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ON IDEAL CLASS GROUPS AND UNITS IN TERMS
OF THE QUADRATIC FORM x2 + 32y2∗∗∗

Jurgen HURRELBRINK∗ YUE Qin∗∗

Abstract

For quadratic number fields F = Q(
√

2p1 · · · pt−1 ) with primes pj ≡ 1 mod 8, the
authors study the class number and the norm of the fundamental unit of F . The results
generalize nicely what has been familiar for the fields Q(

√
2p ) with a prime p ≡ 1 mod

8, including density statements. And the results are stated in terms of the quadratic
form x2 + 32y2 and illustrated in terms of graphs.
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§ 1 . Introduction

It is a classical topic to study, for quadratic number fields F = Q(
√

2p ) with a prime p,

the exact 2-power dividing the narrow class number h+(F ) and the norm of the fundamental
unit ε of F.

The 2-primary subgroup of the narrow class group C+(F ) is cyclic, and it is cyclic of
order divisible by 4 if and only if p ≡ 1 mod 8. Well-known results on h+(F ) and the norm
of ε in the most interesting case are listed below in Corollary 3.3 in terms of the quadratic
form x2 + 32y2. Equivalent statements can be found in various papers in the literature [3,
6, 7, 10–13, 18–20].

In this note, we are making an effort of generalizing results by replacing the fields Q(
√

2p )
with quadratic fields

F = Q(
√

2p1 · · · pt−1 ) with primes pj ≡ 1 mod 8, j = 1, · · · , t − 1.

In Section 2 we handle the simple case of the 2-primary subgroup of C+(F ) being ele-
mentary abelian. The main Section 3 is about the case of C+(F ) being of 4-rank 1. So, the
special case of t = 2 amounts to the classical one described above. The generalized results
on the class number and the norm of the fundamental unit ε of F are stated in Theorem 3.1,
Corollary 3.1, and Corollary 3.2. In Section 4 we present in Theorem 4.1 and Theorem 4.2
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an asymptotic formula and a density result concerning Nε = −1 for the fields F as above
with 4-rank C+(F ) = 1, 8-rank C+(F ) = 0. Finally, in Section 5, Theorem 5.1, a result is
obtained on the norm of the fundamental unit ε, generalizing the result (3.4), without any
assumption on the 4-rank of C+(F ).

Important in this paper are characterizations of primes in terms of quadratic forms, genus
theory, Diophantine equations. Illustrations are being made in terms of graphs instead of
Rédei matrices.

We use the following notations:
OF ring of integers of a number field F ,
C(F ), C+(F ) ideal class group, narrow ideal class group of F ,
h(F ), h+(F ) class number, narrow class number of F ,
[I] class of an ideal I ⊆ OF in C+(F ),
ε fundamental unit > 1 in a real quadratic field F ,
2A subgroup of elements of order ≤ 2 of an abelian group A,
r2n(A) 2n-rank of A,
MF Rédei matrix of F ,
ΓF graph associated with certain quadratic fields F ,
A+ set of primes p ≡ 1 mod 8 represented by x2 + 32y2 over Z,
A− set of primes p ≡ 1 mod 8 not represented by x2 + 32y2 over Z,
2n ‖ x 2n is the exact 2-power dividing x in Z.

§ 2 . Rank MF = t − 1

We consider real quadratic fields F = Q(
√

d) with d = 2p1 · · · pt−1 and distinct primes
pj ≡ 1 mod 4. Then −1 is a norm from the field F over Q, and one is interested in the norm
of the fundamental unit ε of F .

The Rédei matrix MF of F is given as follows. Let pt = 2 and denote by
( ·

p

)
the

Legendre symbol if p �= 2 and by
( ·

2

)
the Kronecker symbol. Then MF = (aij) is the t × t

matrix with aij ∈ F2 given by

(−1)aij =

⎧⎪⎨
⎪⎩

(pj

pi

)
, if i �= j,

(d/pi

pi

)
, if i = j,

i, j = 1, · · · , t.

By Gauss, the 2-rank of the narrow ideal class group C+(F ) is t − 1, and by Rédei’s
criterion (see [15–17]), the 4-rank of C+(F ) is given by

r4(C+(F )) = t − 1 − rankMF . (2.1)

In particular, rankMF ≤ t − 1.

If MF is of maximal rank t − 1, then the norm of the fundamental unit of F is known:

Proposition 2.1. Let F = Q(
√

d ) with d = 2p1 · · · pt−1, pj ≡ 1 mod 4 for j =
1, · · · , t − 1 and let ε be the fundamental unit of F . If rankMF = t − 1, then Nε = −1.

Proof. We have r2(C+(F )) = t − 1 and r4(C+(F )) = 0 by (2.1). Thus the 2-primary
subgroup of C+(F ) is elementary abelian of rank t − 1. Hence the exact 2-power dividing
the narrow class number h+(F ) of F is 2t−1.
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Since −1 is a field norm from F , the 2-rank of the ordinary class group C(F ) is also
t− 1 (compare 18.3 in [2]). Hence 2t−1 divides the ordinary class number h(F ) of F . Since
h+(F ) = h(F ) or 2h(F ), we conclude that h+(F ) = h(F ) and, in particular, Nε = −1.

When is the above maximal rank assumption satisfied? We have in Proposition 2.1:
rankMF = t − 1 if and only if the 2-primary subgroup of C(F ) is elementary abelian and
Nε = −1.

As in [9], we associate with the field F = Q(
√

2p1 · · · pt−1 ) the graph ΓF on t vertices,
labelled p1, · · · , pt−1, pt = 2, with two distinct vertices pi and pj being adjacent if and only
if

(
pi

pj

)
= −1. Here, for pi ≡ 1 mod 4 and pt = 2, it is understood that

(
pi

2

)
=

(
2
pi

)
= 1 if

and only if pi ≡ 1 mod 8.
For example, the graph ΓF associated with the field F = Q(

√
2 · 5 · 13 · 17 ) is given by

�

17
�

5
�

13

�

2

�
�

�

�
�

�

Combinatorial properties of ΓF provide us with information about the 4-rank of C+(F ).
Namely, please compare [9]:

For a quadratic number field F as above with associated graph ΓF , the 4-rank of the
narrow class group C+(F ) is given by

2r4(C+(F )) = # of Eulerian vertex decompostions of ΓF . (2.2)

Addendum 2.1. If rankMF = t − 1 ≥ 1 in Proposition 2.1, then d = 2p1 · · · pt−1 has
a prime divisor pj ≡ 5 mod 8.

Proof. If t ≥ 2 and pj ≡ 1 mod 8 for all j = 1, · · · , t− 1, then
(

2
pj

)
= 1 for all j and ΓF

has an isolated vertex which implies by (2.2) that r4(C+(F )) ≥ 1 and hence, by (2.1), the
rank of MF is not t − 1.

Illustration 2.1. In the basic case of t = 2, F = Q(
√

2p ) with a prime p ≡ 1 mod
4, we note in terms of (2.2): If p ≡ 5 mod 8, then ΓF is the graph � � which has
only the trivial Eulerian vertex decomposition. Thus r4(C+(F )) = 0 and the 2-primary
subgroup of C+(F ) is cyclic of order 2. In particular, rankMF = t − 1 = 1 and in fact,

MF =
( 1 1

1 1

)
, h+(F ) = h(F ) ≡ 2 mod 4 and Nε = −1 (compare e.g. 19.8, 19.9 in [2]).

If p ≡ 1 mod 8, then ΓF is the graph � � which has two Eulerian vertex decomposi-
tions. Thus r4(C+(F )) = 1 and the 2-primary subgroup of C+(F ) is cyclic of order divisible

by 4. In particular, rankMF = t − 2 = 0. In fact, MF =
( 0 0

0 0

)
, h+(F ) ≡ 0 mod 4 and

the sign of the fundamental unit ε can be +1 as well as −1. Example: Nε = +1 with
ε = 35 + 6

√
34 in the case of F = Q(

√
2 · 17 ) and Nε = −1 with ε = 9 +

√
82 in the case of

F = Q(
√

2 · 41 ) (compare e.g. 24.5 in [2]).
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§ 3 . Rank MF = t − 2

We now consider the fields F = Q(
√

2p1 · · · pt−1 ) with t ≥ 2 and all primes pj being
congruent to 1 mod 8. Then rankMF ≤ t−2 by Addendum 2.1 and our main emphasis is on
the fields F with rankMF = t− 2; that is r4(C+(F )) = 1. Which fields F satisfy Nε = −1?

Definition 3.1. The subsets A+ and A− of the set of all primes p ≡ 1 mod 8 are given
by

A+ = {p ≡ 1 mod 8: p = x2 + 32y2 for some x, y ∈ Z},
A− = {p ≡ 1 mod 8: p �= x2 + 32y2 for all x, y ∈ Z}.
In 21.6 in [2] it was shown that the sets A+ and A− both have density 1/8 as subsets of

the set of all primes, and thus A+ and A− are of density 1/2 each in the set of primes p ≡ 1
mod 8.

For F = Q(
√

2p1 · · · pt−1 ), let the prime ideals P1, · · · , Pt−1 and Pt = D of OF be given
by P 2

j = pjOF , in particular, P 2
t = D2 = 2OF with D denoting the dyadic prime ideal of F.

We prove via genus theory.

Theorem 3.1. Let F = Q(
√

d) with d = 2p1 · · · pt−1, pj ≡ 1 mod 8 for j = 1, · · · , t−1
and suppose that rankMF = t − 2. Then

( i ) [D] /∈ C+(F )4 if and only if p1 · · · pt−1 ≡ 9 mod 16.
( ii ) [P1 · · ·Pt−1] /∈ C+(F )4 if and only if either p1 · · · pt−1 ≡ 9 mod 16 and an even

number of the primes p1, · · · , pt−1 belong to A− or p1 · · · pt−1 ≡ 1 mod 16 and an odd
number of the primes p1, · · · , pt−1 belong to A−.

(iii) [P1 · · ·Pt−1D] /∈ C+(F )4 if and only if an odd number of the primes p1, · · · , pt−1

belong to A−.

(iv) [D], [P1 · · ·Pt−1] and [P1 · · ·Pt−1D] lie in C+(F )4 if and only if p1 · · · pt−1 ≡ 1 mod
16 and an even number of the primes p1, · · · , pt−1 belong to A−.

Proof. Since rankMF = t − 2, we have by (2.1) that r4(C+(F )) = 1. Hence the
homogeneous system MF X = 0 of t linear equations in t unknowns over F2 has only three
nontrivial solutions X = (0, · · · , 0, 1)T , (1, · · · , 1, 0)T , (1, · · · , 1, 1)T , by e.g. [22]. Hence
there are only the three ambiguous classes [D], [P1 · · ·Pt−1], [P1 · · ·Pt−1D] in 2C+(F ) ∩
C+(F )2. We are dealing with classes of order at most 2 that are squares in C+(F ) with
exactly one of the three classes being trivial, because of r4(C+(F )) = 1.

( i ) In terms of norms from Q(
√

2) over Q, we have p1 · · · pt−1 = u2 − 2w2 = 2(u +
w)2 − (u + 2w)2 with u, w ∈ N. Clearly, w is even and, without loss, w ≡ 0 mod 4 by
multiplying u + w

√
2 by the element (1 +

√
2)2 = 3 + 2

√
2 of norm +1, if necessary. We

have 2p1 · · · pt−1 = 4(u + w)2 − 2(u + 2w)2 and thus

2(u + 2w)2 = (2(u + w))2 − d · 12. (3.1)

Consequently, we obtain [D] = [Pu+2w ]2 ∈ C+(F )2 for some ideal Pu+2w of OF dividing
(u + 2w)OF . By genus theory and [21] we conclude

[D] ∈ C+(F )4
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⇐⇒ [Pu+2w ][Pm] ∈ C+(F )2 where Pm denotes the ambiguous ideal over some divisor m of
p1 · · · pt−1.

⇐⇒ (d′(u+2w)
p

)
=

(m(u+2w)
l

)
= 1 for every odd prime p|m and every odd prime l|d′ with

d′ = d/m.
⇐⇒ The linear system M ′

F X = (a1, · · · , at−1)T is solvable over F2 where M ′
F is the (t−1)×t

matrix obtained from the Rédei matrix MF by deleting row t and the elements aj ∈ F2 are
given by (−1)aj =

(
u+2w

pj

)
for j = 1, · · · , t − 1.

⇐⇒ The Jacobi symbol
(

u+2w
p1···pt−1

)
is +1, by rankMF = t − 2.

⇐⇒ The Jacobi symbol
(

2
u+2w

)
is +1, by (3.3) and quadratic reciprocity.

⇐⇒ u ≡ ±1 mod 8.
⇐⇒ p1 · · · pt−1 ≡ 1 mod 16.

( ii ) In terms of norms from Q(
√−2 ) over Q we have in view of pj ≡ 1 mod 8, j =

1, · · · , t− 1 that pj = a2
j + 2b2

j with aj , bj ∈ N, bj ≡ 0 mod 2 and hence, for some a, b ∈ N,
a odd, b even,

p1 · · · pt−1 = a2 + 2b2.

Consequently, with a, b as above,

p1 · · · pt−1a
2 = (p1 · · · pt−1)2 − 2p1 · · · pt−1b

2 (3.2)

and [P1 · · ·Pt−1] = [Pa]2 ∈ C+(F )2 for some ideal Pa of OF dividing aOF . By Definition
3.1, we have pj ∈ A+ if and only if bj ≡ 0 mod 4. By multiplicity of the norm, a straight-
forward induction yields that an even number of the primes p1, · · · , pt−1 belong to A− if
and only if b ≡ 0 mod 4. In beautiful analogy with the proof in part (i) we now conclude

[P1 · · ·Pt−1] /∈ C+(F )4

⇐⇒ a ≡ ±3 mod 8 in (3.4)
⇐⇒ either p1 · · · pt−1 ≡ 9 mod 16 and b ≡ 0 mod 4, or p1 · · · pt−1 ≡ 1 mod 16 and b ≡ 2
mod 4
⇐⇒ either p1 · · · pt−1 ≡ 9 mod 16 and an even number of the primes p1, · · · , pt−1 belong
to A−, or p1 · · · pt−1 ≡ 1 mod 16 and an odd number of the primes p1, · · · , pt−1 belong to
A−.

(iii) Let D, P, DP stand for [D], [P1 · · ·Pt−1], [DP1 · · ·Pt−1], respectively, being a 4-th
power in C+(F ). We summarize what we have proved in (i) and (ii) in terms of p1 · · · pt−1

being 1 mod 16 or 9 mod 16 and in terms of an even or odd number of the primes p1, · · · , pt−1

belonging to A−, as follows:

even

odd

1(16) 9(16)
D
P

not D
not P

D
not P

not D
P

.

In view of [DP1 · · ·Pt−1] = [D][P1 · · ·Pt−1] and exactly one of the three classes being trivial
in C+(F ), the above table amounts to:
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even

odd

1(16) 9(16)
D
P
DP

not D
not P
DP

D
not P
not DP

not D
P
not DP

. (3.3)

In particular, [DP1 · · ·Pt−1] /∈ C+(F )4 if and only if an odd number of the primes
p1, · · · , pt−1 belong to A−, which proves claim (iii).

(iv) We just see from the table (3.3) that all three of [D], [P1 · · ·Pt−1], [DP1 · · ·Pt−1]
are in C+(F )4 if and only if p1 · · · pt−1 ≡ 1 mod 16 and an even number of the primes
p1, · · · , pt−1 belong to A−, which proves claim (iv).

For the fields F = Q(
√

2p1 · · · pt−1 ) with pj ≡ 1 mod 8, j = 1, · · · , t − 1, all three of
−1, 2, −2 are norms from F over Q. Concerning −1, 2, or −2 being a norm from OF , we
obtain:

Corollary 3.1. Under the assumptions of Theorem 3.1, exactly one of −1, 2,−2 is a
norm from OF . Explicitly, −1, 2,−2 is a norm from OF if and only if [DP1 · · ·Pt−1], [D],
[P1 · · ·Pt−1], respectively, is trivial in C+(F ).

Proof. Under our assumption of rankMF = t − 2, that is r4(C+(F )) = 1, the claim
follows in analogy to the well-known case of t = 2, F = Q(

√
2p ). Namely [DP1 · · ·Pt−1] is

trivial in C+(F ) if and only if the ideal (
√

2p1 · · · pt−1 )OF has a totally positive generator
if and only if −1 is a norm from OF . [D] is trivial in C+(F ) clearly if and only if +2 is a
norm from OF . [P1 · · ·Pt−1] is trivial in C+(F ) if and only if p1 · · · pt−1 is a norm from OF

if and only if −2 is a norm from OF .

Illustration 3.1. (i) In the special case of F = Q(
√

2p ) with a prime p ≡ 1 mod 8, the
three cases of exactly one of −1, 2,−2 being a norm from OF can be represented already by
the three smallest primes p ≡ 1 mod 8. Namely,

for p = 41 we have [DP1] is trivial and N(9 +
√

82 ) = −1,

for p = 17 we have [D] is trivial and N(6 +
√

34 ) = 2,

for p = 73 we have [P1] is trivial and N(12 +
√

146 ) = −2.

(ii) In Theorem 3.1, let F = Q(
√

2p1p2 ) with distinct primes p1 ≡ p2 ≡ 1 mod 8 and
(p1

p2
) = −1.
For p1 = 17, p2 = 41, [D] /∈ C+(F )4, [DP1P2] /∈ C(F )4 and [P1P2] ∈ C(F )4.
For p1 = 41, p2 = 89, [P1P2] /∈ C+(F )4, [DP1P2] /∈ C(F )4 and [D] ∈ C+(F )4.
For p1 = 17, p2 = 73, [D] /∈ C+(F )4, [P1P2] /∈ C+(F )4 and [DP1P2] ∈ C(F )4.
For p1 = 17, p2 = 97, [D] ∈ C+(F )4, [P1P2] ∈ C+(F )4 and [DP1P2] ∈ C(F )4.

In the general situation we conclude

Corollary 3.2. Under the assumptions of Theorem 3.1 one has
( i ) p1 · · · pt−1 ≡ 9 mod 16 and an even number of the primes p1, · · · , pt−1 belong to

A− if and only if Nε = −1 and 2t‖h(F ).
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( ii ) p1 · · · pt−1 ≡ 1 mod 16 and an odd number of the primes p1, · · · , pt−1 belong to A−

if and only if 2 is a norm from OF and 2t−1‖h(F ), so Nε = +1.

(iii) p1 · · · pt−1 ≡ 9 mod 16 and an odd number of the primes p1, · · · , pt−1 belong to A−

if and only if −2 is a norm from OF and 2t−1‖h(F ), so Nε = +1.

(iv) p1 · · · pt−1 ≡ 1 mod 16 and an even number of the primes p1, · · · , pt−1 belong to
A− if and only if r8(C+(F )) = 1.

Proof. The claim follows directly from table (3.3) and Corollary 3.1 by having in mind
that always r2(C+(F )) = t− 1 and r4(C+(F )) = 1. For example, the case (iv) occurs if and
only if all three classes [DP1 · · ·Pt−1], [D], [P1 · · ·Pt−1] belong to C+(F )4.

In the special case of t = 2 we have reproved

Corollary 3.3. Let F = Q(
√

2p) with a prime p ≡ 1 mod 8. Then
( i ) p ≡ 9 mod 16 and p ∈ A+ if and only if Nε = −1 and 4‖h(F ), 4‖h+(F ).
( ii ) p ≡ 1 mod 16 and p ∈ A− if and only if 2 is a norm from OF and 2‖h(F ), 4‖ h+(F ),

so Nε = +1.

(iii) p ≡ 9 mod 16 and p ∈ A− if and only if −2 is a norm from OF and 2‖h(F ), 4‖
h+(F ), so Nε = +1.

(iv) p ≡ 1 mod 16 and p ∈ A+ if and only if all three of [D], [DP ], [P ] are in C+(F )4 if
and only if 8|h+(F ).

One might compare Corollary 3.3 to [1] and 24.4, 24.5 in [2]. In particular, we point out
that Corollary 3.3 implies for F = (Q

√
2p ) with a prime p ≡ 1 mod 8 the well-known result:

if p ∈ A−, then Nε = +1. (3.4)

A generalization of the result (3.4) can be found below in Theorem 5.1.
Concerning Theorem 3.1 and its corollaries, it is in order to comment on when the

assumption of rankMF = t − 2 for F = Q(
√

2p1 · · · pt−1 ) with pj ≡ 1 mod 8 for j =
1, · · · , t − 1 holds.

For t = 2 it is always satisfied, by Illustration 2.1. The graph ΓF associated with F is
�

2
�

p1
.

For t = 3 the graph ΓF is �

2
�

p1
�

p2
or �

2
�

p1
�

p2
, representing the cases r4(C+(F )) = 1

or r4(C+(F )) = 2, respectively, by (2.2). So, the condition of rankMF = t− 2 is satisfied if

and only if ΓF is �

2
�

p1
�

p2
. That amounts to

(
p1
p2

)
= −1, and is satisfied for example for

F = Q(
√

2 · 17 · 41).

For t = 4 the graph ΓF is �

2
� �

�

���� or �

2
� � � or �

2
� � � or

�

2
� � �. We obtain from (2.2) that r4(C+(F )) = 1 holds exactly in the first

two cases. So rankMF = t− 2 if and only if ΓF is given by �

2
� �

�

���� or �

2
� � �

if and only if at least two of the three symbols
(

p1
p2

)
,
(

p1
p3

)
,
(

p2
p3

)
are −1. That is satisfied for

examples for F = Q(
√

2 · 17 · 41 · 73 ) and Q(
√

2 · 17 · 41 · 97 ).
In fact, it follows from [15] that about 41.94% of all graphs ΓF represent the case of

r4(C+(F )) = 1, that is rankMF = t − 2.
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§ 4 . Density

Let F = Q(
√

2p1 · · · pt−1 ) be a real quadratic field with distinct primes pj ≡ 1 mod 8,
j = 1, · · · , t − 1. Suppose that rankMF = t − 2; that is, r4(C+(F )) = 1.

The first three cases of Theorem 3.1 amount to r8(C+(F )) = 0, by Corollary 3.2, which
means 2t‖h+(F ). Moreover, by Corollary 3.1, exactly one of −1, 2,−2 is a norm from OF .

In this section we will discuss the following questions: How likely is it that r8(C+(F )) = 0
and Nε = −1? How likely is it that r8(C+(F )) = 0 and 2 is a norm from OF ? How likely
is it that r8(C+(F )) = 0 and −2 is a norm from OF ?

Let x be a positive real number. We define

At = {F = Q(
√

2p1 · · · pt−1 ) with distinct primes pj ≡ 1 mod 8},
At;x = {F = Q(

√
2p1 · · · pt−1 ) ∈ At : p1 · · · pt−1 ≤ x},

At,t−2;x = {F = Q(
√

2p1 · · · pt−1 ) ∈ At;x : rankMF = t − 2 and p1 · · · pt−1 ≤ x},
A

(−1)
t,t−2;x = {F ∈ At,t−2;x : 2t‖h+(F ) and Nε = −1},

A
(2)
t,t−2;x = {F ∈ At,t−2;x : 2t‖h+(F ) and 2 is a norm from OF },

A
(−2)
t,t−2;x = {F ∈ At,t−2;x : 2t‖h+(F ) and − 2 is a norm from OF }.

Fix F ′ = Q(
√

2p′1 · · · p′t−1 ) ∈ At;x, p′1 < p′2 < · · · < pp−1. Let F = Q(
√

2p1 · · · pt−1 ) ∈
At;x, p1 < p2 < · · · < pt−1. We will call F equivalent to F ′ if

(
pi

pj

)
=

( p′
i

p′
j

)
= (−1)uij ,

uij ∈ F2, for 1 ≤ i < j ≤ t − 1.

We put
δ(pi, pj) = 1 if and only if

(
pi

pj

)
=

( p′
i

p′
j

)
= (−1)uij , δ(pi, pj) = 0 otherwise, and Yj =

j−1∏
i=1

δ(pi, pj) for 2 ≤ j ≤ t − 1.

We observe that the conditions p1 · · · pt−1 ≤ x and p1 < · · · < pt−1 imply

p1 ≤ x1/(t−1), p1 < p2 ≤ (x/p1)1/(t−2), · · · ,

pt−3 < pt−2 ≤ (x/p1 · · · pt−3)1/2, pt−2 < pt−1 ≤ x/p1 · · · pt−2.

Lemma 4.1. Fix F ′ ∈ A
(i)
t, t−2; x, i = −1, 2, −2, and let

N(F ′) = {F ∈ A
(i)
t,t−2;x |F are equivalent to F ′ and p1 · · · pt−1 ≤ x}.

Then, as x → ∞,

|N(F ′)| ∼ 2−(t2+t)/2−1 · 1
(t − 2)!

x(log log x)t−2

log x
. (4.1)

Proof. In the following, we will use the same type of calculation as used in proving
Lemma 3 in [4] to prove (4.1) (compare e.g. [23]).
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Let F ′ ∈ A
(−1)
t,t−2; x. By Theorem 3.1, we now conclude

|N(F ′)| =
∑

an even number of pi’s belong to A−

p1···pt−1≡9 mod 16

∑
p1≤x1/t−1

p1≡1 mod 8

(4.2)

∑
p1<p2≤(x/p1)1/t−2

p2≡1 mod 8

Y2 · · ·
∑

pt−2<pt−1≤x/p2···pt−2

pt−1≡1 mod 8

Yt−1.

We first consider∑
pt−2<pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

Yt−1 =
∑

pt−1≤ x
p1···pt−2

pt−1≡1 mod 8

Yt−1 −
∑

pt−1≤pt−2

pt−1≡1 mod 8

Yt−1.

Since pt−2 ≤ (
x

p1···pt−3

) 1
2 ,

∑
pt−1≤pt−2

pt−1≡1 mod 8

Yt−1 = O

( ∑
pt−1≤( x

p1···pt−3
)
1
2

1
)

= O

( (
x

p1···pt−3

) 1
2

log
(

x
p1···pt−3

) 1
2

)
= O

((
x

p1···pt−3

) 1
2

log x

)

for p1 · · · pt−3 ≤ x
t−3
t−1 . Then

O

( ∑
pt−2≤

(
x

p1···pt−3

) 1
2

(
x

p1···pt−3

) 1
2

log x

)
= O

( x

p1 · · · pt−3 log2 x

)
,

O

( ∑
p1···pt−3≤x

t−3
t−1

x

p1 · · · pt−3 log2 x

)
= O

(x(log log x)t−3

log2 x

)
= O

( x

log x

)
.

Thus the terms with
∑

pt−1≤pt−2

Yt−1 contribute only to the error term in Lemma 4.1.

To estimate
∑

pt−1≤ x
p1···pt−2

pt−1≡1 mod 8

Yt−1, we have the relation

∑
pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

Yt−1 =
∑

pt−1≤ x
p1···pt−2

pt−1≡1 mod 8

t−2∏
j=1

1
2

(
1 + (−1)ut−1,j

(pt−1

pj

))

=
1

2t−2

∑
pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

1 + O

( ∑
χ�=1

∑
pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

χp1···pt−2(pt−1)
)

∼
1
2t

x
p1···pt−2

log x
p1···pt−2

+ O

( ∑
χ�=1

∑
pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

χp1···pt−2(pt−1)
)

, (4.3)
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where each χp1···pt−2 is the product of some Legendre symbols
( ·

pj

)
, j = 1, · · · , t− 2. By [4,

pp.202–203], we can know that∑
p1≤x

1
t−1

p1≡1 mod 8

· · ·
∑

pt−3<pt−2≤
(

x
p1···pt−3

) 1
2

pt−2≡1 mod 8

Yt−2

∑
pt−1≤ x

p1···pt−2

pt−1≡1 mod 8

χp1···pt−2(pt−1)

= o
(x(log log x)t−2

log x

)
. (4.4)

Thus

|N(F ′)| =
∑

even number of pi ∈ A−
p1···pt−1≡9 mod 16

∑
p1≤x

1
t−1

p1≡1mod 8

∑
p1<p2≤( x

p1
)

1
t−2

p2≡1 mod 8

Y2

· · ·
∑

pt−3<pt−2≤
(

x
p1···pt−3

) 1
2

pt−2≡1 mod 8

Yt−2

2t

x

p1 · · · pt−2 log x
+ o

(x(log log x)t−2

log x

)
. (4.5)

Next we can apply the same procedure to Yt−2 that we applied to Yt−1 (i.e., note the relation
(4.3)). Then the main term in

∑
pt−3<pt−2≤( x

p1···pt−3
)
1
2

pt−2≡1 mod 8

Yt−2

2t
· x

p1 · · · pt−2 log x

is ∑
pt−3<pt−2≤( x

p1···pt−3
)
1
2

1
2t2t−1

· x

p1 · · · pt−2 log x
.

The same procedure can be applied to each Yi, 2 ≤ i ≤ t − 1. The main term in (4.2), a
factor of 1

4 is introduced by the condition p1 ≡ 1 mod 8 and a factor of 1
4 is introduced by

the condition of an even number of p1, · · · , pt−1 belonging to A− and p1 · · · pt−1 ≡ 9 mod
16 (note that it is equally likely to be p ∈ A+ or p ∈ A− for a prime p ≡ 1 mod 8 in [2,
21.6]). Hence we obtain the following main term in |N(F ′)|:

∑
p1≤x

1
t−1

∑
p1<p2≤( x

p1
)

1
t−2

· · ·
∑

pt−3<pt−2≤( x
p1···pt−3

)
1
2

1
2t+(t−1)+···+1+1

· x

p1 · · · pt−2 log x

∼
1

2
t2+t

2 +1

x

log x

∑
p1 ···pt−2≤x

t−2
t−1

p1<···<pt−2

1
p1 · · · pt−2

∼ 2−
t2+t

2 −1 · 1
(t − 2)!

· x(log log x)t−2

log x

by [8, Chapter XXII]. To finish the proof of Lemma 4.1, it remains to show that the other
terms in Equation (4.5) are o

(
x(log log x)t−2

log x

)
. By [4, pp.204–206], we can know that

∑
p1≤x

1
t−1

∑
p1<p2≤( x

p1
)

1
t−2

Y2 · · ·
∑

pt−3<pt−2≤( x
p1···pt−3

)
1
2

χp1···pt−3(pt−2)
p1 · · · pt−2

= o((log log x)t−2),
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where χp1···pt−3 is the product of some Legendre symbols
( ·

pj

)
, j = 1, · · · , t − 3, analogous

to Equation (4.4). Similar calculations can be carried out for the nontrivial characters that
come from equations for Yt−1, · · · , Y2 analogous to Equation (4.4).

Our proof of Lemma 4.1 is completed.

Theorem 4.1. For t ≥ 2, as x → ∞, we have for the orders of these sets asymptotically,

|A(−1)
t,t−2;x| ∼ |A(2)

t,t−2;x| ∼ |A(−2)
t,t−2;x| ∼

S(t − 2)
2(t2+t)/2+1 · (t − 2)!

x(log log x)t−2

log x
,

where S(t − 2) is the number of invertible symmetric (t − 2) × (t − 2) matrices over F2.

Addendum 4.1. S(t − 2) is given by (compare e.g. [14, Lemma 18])

S(t − 2) = 2ε(t−2)

[(t−3)/2]∏
k=0

(22k+1 − 1), (4.6)

ε(t − 2) =

⎧⎪⎪⎨
⎪⎪⎩

(t − 2)2 − 1
4

, if t − 2 is odd,

(t − 2)2 + 2(t − 2)
4

, if t − 2 is even,

where [x] denotes the greatest integer ≤ x and the product is 1 for t = 2.

Proof. We identify fields in the given sets according to the above equivalence relation.
For every field F in A

(−1)
t,t−2;x, the Rédei matrix MF is a symmetric t × t matrix over F2 of

rankMF = t − 2. It follows that for x sufficiently large, the number of equivalence classes
in A

(−1)
t,t−2;x is the number of invertible symmetric (t − 2) × (t − 2) matrices over F2; it is

explicitly given by S(t − 2) in (4.6).
Fix F ′ = Q(

√
2p′1 · · · p′t−1 ) ∈ A

(−1)
t,t−2;x. Let N(F ′) denote the set of fields F in A

(−1)
t,t−2;x

that are equivalent to F ′. By multiplying |N(F ′)| in (4.1) by S(t−2) from (4.6), we conclude
that, as x → ∞,

|A(−1)
t,t−2;x| ∼

S(t − 2)
2(t2+t)/2+1 · (t − 2)!

x(log log x)t−2

log x
.

Analogously, via Theorem 3.1, the same estimates are obtained also for |A(2)
t,t−2;x| and

|A(−2)
t,t−2;x|.
Now we investigate how likely it is that rankMF = t − 2, 2t‖h+(F ), and Nε = −1 for

these fields F in At. Since for every field F in At the Rédei matrix MF is symmetric, it
follows that, for x sufficiently large, the number of equivalence classes of fields F in At;x is
2(t−1)(t−2)/2, and it is left to count the number of possible Rédei matrices of fields F in a
given equivalence class.

As before, fix a field F ′ = Q(
√

2p′1 · · · p′t−1 ) ∈ At;x, and let M(F ′) denote the set of
fields F in At;x that are equivalent to F ′. Then, as x → ∞,

|M(F ′)| =
∑

p1≤x1/t−1

p1≡1 mod 8

∑
p1≤p2≤(x/p1)

1/t−2

p2≡1 mod 8

Y2 · · ·
∑

pt−2≤pt−1≤x/p2···pt−2

pt−1≡1 mod 8

Yt−1

∼ 2−(t2+t)/2+1 · 1
(t − 2)!

x(log log x)t−2

log x
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and thus

|At;x| ∼ 2(t−1)(t−2)/2

2(t2+t)/2−1 · (t − 2)!
x(log log x)t−2

log x
. (4.7)

By combining Theorem 4.1 with (4.13), we have obtained

Theorem 4.2. For t ≥ 2 one has

lim
x→∞

|A(i)
t,t−2;x|
|At;x| =

S(t − 2)
2(t−1)(t−2)/2+2

, i = −1, 2, −2.

Let us consider the results in the classical case of t = 2. The universe is given by

A2 = {F = Q(
√

2p ) : p prime, p ≡ 1 mod 8}.

Since the Rédei matrix of such fields is the zero matrix of size 2× 2, we have At;x = At,t−2;x

for t = 2.
By Theorem 4.1, the three sets

{F ∈ A2 : r8(C+(F )) = 0 and Nε = −1},
{F ∈ A2 : r8(C+(F )) = 0 and 2 is a norm from OF },
{F ∈ A2 : r8(C+(F )) = 0 and − 2 is a norm from OF }

are of density 1
4 each in A2.

All of that is clearly consistent with Corollary 3.3 and consequently also the set

{F ∈ A2 : r8(C+(F )) = 1}

is of density 1
4 in A2, too. For earlier proofs of these density statements in this special case

we can refer to [18] and ongoing work by LSU graduate student C. Ionita.

§ 5 . Rank MF ≤ t − 2

As before, we consider fields F = Q(
√

2p1 · · · pt−1 ) with distinct primes pj ≡ 1 mod 8,
j = 1, · · · , t − 1. We will present in this section a result on the norm of the fundamental
unit ε of F , that is a pretty generalization of the result (3.4) without any restriction on t or
the rank of MF .

The primes p = x2 + 32y2 in A+ can be characterized also in the following way:

Lemma 5.1. For primes p ≡ 1 mod 8, the following are equivalent:
( i ) p ∈ A+.

( ii ) p = a2 + b2 for some a, b ∈ N with a + b ≡ ±1 mod 8.
(iii) 2p = e2 + f2 for some e, f ∈ N with e, f ≡ ±1 mod 8.

Proof. For the equivalence of (ii) and (iii) we note that p = a2 + b2 if and only if
2p = (a + b)2 + (a − b)2. It is enough to prove the equivalence of (i) and (iii).

Start with condition (iii). Then 2p = e2 + f2 with e, f ∈ N, e, f ≡ ±1 mod 8; that is,
(2p)2 − 2pf2 = 2pe2 with e, f ∈ N as above. This is equivalent to the Diophantine equation
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ez2 = x2−2py2 being solvable with x, y, z ∈ Z by the way we proved Theorem 3.1, part (i).
Equivalently, with F = Q(

√
2p ) we have: [Pe] ∈ C+(F )2 for the class [Pe] in C+(F ) of some

ideal Pe dividing eOF . That is equivalent to the class of DP, that is the class of the ideal√
2pOF , being a fourth power in C+(F ). Finally, [DP ] ∈ C+(F )4 is equivalent, for example

by the table (3.3), to p ∈ A+, which is the condition (i).
Here is the generalization of the result (3.4).

Theorem 5.1. Let F = Q(
√

2p1 · · · pt−1 ) with distinct primes pj ≡ 1 mod 8 for j =
1, · · · , t− 1. Let ε be the fundamental unit of F. Suppose that an odd number of the primes
p1, · · · , pt−1 belong to A−. Then Nε = +1.

Proof. We have 2p1 · · · pt−1 = e2 + f2 for some e, f ∈ N and hence (2p1 · · · pt−1)2 −
2p1 · · · pt−1f

2 = 2p1 · · · pt−1e
2; so, [P1 · · ·PtD] = [Pe]2 for some ideal Pe dividing eOF . Let

M ′ be the (t − 1) × t matrix obtained from MF by deleting row t. By the way, the t-th
row is a zero row since

(pj

2

)
= +1 for j = 1, · · · , t − 1. Again we refer to how we proved

Theorem 3.1 part (i) and obtain the equivalences: [P1 · · ·Pt−1D] ∈ C+(F )4 if and only if
[Pm][Pe] ∈ C+(F )2 for some ideal Pm dividing mOF for some m|p1 · · · pt−1 if and only if the
system M ′

F X = (e1, · · · , et−1)T is solvable over F2 where (−1)ei =
(

e
pi

)
for i = 1, · · · , t−1.

We now make use of the assumption that an odd number of the primes p1, · · · , pt−1

belong to A−. By Lemma 5.1 and an induction one obtains

p1 · · · pt−1 = a2 + b2 with a, b ∈ N, a + b ≡ ±3 mod 8,

2p1 · · · pt−1 = e2 + f2 with e, f ∈ N, e, f ≡ ±3 mod 8.

Thus
( 2p1···pt−1

e

)
= 1 and

(
e

p1···pt−1

)
= −1 by quadratic reciprocity in view of e ≡ ±3 mod

8. We have obtained that
(

e
pj

)
= −1 happens an odd number of times. Now the sum of

the t − 1 rows of M ′
F is the zero row. Hence the system M ′

F X = (e1, · · · , et−1)T has no
solution over F2.

Thus [P1 · · ·Pt−1D] /∈ C+(F )4 by the equivalence derived at the beginning of the proof.
So, the class [P1 · · ·Pt−1D] is not trivial in C+(F ) and hence there is no unit in O∗

F of norm
−1; that is, Nε = +1.

We remark that Theorem 5.1 also generalizes what was obtained in Corollary 3.2 (ii)
and (iii) under the assumption of rankMF = t − 2. Now the result on Nε = +1 has been
obtained also for fields F = Q(

√
2p1 · · · pt−1 ) with rankMF < t− 2. We illustrate Theorem

5.1 by giving numerical examples.

Example 5.1. Let F = Q(
√

2 · 17 · 73 · 89 ). The graph ΓF on t = 4 vertices is given

by �

2
�

17
�

73
�

89
, so r4(C+(F )) = 2 by (2.2) and hence rankMF = t − 3. Since all three

primes 17, 73, 89 belong to A−, we obtain from Theorem 5.1 without any computation that
Nε = +1.

Now let F = Q(
√

2 · 73 · 89 · 97 ). Again we have t = 4. This time the graph ΓF is the

totally disconnected graph �

2
�

73
�

89
�

97
since all symbols

(
pi

pj

)
are +1. So r4(C+(F )) = 3

by (2.2), and rankMF = 0 = t − 4. Also in this extreme case of the Rédei matrix being the
zero matrix, Theorem 5.1 applies and we see just by inspection that Nε = +1.
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[10] Kaplan, P., Divisibilité par 8 du nombre des classes des corps quadratique dont le 2-groupe des classes
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