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Abstract

The authors prove the Hardy-Littlewood-Sobolev theorems for generalized fractional
integrals L−α/2 for 0 < α < n/m, where L is a complex elliptic operator of arbitrary
order 2m on R

n.
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§ 1 . Introduction

Let L be a homogeneous elliptic operator on L2(Rn) of order 2m in divergence form

L = (−1)m
∑

|α|=|β|=m

∂α(aα,β∂β), (1.1)

where we assume aα,β ∈ L∞(Rn; C) for all α, β. The operator L is associated to the following
form Q(f, g) defined on the Sobolev space Hm(Rn) by

Q(f, g) =
∫

Rn

∑
|α|=|β|=m

aα,β(x)∂βf(x)∂αg(x)dx.

We assume that

Q(f, g) ≤ Λ‖ �m f‖‖ �m g‖ and ReQ(f, f) ≥ λ‖ �m f‖2
2 (1.2)

for some λ > 0 and Λ < +∞ independent of f, g ∈ Hm(Rn). Here �mf = (∂αf)|α|=m and

‖ �m f‖2 =
( ∑

|α|=m

∫
Rn |∂αf |2

)1/2

.
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By the holomorphic functional calculus theory (see [11]), L has a unique fractional power
L−α/2 for 0 < α < n/m, defined by

L−α/2(f)(x) =
1

Γ(α/2)

∫ ∞

0

e−tL(f)(x)
dt

t−α/2+1
. (1.3)

When n ≤ 2m, we can follow the standard harmonic analysis as in [12, Chapter 5] to
obtain the Hardy-Littlewood-Sobolev theorems that the operator L−α/2, 0 < α < n/m is
bounded from Lp(Rn) to Lq(Rn) for 1 < p < n/mα and 1/q = 1/p − mα/n, since the
semigroup e−tL generated by L has a kernel pt(x, y) satisfying a Gaussian upper bound (see
[2, pp.58–59]), that is,

|pt(x, y)| ≤ c

tn/2m
exp

{
− β

( |x − y|
t1/2m

) 2m
2m−1

}
for some β > 0, (1.4)

for all t > 0, and all x, y ∈ Rn. Unfortunately, if n > 2m, the operator L as in (1.1)
generally fails to have a heat kernel (1.4) (see [6]), hence the method as in [12, Chapter 5]
does not work in this case. Recently, by using an approach of Blunck and Kunstmann the
first and third authors proved that when L is a second order elliptic operator, the Hardy-
Littlewood-Sobolev theorems for L−α/2 are still true for n > 2. In this paper, we generalize
the results in [8] to an arbitrary elliptic operator L of order 2m by using an idea of Hofmann
and Martell. The method here is different from that in [8]. Precisely, we have

Theorem 1.1. Let n > 2m and 0 < α <
n

m
. We assume that p0 =

2n

n + 2m
, p1 =(n − 2m

2n
+

mα

n

)−1

and
1
q

=
1
p
− mα

n
. Then

( i ) L−α/2 is bounded from Lp(Rn) to Lq(Rn) for p0 < p < p1;

(ii) When p = p0 and q0 =
( 1

p0
− mα

n

)−1

, L−α/2 is of weak-type (p0, q0), that is,

∣∣{x : |L−α/2f(x)| > λ}∣∣ ≤ C
(‖f‖p0

λ

)q0

for all λ > 0.

The paper is organized as follows. In Section 2 we prove some technical estimates that
will be used in the sequel. The proof of Theorem 1.1 will be given in Section 3.

§ 2 . Preliminaries

We are given an elliptic operator as in (1.1) with ellipticity constants λ and Λ in (1.2).
The identity operator will be written as I. For any two closed sets E and F of Rn, we set
d = dist(E, F ) as the distance between E and F . In this section, we prove some technical
estimates, which will be used in the next section.

Firstly, Theorem 1.1 is true for p = 2.
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Lemma 2.1. Let L be as in (1.1). Assume that n > 2m and 0 < α ≤ 1. Then, there
exists a positive constant C independent of f such that

‖L−α/2f‖q2 ≤ C‖f‖2,
1
q2

=
1
2
− mα

n
.

Proof. This lemma is a direct result from [1, Theorem 1.5]. In fact, P. Auscher et
al have proved ‖L−1/2f‖Ḣm(Rn) = ‖ �m L−1/2f‖2 ≤ C‖f‖2. Note that ‖L0f‖2 = ‖f‖2.

A complex interpolation theorem in [10] implies the estimates ‖L−α/2‖Ḣmα(Rn) ≤ C‖f‖2

for any 0 < α ≤ 1. By the classical embedding theorem Ḣmα(Rn) ↪→ Lq2(Rn), 1/q2 =
1/2 − mα/n, we have

‖L−α/2f‖q2 ≤ C‖L−α/2f‖Ḣmα(Rn) ≤ C‖f‖2,

where C is a positive constant independent of f .

Lemma 2.2. Let E and F be two closed sets of Rn, and, suppf ⊂ E. Then

( i ) ‖e−tLf‖L2(F ) + ‖tLe−tLf‖L2(F ) ≤ C‖f‖L2(E)exp
{
− c

(d(E, F )
t1/2m

) 2m
2m−1

}
,

(ii) ‖√t∇me−tLf‖L2(F ) ≤ C‖f‖L2(E)exp
{
− c

(d(E, F )
t1/2m

) 2m
2m−1

}
,

where c > 0 depends only on λ, Λ, and C on n, λ, Λ.

Proof. For its proof, we refer to [5, Theorem 8] for the details. See also [4, Theorem
1.2].

Lemma 2.3. Let ν > α be an integer. Let E and F be two closed sets of Rn, and
suppf ⊂ E. Then

‖√t∇m(L−α
2 (I − e−tL)ν)∗f‖L2(F ) ≤ Ct

α
2

(d(E, F )
t1/2m

)− 2m
2m−1 (ν+ 1

2 )

‖f‖L2(E),

where C depends only on λ, Λ.

The proof of Lemma 2.3 is based on the following lemma, whose proof is similar to that
of [9, Lemma 2.3]. We omit the details here.

Lemma 2.4. Let {At}t>0 and {Bt}t>0 be two families of operators. Assume that for
all closed sets E, F , for all f such that, suppf ⊂ E and for all t > 0, we have the following
estimate

‖Atf‖L2(F ) + ‖Btf‖L2(F ) ≤ C‖f‖L2(E)exp
{
− c

(d(E, F )
t1/2m

) 2m
2m−1

}
.

Then, for all t, s > 0, we have

‖AtBsf‖L2(F ) ≤ ‖f‖L2(E)exp
{
− c

( d(E, F )
max{t, s}1/2m

) 2m
2m−1

}
.
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Proof of Lemma 2.3. We follow an idea of [9] to prove this lemma. Note that L−α/2

as in (1.3) can be rewritten as

L−α/2(f)(x) = Cν,α

∫ ∞

0

e−(ν+2)sL(f)(x)
ds

s−α/2+1
.

This gives

∇m(L−α
2 (I − e−tL)ν)∗(f) = Cν,α

∫ ∞

0

∇m
(
e−(ν+2)sL(I − e−tL)ν

)∗(f)
ds

s−α/2+1

= Cν,α

(∫ t

0

· · · +
∫ ∞

t

· · ·
)

= Cν,α(It + IIt).

For the first one, using the following formula

(I − e−tL)ν =
ν∑

k=0

Ck
ν (−1)ke−ktL =

ν∑
k=0

Ck,νe−ktL,

we obtain

It =
ν∑

k=0

Ck,ν

∫ t

0

∇me−(ν+2)sL∗
e−ktL∗

(f)
ds

s−α/2+1
=

ν∑
k=0

Ck,νIt,k.

By Lemma 2.2 for L∗,

‖It,0‖L2(F ) ≤
∫ t

0

‖∇me−(ν+2)sL∗
(f)‖L2(E)

ds

s−α/2+1

≤
∫ t

0

‖(s 1
2∇me−sL∗

) ◦ (e−νsL∗
) ◦ (e−sL∗

)(f)‖L2(F )s
α−1

2
ds

s

≤ C‖f‖L2(E)

∫ t

0

s
α−1

2 exp
{
− c

(d(E, F )
s1/2m

) 2m
2m−1

}ds

s

≤ C‖f‖L2(E)t
α−1

2

∫ ∞

1

s
1−α

2 exp
{
− c

(d(E, F )
t1/2m

) 2m
2m−1 · s 1

2m−1

}ds

s

≤ Ct
α−1

2

(d(E, F )
t1/2m

)− 2m
2m−1 (ν+ 1

2 )

‖f‖L2(E).

Now, fix 1 ≤ k ≤ ν. Then by Lemmas 2.2 and 2.4,

‖It,k‖L2(F ) ≤
∫ t

0

‖∇me−(ν+2)sL∗
e−ktL∗

(f)‖L2(E)
ds

s−α/2+1

≤
∫ t

0

∥∥∥(√
kt

2
∇me−

kt
2 L∗) ◦ (e−(ν+2)sL∗

) ◦ (e−
kt
2 L∗

)(f)
∥∥∥

L2(F )

√
2
kt

s
α
2

ds

s

≤ Ct−
1
2 ‖f‖L2(E)

∫ t

0

s
α
2 exp

{
− c

(d(E, F )
max

{kt, s}1/2m
) 2m

2m−1
}ds

s

≤ Ct−
1
2 ‖f‖L2(E)exp

{
− c

(d(E, F )
t1/2m

) 2m
2m−1

}∫ t

0

s
α
2

ds

s

≤ Ct
α−1

2

(d(E, F )
t1/2m

)− 2m
2m−1 (ν+ 1

2 )

‖f‖L2(E).
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Using the following inequality of [9]:

∥∥∥s

t
(e−sL∗ − e−(s+t)L∗

)g
∥∥∥

L2(F )
≤ Cexp

{
− c

(d(E, F )
t1/2m

) 2m
2m−1

}
‖g‖L2(E),

we obtain

‖IIt‖L2(F ) ≤ C

∫ ∞

t

‖(√s∇me−sL∗
) ◦ (e−sL∗ − e−(s+t)L∗

)ν ◦ (e−sL∗
)f‖L2(F )s

α−1
2

ds

s

≤ C‖f‖L2(E)

∫ ∞

t

exp
{
− c

(d(E, F )
s1/2m

) 2m
2m−1

}( t

s

)ν

s
α−1

2
ds

s

≤ C‖f‖L2(E)t
α−1

2

∫ 1

0

exp
{
− c

(sd(E, F )
t1/2m

) 2m
2m−1

}
sν−α+ 1

2
ds

s

≤ C‖f‖L2(E)t
α−1

2

(d(E, F )
t1/2m

)− 2m
2m−1 (ν+ 1

2 )
∫ ∞

0

e−ssν−α+ 1
2
ds

s

≤ Ct
α−1

2

(d(E, F )
t1/2m

)− 2m
2m−1 (ν+ 1

2 )

‖f‖L2(E),

which completes the proof of Lemma 2.3 by collecting the estimates of It and IIt.

§ 3 . Proof of Theorem 1.1

It suffices to prove Theorem 1.1 in the case 0 < α ≤ 1 since for 1 < α < n/m, the proof
of this theorem is obtained by using the formula L−(β+γ)/2 = L−β/2 · L−γ/2. Recall that

p0 =
2n

n + 2m
, q0 =

( 1
p0

− mα

n

)−1

, q2 =
(1

2
− mα

n

)−1

.

We will prove that the operator L−α/2 is of weak type (p0, q0). Applying Lemma 2.1 and
Marcinkiewicz interpolation theorem, we obtain that L−α/2 is bounded from Lp(Rn) to
Lq(Rn), where p0 < p < 2 and 1/q = 1/p−mα/n. Then by a standard duality argument we
see that L−α/2 maps Lp(Rn) to Lq(Rn) boundly for all 2 < p < ((n − 2m)/2n + mα/n)−1

and 1/q = 1/p− mα/n.

We begin to prove that L−α/2 is of weak-type (p0, q0), that is,

|{x : |L−α/2f(x)| > λ}| ≤ C
(‖f‖p0

λ

)q0

(3.1)

for all λ > 0.
Let us write M for the Hardy-Littlewood maximal function. We use a version of

Calderón-Zygmund decomposition for f(x)p0 at height βp0 , where

β = ‖f‖p0

(‖f‖p0

λ

)− q0
p0

.

See [7, p.247]. Then, there exists a collection of pairwise disjoint cubes {Qj} such that

{x ∈ R
n : M(fp0)

1
p0 > β} =

⋃
j

Qj
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and they satisfy the following property

β ≤
( 1

Qj

∫
Qj

|f(x)|p0dx
) 1

p0 ≤ Cβ.

One writes f = g + b = g +
∑
j

bj , where

g(x) = f(x)χRn\�
j

Qj
+

∑
j

PQj (f)(x)χQj (x),

bj(x) = (f(x) − PQj (f)(x))χQj (x),

where PQj (f)(x) is a polynomial with order m − 1 with the properties
∫

Qj

(f(x) − PQj (f)(x))xαdx = 0

for 0 ≤ |α| ≤ m − 1, and for any x ∈ Qj ,

|PQj (f)(x)| ≤ C
1

|Qj |
∫

Qj

|f(y)|dy.

The standard arguments yield 0 ≤ g(x) ≤ cβ for almost every x ∈ Rn. Besides, for
0 ≤ |α| ≤ m − 1, ∫

Qj

bj(x)xαdx = 0 and ‖bj‖p0 ≤ Cβ|Qj |1/p0 . (3.2)

For each j, we write tj = l(Qj)2m, where l(Qj) stands for the side length of the cube Qj .
We then decompose

∑
j

bj = h1 + h2, where

h1 =
∑

j

(I − (I − e−tjL)ν)bj and h2 =
∑

j

(I − e−tjL)νbj .

Here ν will be chosen later. One writes

|{x : |L−α/2f(x)| > 3λ}| ≤ |{x : |L−α/2g(x)| > λ}| +
2∑

k=1

|{x : |L−α/2hk(x)| > λ}|.

Since the operator L−α/2 is bounded from L2(Rn) to Lq2(Rn), we obtain
∫

Rn

|L−α/2(g)(y)|q2dy ≤ C
( ∫

Rn

|g(y)|2dy
)q2/2

≤ C
( ∫
�

j

Qj

|g(y)|2dy
)q2/2

+ C
( ∫

Rn\�
j

Qj

|g(y)|2dy
)q2/2

≤ Cβq2

( ∑
j

|Qj|
)q2/2

+ Cβ(2−p0)q2/2‖f‖p0q2/2
p0

≤ C‖f‖q2
p0

(‖f‖p0

λ

)(q0/2−q0/p0)q2

.
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Noting that 1/q0 = 1/p0−mα/n and 1/q2 = 1/2−mα/n, we have q0 = [1+(1/2−1/p0)q0]q2.
This leads to

|{x : |L−α/2g(x)| > λ}| ≤ λ−q2

∫
Rn

|L−α/2(g)(x)|q2dx

≤ C
(‖f‖p0

λ

)[1+(1/2−1/p0)q0]q2

≤ C
(‖f‖p0

λ

)q0

.

We now estimate the second term, i.e. the term involving h1 =
∑
j

(I − (I − e−tjL)ν)bj .

We obtain

|{x : |L−α/2h1(x)| > λ}| ≤ λ−q2

∫
Rn

|L−α/2(h1)(x)|q2dx

≤ Cλ−q2

( ∫
Rn

∣∣∣∑
j

(I − (I − e−tjL)ν)bj

∣∣∣2dx
)q2/2

≤ Cλ−q2

ν∑
k=1

(∫
Rn

∣∣∣ ∑
j

e−ktjLbj

∣∣∣2dx
)q2/2

.

We fix 1 ≤ k ≤ ν. Then

∥∥∥ ∑
j

e−ktjLbj

∥∥∥
2

= sup
h

∣∣∣
∫

Rn

∑
j

e−ktjLbj(x)h(x)dx
∣∣∣,

where the supremum is taken over all functions h ∈ L2 with ‖h‖L2 = 1. For each j, we set

S(0, j) = 2Qj; S(l, j) = 2l+1Qj\2lQj, l = 1, 2, · · · ,

and h(l,j)(x) = h(x)χS(l,j)(x). In this way, by (3.2)

∥∥∥ ∑
j

e−ktjLbj

∥∥∥
2

= sup
h

∣∣∣∑
j

∞∑
l=1

∫
Rn

e−ktjLbj(x)h(l,j)(x)dx
∣∣∣

= sup
h

∣∣∣∑
j

∞∑
l=1

∫
Qj

bj(x)((e−ktj L)∗h(l,j)(x) − PQj ((e
−ktjL)∗h(l,j)))dx

∣∣∣

≤ C sup
h

β
∑

j

∞∑
l=1

|Qj|
1

p0 ‖(e−ktjL)∗h(l,j)(x) − PQj ((e
−k(tj)mL)∗h(l,j))‖

L
2n

n−2m (Qj)
,

where PQ(f) is a polynomial with order m − 1 satisfying the Sobolev-Poincaré inequality.
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See [13, Chapter 4]. Now we are going to use the following Sobolev-Poincaré inequality,

‖((e−ktjL)∗h(l,j)(x) − PQj ((e
−ktjL)∗h(l,j)))‖

L
2n

n−2m (Qj)

≤ C‖ �m (e−ktjL)∗h(l,j)‖L2(Qj)

≤ Ct
−1/2
j exp

{
− c

(dist(S(l, j), Qj)
(ktj)1/2m

) 2m
2m−1

}
‖h(l,j)‖L2(S(l,j)).

Note that for l ≥ 1, we get dist(S(l, j), Qj) ≥ 2l−2l(Qj) and 1
p0

= 1
2 + m

n . We have
∣∣∣
∫

Rn

∑
j

e−ktjLbj(x)h(x)dx
∣∣∣

≤ Cβ
∑

j

∞∑
l=1

|Qj |
1

p0 t
− 1

2
j exp{−c2

2m
2m−1 l}‖h‖L2(S(l,j))

≤ Cβ
∑

j

∞∑
l=1

|Qj |
1

p0 l(Qj)−mexp{−c2
2m

2m−1 l}|2l+1Qj | 12
( 1
|2l+1Qj |

∫
2l+1Qj

|h(y)|2dy
)1/2

≤ Cβ
∑

j

|Qj | ess inf
y∈Qj

M(|h|2)(y)
1
2

∞∑
l=0

exp{−c2
2m

2m−1 l}2 ln
2

≤ Cβ

∫
�

j
Qj

M(|h|2)(y)
1
2 dx

≤ Cβ
∣∣∣ ⋃

j

Qj

∣∣∣1/2

,

which yields ‖h1‖2 ≤ Cβ
(‖f‖p0/λ

)q0/2
, and then

|{x : |L−α/2h1(x)| > λ}| ≤ C
(‖f‖p0

λ

)[1+(1/2−1/p0)q0]q2 ≤ C
(‖f‖p0

λ

)q0

. (3.3)

We turn to the estimation of the third term, i.e. the term involving h2. Denote Q∗
j = 2Qj

and E =
(⋃

j

Q∗
j

)
. Let Dj = L−α/2(I − e−tjL)νbj. We have

|{x : |L−α/2h2(x)| > λ}| ≤
∑

j

|Q∗
j | + λ−2

∫
(�

j

Q∗
j

)c
|L−α/2(h2)(x)|2dx

≤ C
(‖f‖p0

λ

)q0

+ λ−2

∫
(�

j

Q∗
j

)c
|L−α/2(h2)(x)|2dx

≤ C
(‖f‖p0

λ

)q0

+ λ−2
(

sup
h

∣∣∣
∫

Rn

∑
j

Djbj(y)h(y)dy
∣∣∣)2

,

where the supremum is taken over all functions h ∈ L2(E∗) with ‖h‖L2(E∗) = 1. By (3.2),
we have∣∣∣

∫
Rn

∑
j

Djbj(y)h(y)dy
∣∣∣ ≤ C

∑
j

∞∑
l=1

‖bj‖Lp0(Qj)‖D∗
j h(l,j)(y) − PQj (D

∗
j h(l,j))‖Lp′

0(Qj)
,
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where PQ(f) is a polynomial with order m − 1 satisfying the Sobolev-Poincaré inequality.
By Sobolev-Poincaré inequality again and Lemma 2.3,

‖D∗
j h(l,j)(y) − PQj (D

∗
j h(l,j))‖Lp′

0(Qj)

≤ ‖�m D∗
j h(l,j)‖L2(S(l,j))

≤ Ct
α−1

2
j

(dist(S(l, j), Qj)
tj

1/2m

)− 2m
2m−1 (ν+ 1

2 )

‖h(l,j)‖L2(S(l,j))

≤ Ct
α−1

2
j 2−l[ 2m

2m−1 (ν+ 1
2 )]‖h(l,j)‖L2(S(l,j)).

We choose ν sufficiently large such that

[ 2m

(2m − 1)

(
ν +

1
2

)
− n

2

]
> 0,

and then
∣∣∣
∫

Rn

∑
j

Djbj(x)h(x)dx
∣∣∣

≤ Cβ
∑

j

∞∑
l=1

|Qj |
1

p0 t
α−1

2
j 2−l[ 2m

2m−1 (ν+ 1
2 )]‖h(l,j)‖L2(S(l,j))

≤ Cβ
∑

j

∞∑
l=0

|Qj | 12+ mα
n |2l+1Qj | 12

( 1
|2l+1Qj |

∫
2l+1Qj

|h(y)|2dy
)1/2

2−l[ 2m
2m−1 (ν+ 1

2 )]

≤ Cβ
∑

j

|Qj|mα
n |Qj |ess inf

y∈Qj

M(|h|2)(y)
1
2

∞∑
l=1

2−l[ 2m
(2m−1) (ν+ 1

2 )−n
2 ]

≤ Cβ
( ∑

j

|Qj |
)mα

n + 1
2
.

The same arguments as in (3.3) give

|{x : |L−α/2h2(x)| > λ}| ≤ C
(‖f‖p0

λ

)q0

+ λ−2

∫
(�

j
Q∗

j

)c
|L−α/2(h2)(x)|2dx

≤ C
(‖f‖p0

λ

)q0

+ Cλ−2
[
β
( ∑

j

|Qj|
) mα

n + 1
2
]2

≤ C
(‖f‖p0

λ

)q0

+ C
(‖f‖p0

λ

)[2+2q0( mα
n − 1

p0
)+q0]

≤ C
(‖f‖p0

λ

)q0

since q0 =
(

1
p0

− mα
n

)−1.
Hence, we have obtained (3.1), and then the proof of Theorem 1.1.
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Remark 3.1. Consider complex bounded measurable coefficients aαβ on Rn such that

the form Q(f, g) =
∫

Rn

∑
|α|,|β|≤m

aα,β(x)∂βf(x)∂αg(x)dx satisfies

Q(f, g) ≤ Λ‖ �m f‖‖ �m g‖ + k′‖f‖2‖g‖2,

the G̊arding inequality, and

Re Q(f, f) ≥ λ‖ �m f‖2
2 − k‖f‖2

2

for some λ > 0, k, k′ ≥ 0 and Λ < +∞ independent of f, g ∈ Hm(Rn). We define an
inhomogeneous elliptic operator on L2(Rn) of order 2m in divergence form by

L =
∑

|α|,|β|≤m

(−1)α∂α(aα,β∂β). (3.4)

For the above operator L, we have similar results as in Lemma 2.2 (see [3, Remark 3.1]).
So, Theorem 1.1 is true for the fractional integrals L−α/2 of the operator L as in (3.4). For
the proof, we omit its details here.
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