \lambda^{-2} \int_{\left(\bigcup_j Q_j^*\right)^c} |L^{-\alpha/2}(h_2)(x)|^2 dx \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} + C\lambda^{-2} \Big[\beta \Big(\sum_j |Q_j|\Big)^{\frac{m\alpha}{n} + \frac{1}{2}}\Big]^2 \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} + C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{[2+2q_0(\frac{m\alpha}{n} - \frac{1}{p_0}) + q_0]} \\ &\leq C \Big(\frac{\|f\|_{p_0}}{\lambda}\Big)^{q_0} \end{split}$$

since $q_0 = \left(\frac{1}{p_0} - \frac{m\alpha}{n}\right)^{-1}$. Hence, we have obtained (3.1), and then the proof of Theorem 1.1.

Remark 3.1. Consider complex bounded measurable coefficients $a_{\alpha\beta}$ on \mathbb{R}^n such that the form $Q(f,g) = \int_{\mathbb{R}^n} \sum_{|\alpha|, |\beta| \le m} a_{\alpha,\beta}(x) \partial^{\beta} f(x) \overline{\partial^{\alpha} g(x)} dx$ satisfies

$$Q(f,g) \le \Lambda \| \bigtriangledown^m f \| \| \bigtriangledown^m g \| + k' \| f \|_2 \| g \|_2,$$

the Gårding inequality, and

Re $Q(f, f) \ge \lambda \| \bigtriangledown^m f \|_2^2 - k \| f \|_2^2$

for some $\lambda > 0$, $k, k' \ge 0$ and $\Lambda < +\infty$ independent of $f, g \in H^m(\mathbb{R}^n)$. We define an inhomogeneous elliptic operator on $L^2(\mathbb{R}^n)$ of order 2m in divergence form by

$$L = \sum_{|\alpha|, |\beta| \le m} (-1)^{\alpha} \partial^{\alpha} (a_{\alpha, \beta} \partial^{\beta}).$$
(3.4)

For the above operator L, we have similar results as in Lemma 2.2 (see [3, Remark 3.1]). So, Theorem 1.1 is true for the fractional integrals $L^{-\alpha/2}$ of the operator L as in (3.4). For the proof, we omit its details here.

References

- Auscher, P., Hofmann, S., McIntosh, A. & Tchamitchian, P., The kato square root problem for higher order elliptic operators and systems on Rⁿ, J. Evol. Equ., 1(2001), 361–385.
- [2] Auscher, P. & Tchamitchian, P., Square root problem for divergence operators and related topics, Asterisque, 249, Soc. Math. France, 1998.
- [3] Blunck, S. & Kunstmann, P. C., Calderón-Zygmund theory for non-integral operators and H^{∞} functional calculus, *Rev. Mat. Iberoam.*, **19**:3(2003), 919–942.
- [4] Blunck, S. & Kunstmann, P. C., Weak type (p, p) estimates for Riesz transform, *Math. Z.*, **247**(2004), 137–148.
- [5] Davies, E. B., Uniformly elliptic operators with measurable coefficients, J. Funct. Anal., 132(1995), 141–169.
- [6] Davies, E. B., Limits on L^p regularity of self-adjoint elliptic operators, J. Diff. Eq., 135(1997), 83–102.
- [7] Deng, D. G. & Han, Y. S., Theory of H^p Spaces, Beijing University Press, 1992.
- [8] Deng, D. G. & Yan, L. X., Fractional integration associated with second order divergence operators on ℝⁿ, Sci. in China, Series A, 46(2003), 355–363.
- [9] Hofmann, S. & Martell, J. M., L^p bounds for Riesz tansforms and square roots associated to second order elliptic operators, Pub. Mat., 47(2003), 497–515.
- [10] Lions, J. L., Espaces d'interpolation et domaines de puissances fractionnaires, J. Math. Soc. Japan, 14(1962), 233–241.
- [11] McIntosh, A., Operators which have an H_∞-calculusin, in Proc. Centre Math. Analysis, Vol. 14, Miniconference on Operator Theory and Partial Differential Equations, A. N. U., Canberra, 1986, 210–231.
- [12] Stein, E. M., Singular Integrals and Differentiability of Functions, Princeton University Press, 1970.
- [13] Ziemer, W. P., Weakly Differentiable Functions, Springer-Verlag World Publishing Corp, GTM 120.