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BIFURCATION OF PERIODIC ORBITS OF
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Abstract

Consider a three-dimensional system having an invariant surface. By using bifurca-
tion techniques and analyzing the solutions of bifurcation equations, the authors study
the spacial bifurcation phenomena of a k multiple closed orbit in the invariant surface.
The sufficient conditions of the existence of many closed orbits bifurcate from the k
multiple closed orbit are obtained.
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§ 1 . Introduction

There has been a general theory on bifurcation of periodic orbits for two or higher-
dimensional systems, and the theory for two-dimensional systems is much richer than that
for higher-dimensional systems (see [1–11]). We have a relatively complete understanding
to bifurcation phenomenon of plane systems (see [1, 2, 5, 6]). For example, a k multiple
limit cycle of two-dimensional systems can generate one, two, even k limit cycles, and at
most k limit cycles under autonomous perturbations. For three-dimensional systems, the
bifurcation of periodic orbits were also studied in some cases. For example, from [3, 5, 8]
we know that a non-hyperbolic periodic orbit of three-dimensional systems can generate
one, two or more periodic orbits under suitable perturbations. The bifurcation of periodic
orbits near a homoclinic or heteroclinic loop in the space were investigated in [7–11] in some
details. A special three-dimensional analytic system

ẋ = f1(x) + εg1(x, y) + ε2g̃1(x, y, ε),

ẏ = f2(x, y) + εg2(x, y) + ε2g̃2(x, y, ε), (1.1)

where x ∈ R
2, y ∈ R, f2(x, 0) = 0, was studied in [4]. Suppose that for ε = 0 System (1.1)

has an m multiple closed orbit Γ on invariant plane y = 0. Sufficient conditions for Γ to
generate one, two and at most m periodic orbits are obtained respectively. In this paper,
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we consider the bifurcation of periodic orbits for a C∞ three-dimensional system of the
following form

ẋ = F (x, y, ε),

ẏ = G(x, y, ε), (1.2)

where x = (x1, x2) ∈ R
2, y ∈ R, ε ∈ R. Suppose that for ε = 0 System (1.2) has a

C∞ invariant surface of the form y = M(x). Assume that a closed orbit of multiplicity
k restricted on the invariant surface is known. Our goal is to study the bifurcations of
periodic orbits near a neighborhood of the surface. Without loss of generality, we may
assume M(x) ≡ 0. Then System (1.2) can be written as follows

ẋ = f(x) + yf1(x, y) + εP (x, y, ε),

ẏ = yg(x, y) + εQ(x, y, ε), (1.3)

where

f(x) = (f01(x), f02(x))T , f1(x, y) = (f11(x, y), f12(x, y))T ,

P (x, y, ε) = (P1(x, y, ε), P2(x, y, ε))T .

It is obvious that the form of (1.3) is more general than (1.1). We will obtain some results of
new types for the number of periodic orbits of (1.3). For example, we give conditions for the
k multiple closed orbit to generate 1, · · · , 4 periodic orbits and at most k, k + 1, 2k, 2k + 2
periodic orbits under suitable conditions respectively.

§ 2 . A Transformation of Variables and Bifurcation Equations

Suppose the two-dimensional system

ẋ = f(x) (2.1)

has a k multiple closed orbit L with a parameter representation

x = u(t), 0 � t � T,

where T > 0 denotes the period of L. Let

v(θ) = (v1(θ), v2(θ))T = f(u(θ))/|f(u(θ))|,

Z(θ) =

⎛⎝−v2(θ) 0
v1(θ) 0
0 1

⎞⎠ .

Consider a transformation of variables from (x, y) to (θ, h) defined by the relation

(x, y)T = (u(θ), 0)T + Z(θ)h, (2.2)

where
0 � θ � T, h = (h1, h2)T ∈ R

2.
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Applying Theorem 1.4 of Chapter two of reference [5] or [3], the transformation (2.2) trans-
forms System (1.3) into a system for θ, h as follows

θ̇ = 1 + f̃1(θ, h) + E(θ, h)(P (ũ(θ) + Z(θ)h, ε), Q(ũ(θ) + Z(θ)h, ε))T ε,

ḣ = A(θ)h + f2(θ, h) + B(θ, h)(P (ũ(θ) + Z(θ)h, ε), Q(ũ(θ) + Z(θ)h, ε))T ε, (2.3)

where

ũ(θ) = (u(θ), 0)T , ṽ(θ) = (vT (θ), 0)T , x̃ = (x, y),

f̃(x, y) =

(
f(x) + yf1(x, y)

yg(x, y)

)
,

f̃1(θ, h) = E(θ, h)[f̃ (ũ(θ) + Z(θ)h) − f̃(ũ(θ)) − Z ′(θ)h],

E(θ, h) = [|u′(θ)| + ṽT (θ)Z ′(θ)h]−1ṽT (θ),

A(θ) = ZT (θ)[−Z ′(θ) + f̃x̃(ũ(θ))Z(θ)],

f2(θ, h) = −ZT (θ)Z ′(θ)hf̃1(θ, h) + ZT (θ)[f̃ (ũ(θ) + Z(θ)h) − f̃(ũ(θ)) − f̃x̃(ũ(θ))Z(θ)h],

B(θ, h) = ZT (θ)[I − Z ′(θ)hE(θ, h)].

Since ZT (θ)Z ′(θ) = 0, we have

B(θ, h) = ZT (θ),

A(θ) = ZT (θ)f̃x̃(ũ(θ))Z(θ) =

(
a(θ) v⊥(θ)f1(u(θ), 0)

0 g(u(θ), 0)

)
f2(θ, h) = ZT (θ)[f̃(ũ(θ) + Z(θ)h) − f̃(ũ(θ)) − f̃x̃(ũ(θ))Z(θ)h],

where (see [5])

a(θ) = v⊥(θ)fx(u(θ))(v⊥(θ))T = trfx(u(θ)) − d

dθ
ln |f(u(θ))|.

By Taylor Theorem and direct computation, we obtain

f̃1(θ, h) =
1

|u′(θ)| (v
T (θ)fx(u(θ))(v⊥(θ))T − (v′(θ))⊥v(θ), vT (θ)f1(u(θ), 0))h + O(|h|2).

Let

w1(θ) = [vT (θ)fx(u(θ))(v⊥(θ))T − (v′(θ))⊥v(θ)]/|u′(θ)|,
w2(θ) = [vT (θ)f1(u(θ), 0)]/|u′(θ)|,
w3(θ) = [vT (θ)P (u(θ), 0, 0)]/|u′(θ)|.

Then

θ̇ = 1 + w1(θ)h1 + w2(θ)h2 + w3(θ)ε + O(|h, ε|2). (2.4)
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Noting

f2(θ, 0) = 0,
∂f2(θ, 0)

∂h
= 0,

it follows that

f2(θ, h) =

(
1
2d1(θ)h2

1 + d2(θ)h1h2 + 1
2d3(θ)h2

2 + O(|h|3)
gx(u(θ), 0)(v⊥(θ))T h1h2 + gy(u(θ), 0)h2

2 + O(|h2||h|2)

)
,

where

d1(θ) = −v2(θ)v⊥(θ) f ′′
01(u(θ)) (v⊥(θ))T + v1(θ)v⊥(θ)f ′′

02(u(θ))(v⊥(θ))T ,

d2(θ) = −v2(θ)f11x(u(θ), 0)(v⊥(θ))T + v1(θ)f12x(u(θ), 0)(v⊥(θ))T ,

d3(θ) = 2[−v2(θ)f11y(u(θ), 0) + v1(θ)f12y(u(θ), 0)],

f ′′
0i(u(θ)) =

⎛⎜⎜⎜⎝
∂2f0i(u(θ))

∂x2
1

∂2f0i(u(θ))
∂x1∂x2

∂2f0i(u(θ))
∂x2∂x1

∂2f0i(u(θ))
∂x2

2

⎞⎟⎟⎟⎠ , i = 1, 2.

Hence, we have from (2.3)

ḣ1 = a(θ)h1 + a1(θ)h2 + a2(θ)ε + a3(θ)h1ε + a4(θ)h2ε + a5(θ)ε2 +
1
2
d1(θ)h2

1 + d2(θ)h1h2

+
1
2
d3(θ)h2

2 + O(|h, ε|3),

ḣ2 = b1(θ)h2 + b2(θ)ε + b3(θ)h1ε + b4(θ)h2ε + b5(θ)h1h2 + b6(θ)h2
2 + b7(θ)ε2

+ O(|h2||h|2 + |ε||h, ε|2), (2.5)

where
a1(θ) = v⊥(θ)f1(u(θ), 0), a2(θ) = v⊥(θ)P (u(θ), 0, 0),

a3(θ) = v⊥(θ)Px(u(θ), 0, 0)(v⊥(θ))T , a4(θ) = v⊥(θ)Py(u(θ), 0, 0)

a5(θ) = v⊥(θ)Pε(u(θ), 0, 0), b1(θ) = g(u(θ), 0),

b2(θ) = Q(u(θ), 0, 0), b3(θ) = Qx(u(θ), 0, 0)(v⊥(θ))T ,

b4(θ) = Qy(u(θ), 0, 0), b5(θ) = gx(u(θ), 0)(v⊥(θ))T ,

b6(θ) = gy(u(θ), 0), b7(θ) = Qε(u(θ), 0, 0).

Therefore we have the following lemma.

Lemma. The periodic transformation (2.2) transforms System (1.3) into Equations
(2.4) and (2.5).

Using Equations (2.4) and (2.5), we obtain

dh1

dθ
=a(θ)h1 + a1(θ)h2 + a2(θ)ε + ã3(θ)h1ε + ã4(θ)h2ε + ã5(θ)h2

1 + ã6(θ)h1h2

+ ã7(θ)h2
2 + ã8(θ)ε2 + O(|h1, h2, ε|3),

dh2

dθ
=b1(θ)h2 + b2(θ)ε + b̃3(θ)h1ε + b̃4(θ)h2ε + b̃5(θ)h1h2 + b̃6(θ)h2

2 + b̃7(θ)ε2

+ O(|h1, h2, ε|3), (2.6)
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where

ã3(θ) = a3(θ) − a2(θ)w1(θ) − a(θ)w3(θ), ã4(θ) = a4(θ) − a2(θ)w2(θ) − a1(θ)w3(θ),

ã5(θ) =
1
2
d1(θ) − a(θ)w1(θ), ã6(θ) = d2(θ) − a(θ)w2(θ) − a1(θ)w1(θ),

ã7(θ) =
1
2
d3(θ) − a1(θ)w2(θ), ã8(θ) = −w3(θ)a2(θ) + a5(θ),

b̃3(θ) = b3(θ) − b2(θ)w1(θ), b̃4(θ) = b4(θ) − b2(θ)w2(θ) − b1(θ)w3(θ),

b̃5(θ) = b5(θ) − b1(θ)w1(θ), b̃6(θ) = b6(θ) − b1(θ)w2(θ),

b̃7(θ) = −w3(θ)b2(θ) + b7(θ).

Equation (2.6) can be rewritten as

dh

dθ
=
(

a(θ) a1(θ)
0 b1(θ)

)(
h1

h2

)
+

(
a2(θ)
b2(θ)

)
ε + O(|h, ε|2)

= A(θ)h + ZT (θ)F0(u(θ))ε + O(|h, ε|2), (2.7)

where
F0(u(θ)) = (P (u(θ), 0, 0), Q(u(θ), 0, 0))T .

Let Y (θ) be the fundamental matrix solution of the following equation

dh

dθ
= A(θ)h (2.8)

with Y (0) = I (the identity matrix).
The Poincaré map of (2.7) has the form (see [5])

P̃ (h0, ε) = Y (T )h0 + Y (T )
∫ T

0

Y −1(θ)ZT (θ)F0(u(θ))dθε + O(|h0, ε|2). (2.9)

Let

E = Y (T ) − I, K =
∫ T

0

Y (T )Y −1(θ)ZT (θ)F0(u(θ))dθ.

For small ε �= 0, System (1.3) has a closed orbit near L if and only if there exists a point h0

with |h0| small, such that

P̃ (h0, ε) − h0 = Eh0 + Kε + O(|h0, ε|2) = 0. (2.10)

By (2.8), we have

Y (θ) =

⎛⎜⎝e
� θ
0 a(s)ds e

� θ
0 a(s)ds

∫ θ

0

b(s)ds

0 e
� θ
0 g(u(s),0)ds

⎞⎟⎠ ,

where

b(s) = v⊥(s)f1(u(s), 0) exp
( ∫ s

0

[g(u(ξ), 0) − a(ξ)]dξ
)

=
1

|f(u(0))| [f(u(s)) ∧ f1(u(s), 0)] exp
(∫ s

0

[g(u(ξ), 0) − trfx(u(ξ))]dξ
)
.
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Thus

Y (T ) =

⎛⎜⎝ eσ1 eσ1

∫ T

0

b(s)ds

0 eσ2

⎞⎟⎠ ,

Y −1(θ) =

⎛⎜⎜⎜⎝
exp

(
−
∫ θ

0

a(s)ds
)

− exp
(
−
∫ θ

0

g(u(s), 0)ds
)∫ θ

0

b(s)ds

0 exp
(
−
∫ θ

0

g(u(s), 0)ds
)

⎞⎟⎟⎟⎠ ,

where

σ1 =
∮

L

trfxdt, σ2 =
∮

L

gdt,

exp
(
−
∫ θ

0

a(s)ds
)

=
|f(u(θ))|
|f(u(0))| exp

(
−
∫ θ

0

trfx(u(s))ds
)
.

Therefore

E =

⎛⎜⎝ eσ1 − 1 eσ1

∫ T

0

b(s)ds

0 eσ2 − 1

⎞⎟⎠ ,

K = (eσ1K1, e
σ2K2)T ,

where

K1 =
∮

L

(
e−

� t
0 trfxdtf ∧ P0 + e

� t
0 (g−trfx)dt

∫ t

0

e−
� s
0 gdtQ0ds f ∧ f1

)
dt/|f(u(0))|,

K2 =
∮

L

e−
�

t
0 gdtQ0dt,

P0 = P (x, y, 0), Q0 = Q(x, y, 0). (2.11)

Let h0 = (ρ1, ρ2)T . We can rewrite (2.10) as

(eσ1 − 1)ρ1 + eσ1

∫ T

0

b(s)dsρ2 + eσ1K1ε + O(|ρ1, ρ2, ε|2) = 0, (2.12)

(eσ2 − 1)ρ2 + eσ2K2ε + O(|ρ1, ρ2, ε|2) = 0. (2.13)

Since y = 0 is an invariant plane of System (1.3) for ε = 0 , the second coordinate of
P̃ (h0, ε)− h0 must be 0 as ε = ρ2 = 0, namely, (2.13) always holds when ε = ρ2 = 0. Hence
we can write (2.13) as the following form

(eσ2 − 1)ρ2 + eσ2K2ε + O(|ρ1ρ2| + ρ2
2 + |ρ1ε| + |ρ2ε| + ε2) = 0. (2.14)

Equations (2.12) and (2.14) are called the bifurcation equations of System (1.3).
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§ 3 . Bifurcation near the Closed Orbit L

Case I. σ2 �= 0

If σ2 �= 0and ε is small enough, by the Implicit Function Theorem, Equation (2.14) has
a unique solution

ρ2 = ε
(
− eσ2K2

eσ2 − 1
+ O(|ε| + |ρ1|)

)
≡ ρ2(ρ1, ε). (3.1)

Let G(ρ1) denote the left-hand side function of (2.12) with ε = ρ2 = 0. Then G(ρ1)
represents the succession function of System (2.1) in the neighborhood of closed orbit L,
and (2.12) becomes

G(ρ1) + eσ1

∫ T

0

b(s)dsρ2 + eσ1K1ε + O(|ρ1ρ2| + ρ2
2 + |ρ1ε| + |ρ2ε| + ε2) = 0. (3.2)

Substituting (3.1) into (3.2), we obtain

G(ρ1) + eσ1K3ε + O(|ρ1ε| + ε2) = 0. (3.3)

where

K3 = K1 − eσ2K2

eσ2 − 1

∫ T

0

b(s)ds.

Since L is a k multiple limit cycle of System (2.1), k � 1, there exists ak �= 0 such that

G(ρ1) = akρk
1 + O(ρk+1

1 ). (3.4)

Applying the Rolle Theorem, we conclude that (3.3) has at most k solutions in ρ1. Further-
more, if σ1 �= 0, then

G(ρ1) = (eσ1 − 1)ρ1 + O(ρ2
1).

It follows that Equations (2.12) and (2.14) have exactly one solution. Hence the following
theorem holds.

Theorem 3.1. Suppose that σ2 �= 0, for small ε �= 0. We have
( i ) If L is a k multiple closed orbit, k ≥ 1, then System (1.3) has at most k closed orbits

in the neighborhood of L. At least one closed orbit near L exists if k is odd.
(ii) If σ1 �= 0, then System (1.3) has exactly one closed orbit in the neighborhood of L.

Let K3 �= 0. We have

Theorem 3.2. Let (1.3) be an analytic system. Suppose that σ2K3 �= 0 and ε �= 0 is
small enough. Let (3.4) hold.

( i ) If k is odd, then System (1.3) has exactly one closed orbit.
(ii) If k is even, then System (1.3) has exactly two closed orbits when akK3ε < 0 and no

closed orbits when akK3ε > 0.

Proof. Equation (3.3) can be written as

akρk
1 + eσ1K3ε + O(|ρ1|k+1 + |ρ1ε| + ε2) = 0. (3.5)
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By the Implicit Function Theorem, we can obtain from (3.5) that

ε = − akρk
1

eσ1K3
+ O(ρk+1

1 ) ≡ ε∗(ρ1),

which is analytic. If k is odd, then function ε∗(ρ1) has a unique inverse function of the form

ρ1 =
(
− eσ1K3ε

ak

) 1
k

+ o(|ε| 1
k ) ≡ ρ∗1(ε).

Let ρ∗2(ε) = ρ2(ρ∗1(ε), ε). Then (2.10) has exactly one solutionh0 = (ρ∗1(ε), ρ
∗
2(ε)). Thus

System (1.3) has exactly one closed orbit near L. If k is even and akK3ε < 0, then the
function ε∗(ρ1) has two inverse functions

ρ1 = (−1)i
(
− eσ1K3ε

ak

) 1
k

+ o(|ε| 1
k ) ≡ ρ∗1i(ε), i = 1, 2.

It follows that (2.10) has precisely two solutions

h0 = (ρ∗1i(ε), ρ2(ρ∗1i(ε), ε)) ≡ ρ0i(ε), i = 1, 2,

which means that System (1.3) has exactly two closed orbits in the neighborhood of closed
orbit L. If k is even and akK3ε > 0 , then (3.5) has no solution and hence System (1.3) has
no closed orbits in a neighborhood of the closed orbit L. This completes the proof.

In order to obtain further bifurcations, we suppose that

(h1(θ, ρ1, ρ2, ε), h2(θ, ρ1, ρ2, ε))

is a solution of System (2.6) satisfying

(h1(0, ρ1, ρ2, ε), h2(0, ρ1, ρ2, ε)) = (ρ1, ρ2),

which has an expansion of the following form

h1(θ, ρ1, ρ2, ε) = A1(θ)ρ1 + A2(θ)ρ2 + A3(θ)ε + A4(θ)ρ2
1 + A5(θ)ρ1ρ2 + A6(θ)ρ2

2

+ A7(θ)ρ1ε + A8(θ)ρ2ε + A9(θ)ε2 + O(|ρ1, ρ2, ε|3),

h2(θ, ρ1, ρ2, ε) = B1(θ)ρ2 + B2(θ)ε + B3(θ)ρ1ρ2 + B4(θ)ρ1ε + B5(θ)ρ2
2 + B6(θ)ρ2ε

+ B7(θ)ε2 + O(|ρ2, ε||ρ1, ρ2, ε|2), (3.6)

where

A1(0) = 1, B1(0) = 1, Ai(0) = 0, Bj(0) = 0, i = 2, · · · , 9, j = 2, · · · , 7.

Substituting (3.6) into (2.6) and comparing the coefficients of both sides of the resulting
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equations, we obtain

B′
1(θ) = b1(θ)B1(θ),

B′
2(θ) = b1(θ)B2(θ) + b2(θ),

A′
1(θ) = a(θ)A1(θ),

A′
2(θ) = a(θ)A2(θ) + a1(θ)B1(θ),

A′
3(θ) = a(θ)A3(θ) + a1(θ)B2(θ) + a2(θ),

B′
3(θ) = b1(θ)B3(θ) + b̃5(θ)B1(θ)A1(θ),

B′
4(θ) = b1(θ)B4(θ) + b̃3(θ)A1(θ) + b̃5(θ)B2(θ)A1(θ),

B′
5(θ) = b1(θ)B5(θ) + b̃5(θ)B1(θ)A2(θ) + b̃6(θ)B2

1(θ),

B′
6(θ) = b1(θ)B6(θ) + b̃3(θ)A2(θ) + b̃4(θ)B1(θ) + b̃5(θ)[B1(θ)A3(θ) + B2(θ)A2(θ)]

+ 2b̃6(θ)B1(θ)B2(θ),

B′
7(θ) = b1(θ)B7(θ) + b̃3(θ)A3(θ) + b̃4(θ)B2(θ) + b̃5(θ)B2(θ)A3(θ) + b̃6(θ)B2

2 (θ) + b̃7(θ),

A′
4(θ) = a(θ)A4(θ) + ã5(θ)A2

1(θ),

A′
5(θ) = a(θ)A5(θ) + a1(θ)B3(θ) + 2ã5(θ)A1(θ)A2(θ) + ã6(θ)A1(θ)B1(θ),

A′
6(θ) = a(θ)A6(θ) + a1(θ)B5(θ) + ã5(θ)A2

2(θ) + ã6(θ)A2(θ)B1(θ) + ã7(θ)B2
1(θ),

A′
7(θ) = a(θ)A7(θ) + a1(θ)B4(θ) + ã3(θ)A1(θ) + 2ã5(θ)A1(θ)A3(θ) + ã6(θ)A1(θ)B2(θ),

A′
8(θ) = a(θ)A8(θ) + a1(θ)B6(θ) + ã3(θ)A2(θ) + ã4(θ)B1(θ) + 2ã5(θ)A2(θ)A3(θ)

+ ã6(θ)(A3(θ)B1(θ) + A2(θ)B2(θ)) + 2ã7(θ)B1(θ)B2(θ),

A′
9(θ) = a(θ)A9(θ) + a1(θ)B7(θ) + ã3(θ)A3(θ) + ã4(θ)B2(θ) + ã5(θ)A2

3(θ)

+ ã6(θ)A3(θ)B2(θ) + ã7(θ)B2
2(θ) + ã8(θ). (3.7)

It is easy to solve all the above equations and obtain

B1(θ) = e
� θ
0 b1(θ)dθ = e

� θ
0 g(u(s),0)ds,

B2(θ) = e
�

θ
0 b1(θ)dθ

∫ θ

0

e−
�

θ
0 b1(s)dsb2(θ)dθ

= e
� θ
0 g(u(s),0)ds

∫ θ

0

e−
� θ
0 g(u(s),0)dsQ(u(θ), 0, 0)dθ,

A1(θ) = e
�

θ
0 a(s)ds = exp

(∫ θ

0

trfx(u(s))ds
)
|f(u(0))|/|f(u(θ))|,

A2(θ) = e
�

θ
0 a(s)ds

∫ θ

0

e−
�

θ
0 a(s)dsa1(θ)B1(θ)dθ

= e
� θ
0 trfx(u(s))ds

∫ θ

0

e
� θ
0 [g(u(s),0)−trfx(u(s))]dsf(u(θ)) ∧ f1(u(θ), 0)dθ/|f(u(θ))|,



262 LIU, X. L. & HAN, M. A.

A3(θ) = e
� θ
0 a(s)ds

∫ θ

0

e−
� θ
0 a(s)ds(a1(θ)B2(θ) + a2(θ))dθ

= e
� θ
0 trfx(u(s))ds

[ ∫ θ

0

e−
� θ
0 trfx(u(s))dsf(u(θ)) ∧ P (u(θ), 0, 0)dθ

+
∫ θ

0

e
�

θ
0 (g(u(s),0)−trfx(u(s)))dsf(u(θ)) ∧ f1(u(θ), 0)

·
(∫ θ

0

e−
�

s
0 g(u(s),0)dsQ(u(s), 0, 0)ds

)
dθ
]/

|f(u(θ))|,

B3(θ) = exp
( ∫ θ

0

g(u(s), 0)ds
)∫ θ

0

b̃5(θ)A1(θ)dθ,

B4(θ) = exp
( ∫ θ

0

g(u(s), 0)ds
)∫ θ

0

[b̃3(θ)A1(θ) + b̃5(θ)B2(θ)A1(θ)]

· exp
(
−
∫ θ

0

g(u(s), 0)ds
)
dθ,

B5(θ) = exp
( ∫ θ

0

g(u(s), 0)ds
)∫ θ

0

[b̃5(θ)B1(θ)A2(θ) + b̃6(θ)B2
1 (θ)]

· exp
(
−
∫ θ

0

g(u(s), 0)ds
)
dθ,

B6(θ) = exp
( ∫ θ

0

g(u(s), 0)ds
)∫ θ

0

[b̃3(θ)A2(θ) + b̃4(θ)B1(θ) + b̃5(θ)(B1(θ)A3(θ)

+ B2(θ)A2(θ)) + 2b̃6(θ)B1(θ)B2(θ)] exp
(
−
∫ θ

0

g(u(s), 0)ds
)
dθ,

B7(θ) = exp
( ∫ θ

0

g(u(s), 0)ds
)∫ θ

0

[b̃3(θ)A3(θ) + b̃4(θ)B2(θ) + b̃5(θ)B2(θ)A3(θ)

+ b̃6(θ)B2
2(θ) + b̃7(θ)] exp

(
−
∫ θ

0

g(u(s), 0)ds
)
dθ,

A4(T ) = eσ1

∫ T

0

[
ã5(θ) exp

(∫ θ

0

trfx(u(s))ds
)
|f(u(0))|/|f(u(θ))|

]
dθ,

A5(T ) = eσ1

∫ T

0

[a1(θ)B3(θ) + 2ã5(θ)A1(θ)A2(θ) + ã6(θ)A1(θ)B1(θ)]

· exp
(
−
∫ θ

0

trfx(u(s))ds
)
|f(u(θ))|/|f(u(0))|dθ,

A6(T ) = eσ1

∫ T

0

[a1(θ)B5(θ) + ã5(θ)A2
2(θ) + ã6(θ)A2(θ)B1(θ) + ã7(θ)B2

1(θ)]

· exp
(
−
∫ θ

0

trfx(u(s))ds
)
|f(u(θ))|/|f(u(0))|dθ,

A7(T ) = eσ1

∫ T

0

[a1(θ)B4(θ) + ã3(θ)A1(θ) + 2ã5(θ)A1(θ)A3(θ)

+ ã6(θ)A1(θ)B2(θ)] exp
(
−
∫ θ

0

trfx(u(s))ds
)
|f(u(θ))|/|f(u(0))|dθ,

A8(T ) = eσ1

∫ T

0

[a1(θ)B6(θ) + ã3(θ)A2(θ) + ã4(θ)B1(θ) + 2ã5(θ)A2(θ)A3(θ)
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+ ã6(θ)(A3(θ)B1(θ) + A2(θ)B2(θ)) + 2ã7(θ)B1(θ)B2(θ)]

· exp
(
−
∫ θ

0

trfx(u(s))ds
)
|f(u(θ))|/|f(u(0))|dθ,

A9(T ) = eσ1

∫ T

0

[a1(θ)B7(θ) + ã3(θ)A3(θ) + ã4(θ)B2(θ) + ã5(θ)A2
3(θ)

+ ã6(θ)A3(θ)B2(θ) + ã7(θ)B2
2(θ) + ã8(θ)]

· exp
(
−
∫ θ

0

trfx(u(s))ds
)
|f(u(θ))|/|f(u(0))|dθ.

Then the succession function of (2.6) is

h∗
1(ρ1, ρ2, ε) = h1(T, ρ1, ρ2, ε) − ρ1

= (A1(T ) − 1)ρ1 + A2(T )ρ2 + A3(T )ε + c̃4ρ
2
1

+ c̃5ρ1ρ2 + c̃6ρ
2
2 + c̃7ρ1ε + c̃8ρ2ε + c̃9ε

2 + O(|ρ1, ρ2, ε|3),
h∗

2(ρ1, ρ2, ε) = h2(T, ρ1, ρ2, ε) − ρ2

= (B1(T ) − 1)ρ2 + B2(T )ε + d̃3ρ1ρ2 + d̃4ρ1ε + d̃5ρ
2
2 + d̃6ρ2ε

+ d̃7ε
2 + O(|ρ2, ε||ρ1, ρ2, ε|2), (3.8)

where

c̃i = Ai(T ), d̃j = Bj(θ)|θ=T , i = 4, · · · , 9, j = 3, · · · , 7.

Similarly to (3.2), we obtain bifurcation equations as follows

h∗
1(ρ1, ρ2, ε) = akρk

1 + eσ1

∫ T

0

b(s)dsρ2 + eσ1K1ε + c̃5ρ1ρ2 + c̃6ρ
2
2 + c̃7ρ1ε

+ c̃8ρ2ε + c̃9ε
2 + O(|ρ2, ε||ρ1, ρ2, ε|2 + |ρ1|k+1) = 0, (3.9)

h∗
2(ρ1, ρ2, ε) = (eσ2 − 1)ρ2 + eσ2K2ε + d̃3ρ1ρ2 + d̃4ρ1ε + d̃5ρ

2
2 + d̃6ρ2ε

+ d̃7ε
2 + O(|ρ2, ε||ρ1, ρ2, ε|2) = 0. (3.10)

If σ2 �= 0, we can solve (3.10) and obtain

ρ2 = ε(ρ̃21 + ρ̃22 ρ1 + ρ̃23ε + O(|ρ1, ε|2)) ≡ ρ2(ρ1, ε), (3.11)

where

ρ̃21 =
eσ2K2

1 − eσ2
,

ρ̃22 =
eσ2 d̃3K2 + (1 − eσ2)d̃4

(1 − eσ2)2
,

ρ̃23 =
e2σ2 d̃5(K2)2

(1 − eσ2)3
+

eσ2 d̃6K2

(1 − eσ2)2
+

d̃7

1 − eσ2
.
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Substituting (3.11) into (3.9), we have

H1(ρ1, ε) ≡ h∗
1(ρ1, ρ2(ρ1, ε), ε) = akρk

1 + α1ρ1ε + α2ε
2

+ eσ1K3ε + O(|ρ1|k+1 + |ρ2
1ε| + |ρ1|ε2 + |ε|3) = 0, (3.12)

where

α1 = eσ1

∫ T

0

b(s)ds ρ̃22 + c̃5ρ̃21 + c̃7,

α2 = eσ1

∫ T

0

b(s)ds ρ̃23 + c̃6ρ̃
2
21 + c̃8ρ̃21 + c̃9,

H1(ρ1, ε) is C∞ in (ρ1, ε) for |ρ1| + |ε| small.

Theorem 3.3. Suppose that σ2 �= 0 and K3 = 0. Let L be a closed orbit of System (2.1)
of multiplicity k, k � 2. For small ε �= 0, we have

( i ) If k = 2, then L generates exactly two hyperbolic closed orbits (resp. no closed orbits)
of System (1.3) when Δ1 > 0 (resp. Δ1 < 0), where Δ1 = α2

1 − 4a2α2.

(ii) If k > 2 and α1α2 �= 0, then for odd number k, L generates exactly one closed orbit
(resp. three closed orbits) of System (1.3) when εα1ak > 0 (resp. εα1ak < 0), for even
number k, L generates exactly two closed orbits of System (1.3).

Proof. Since K3 = 0, by (3.12), we have

H2(ρ1, ε) ≡ H1(ρ1, ε)|K3=0

= akρk
1 + α1ρ1ε + α2ε

2 + O(|ρ1|k+1 + |ρ2
1ε| + |ρ1|ε2 + |ε|3) = 0. (3.13)

(i) If k = 2, we rewrite H2(ρ1, ε) as

H2(ρ1, ε) = α̃0(ε) + α̃1(ε)ρ1 + α̃2(ε)ρ2
1(1 + o(1)),

where

α̃0(ε) = α2ε
2 + O(ε3), α̃1(ε) = α1ε + O(ε2), α̃2(ε) = a2 + O(ε).

We can solve
∂H2(ρ1, ε)

∂ρ1
= 0 and obtain

ρ1 = − α1

2a2
ε + O(ε2) ≡ η(ε).

Then by the Taylor Formula, we can obtain

H2(ρ1, ε) = H2(η(ε), ε) +
1
2

∂2H2(η(ε), ε)
∂ρ2

1

(ρ1 − η(ε))2(1 + o(1))

=
1
2

∂2H2(η(ε), ε)
∂ρ2

1

(1 + o(1))
(
(ρ1 − η(ε))2 − Δ∗

1

1 + o(1)

)
,

where

H2(η(ε), ε) = − Δ1

4a2
ε2 + O(|ε|3), Δ∗

1 = −2H2(η(ε), ε)
∂2H2(η(ε),ε)

∂ρ2
1

=
Δ1

4a2
2

ε2 + O(ε3).
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Thus (3.13) has two solutions when Δ1 > 0, which have the forms

ρ1 =
−α1 ±

√
α2

1 − 4a2α2

2a2
ε + O(ε2), (3.14)

and no solutions when Δ1 < 0. Therefore the conclusion (i) holds.
(ii) If k > 2 and α1α2 �= 0, by using (3.13) and the Malgrange Preparation Theorem (cf.

[5] or [1]), (3.13) has at most two solutions in ε. In order to obtain the solution of (3.13),
let ε = ρ1v1. Substituting it into (3.13), we know that v1 satisfies

Φ1(ρ1, v1) ≡ α1v1 + α2v
2
1 + akρk−2

1 + O(|ρ1|k−1 + |ρ1v1|) = 0. (3.15)

Since Φ1

(
0,−α1

α2

)
= 0 and

∂Φ1

(
0,−α1

α2

)
∂v1

= −α1 �= 0, by using the Implicit Function Theorem,
(3.15) has a solution v1 = −α1

α2
+ O(|ρ1|). Hence (3.13) has a solution

ε = ρ1v1 = −α1

α2
ρ1 + O(|ρ1|2). (3.16)

To obtain another solution of (3.13), let ε = ρk−1
1 v2. Substituting it into (3.13), we know

that v2 satisfies
Φ2(ρ1, v2) ≡ ak + α1v2 + α2ρ

k−2
1 v2

2 + O(|ρ1|) = 0. (3.17)

Since Φ2

(
0,− ak

α1

)
= 0 and

∂Φ2

(
0,− ak

α1

)
∂v2

= α1 �= 0, by using the Implicit Function Theorem,
(3.17) has a solution v2 = − ak

α1
+ O(ρ1). Hence (3.13) has a solution

ε = ρk−1
1 v2 = − ak

α1
ρk−1
1 + O(|ρ1|k). (3.18)

(3.16) and (3.18) are the two solutions of (3.13).
The function in (3.16) has an inverse function

ρ1 = −α2

α1
ε + O(ε2) ≡ ρ̄1(ε). (3.19)

If k is odd, then (3.18) has exactly two inverse functions

ρ1 = (−1)i
(
− α1ε

ak

) 1
k−1

+ o(|ε| 1
k−1 ) ≡ ρ̄1i(ε), i = 1, 2 (3.20)

when εα1ak < 0 and has no inverse functions when εα1ak > 0. If k is even, then (3.18) has
exactly one inverse function

ρ1 =
(
− α1ε

ak

) 1
k−1

+ o(|ε| 1
k−1 ) ≡ ρ̄13(ε). (3.21)

By (3.11), and (3.19)–(3.21), we see that if k is odd and εα1ak < 0, then the bifurcation
equations (3.9) and (3.10) have exactly three solutions

(ρ1, ρ2) = (ρ̄1(ε), ρ2(ρ̄1(ε), ε)),

(ρ1, ρ2) = (ρ̄11(ε), ρ2(ρ̄11(ε), ε))

(ρ1, ρ2) = (ρ̄12(ε), ρ2(ρ̄12(ε), ε)).
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If k is odd and εα1ak > 0, then the bifurcation equations (3.9) and (3.10) have a unique
solution

(ρ1, ρ2) = (ρ̄1(ε), ρ2(ρ̄1(ε), ε)).

If k is even, then the bifurcation equations (3.9) and (3.10) have exactly two solutions

(ρ1, ρ2) = (ρ̄1(ε), ρ2(ρ̄1(ε), ε))

(ρ1, ρ2) = (ρ̄13(ε), ρ2(ρ̄13(ε), ε)).

This completes the proof.

Case II. σ2 = 0

If σ2 = 0 and
∫ T

0
b(s)ds �= 0, by (3.9) and the Implicit Function Theorem, we have

ρ2 = α̂1ε + α̂2ρ
k
1 + O(|ρ1|k+1 + |ε|2 + |ρ1ε|) ≡ ρ̃2(ρ1, ε) , (3.22)

where

α̂1 = − K1∫ T

0 b(s)ds
, α̂2 = − ak

eσ1
∫ T

0 b(s)ds
.

Substituting (3.22) into (3.10), we obtain

α̂2β1kρk+1
1 + K2ε + γ2ρ1ε + γ3ε

2 + O(|ρ1|k+2 + |ρ2
1ε| + |ρ1ε

2| + |ε|3) = 0 , (3.23)

where

β1k =

⎧⎪⎨⎪⎩
d̃3, k > 1,

d̃3 − a1d̃5

eσ1
∫ T

0 b(s)ds
, k = 1,

γ2 =

⎧⎨⎩α̂1d̃3 + d̃4 + 2α̂1α̂2d̃5 + α̂2d̃6, k = 1,

α̂1d̃3 + d̃4, k > 1,

γ3 = α̂2
1d̃5 + α̂1d̃6 + d̃7.

If β1k �= 0, then (3.23) has at most k +1 solutions in ρ1 and at least one solution in ρ1 when
k is even.

Suppose K2 �= 0. If k is odd, then (3.23) has exactly two solutions

ρ1 = (−1)i

(
eσ1
∫ T

0
b(s)dsK2

akβ1k
ε

) 1
k+1

+ o(|ε| 1
k+1 ) ≡ ρ1i(ε), i = 1, 2,

when K2εakβ1k

∫ T

0 b(s)ds > 0, and no solutions when K2εakβ1k

∫ T

0 b(s)ds < 0. Hence
Equations (3.9) and (3.10) have exactly two solutions

(ρ1, ρ2) = (ρ1i(ε), ρ̃2(ρ1i(ε), ε)), i = 1, 2,
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when K2εakβ1k

∫ T

0
b(s)ds > 0, and no solutions when K2εakβ1k

∫ T

0
b(s)ds < 0. If k is even,

then (3.23) has a unique solution

ρ1 =
(eσ1

∫ T

0
b(s)dsK2

akβ1k
ε
) 1

k+1
+ o(|ε| 1

k+1 ) ≡ ρ13(ε).

Hence Equations (3.9) and (3.10) have exactly one solution

(ρ1, ρ2) = (ρ13(ε), ρ̃2(ρ13(ε), ε)).

If σ2 = 0 and K2 = 0 , then (3.23) becomes

α̂2β1kρk+1
1 + γ2ρ1ε + γ3ε

2 + O(|ρ1|k+2 + |ρ2
1ε| + |ρ1ε

2| + |ε|3) = 0. (3.24)

Similarly to the proof of Theorem 3.3 and the discussion above, we have

Theorem 3.4. Suppose that L is a k multiple closed orbit of System (2.1), σ2 = 0 and

β1k

∫ T

0

b(s)ds �= 0. For small ε �= 0, we have

(1) L generates at most k+1 closed orbits of System (1.3). At least one closed orbit near
L exists if k is even.

(2) If K2 �= 0, then
( i ) For odd number k, L generates exactly two closed orbits of System (1.3) when K2εak

·β1k

∫ T

0

b(s)ds > 0, and no closed orbits when K2εakβ1k

∫ T

0

b(s)ds < 0.

(ii) For even number k, L generates exactly one closed orbit of System (1.3).
(3) For K2 = 0, we have
( i ) If k = 1, then L generates exactly two hyperbolic closed orbits (resp. no closed orbits)

of System (1.3) when Δ2 > 0 (resp. Δ2 < 0) , where Δ2 = γ2
2 − 4α̂2β11γ3.

(ii) If k > 1 and γ2γ3 �= 0, for even number k, L generates exactly one closed orbit (resp.

three closed orbits) of System (1.3) when εakβ1k

∫ T

0

b(s)dsγ2 < 0
(
resp. εakβ1k

∫ T

0

b(s)dsγ2

> 0
)
, for odd number k, L generates exactly two closed orbits of System (1.3).

If σ2 =
∫ T

0
b(s)ds = 0, then (3.9) and (3.10) become

akρk
1 + eσ1K1ε + c̃5ρ1ρ2 + c̃6ρ

2
2 + c̃7ρ1ε + c̃8ρ2ε + c̃9ε

2

+ O(|ρ2, ε||ρ1, ρ2, ε|2 + |ρ1|k+1) = 0, (3.25)

K2ε + d̃3ρ1ρ2 + d̃4ρ1ε + d̃5ρ
2
2 + d̃6ρ2ε + d̃7ε

2

+ O(|ρ2, ε||ρ1, ρ2, ε|2) = 0. (3.26)

If K2 �= 0, we have

Theorem 3.5. Let (1.3) be an analytic system. Suppose that L is a k multiple closed

orbit of System (2.1), σ2 =
∫ T

0

b(s)ds = 0 and K2 �= 0. For small ε �= 0, we have

(1) L generates at most 2k closed orbits of System (1.3).
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(2) For k = 1, L generates exactly two closed orbits of System (1.3) when K2d̃5ε < 0
and no closed orbits when K2d̃5ε > 0.

(3) Let

α1i = d̃5 +
−β1 + (−1)i

√
β2

1 − 4a2β2

2a2
d̃3, i = 1, 2.

For k = 2, if β2
1 − 4a2β2 < 0, then System (1.3) has no closed orbits in the neighborhood

of L. If β2
1 − 4a2β2 > 0 and α11α12 < 0, then System (1.3) has exactly two closed orbits in

the neighborhood of L. If β2
1 − 4a2β2 > 0 and α11α12 > 0, then System (1.3) has no closed

orbits in the neighborhood of L when K2α11ε > 0 and has exactly four closed orbits when
K2α11ε < 0.

(4) For k > 2, if β1β2 �= 0, then we have
( i ) If k is odd, then L generates exactly one closed orbits of System (1.3) when K2β1(c̃6d̃3

−c̃5d̃5)ε < 0 and L generates exactly three closed orbits of System (1.3) when K2β1(c̃6d̃3 −
c̃5d̃5)ε > 0.

(ii) If k is even and akd̃3(c̃6d̃3 − c̃5d̃5) < 0, then L generates exactly two closed orbits of
System (1.3). If k is even and akd̃3(c̃6d̃3 − c̃5d̃5) > 0, then L generates exactly four closed
orbits of System (1.3) when akd̃3K2β1ε > 0 and no closed orbits when akd̃3K2β1ε < 0.

Proof. If σ2 =
∫ T

0 b(s)ds = 0 and K2 �= 0, by (3.26), we have

ε = − 1
K2

(d̃3ρ1ρ2 + d̃5ρ
2
2) + O(ρ2|ρ1, ρ2|2), (3.27)

Substituting (3.27) into (3.25), we have

akρk
1 + β1ρ1ρ2 + β2ρ

2
2 + O(|ρ2||ρ1, ρ2|2 + |ρ1|k+1) = 0, (3.28)

where β1 = c̃5 − K1
K2

eσ1 d̃3, β2 = c̃6 − K1
K2

eσ1 d̃5.

(1) Let f̃(ρ1, ρ2) = akρk
1 +β1ρ1ρ2 +β2ρ

2
2 +O(|ρ2||ρ1, ρ2|2 + |ρ1|k+1). By using the Weier-

strass Preparation Theorem (cf. [6] or [1]), we see that Equation (3.28) has at most k

solutions in ρ1. If f̃(0, ρ2) �≡ 0, then by Theorem 1.9 of [6] (or by [1]) we know that the
solutions of Equation (3.28) (if they exist) have the forms

ρ1 = ρ
β̄j

2 v̄j(ρ
r̄j

2 ), j = 1, · · · , l, 1 ≤ l ≤ k, (3.29)

where v̄j(0) �= 0, v̄j(u) is analytic in u near u = 0 and β̄j , r̄j are positive rational numbers.
Substituting (3.29) into (3.27), we see that there exist c̄j and ᾱj such that the resulting
equation has the form

ε = c̄jρ
ᾱj

2 + o(|ρ2|ᾱj ), j = 1, · · · , l, (3.30)

where c̄j ∈ R and ᾱj is a positive rational number. It is easy to see that (3.30) has at
most two inverse functions for every j. Hence by (3.29) and (3.30), we know that Equations
(3.25) and (3.26) have at most 2k solutions. If f̃(0, ρ2) ≡ 0, then we can rewrite f̃(ρ1, ρ2)
as f̃(ρ1, ρ2) = ρ1f̃1(ρ1, ρ2), where f̃1(ρ1, ρ2) is analytic in (ρ1, ρ2), which has the form

f̃1(ρ1, ρ2) = akρk−1
1 + β1ρ2 + O(|ρ1ρ2| + |ρ2|2 + |ρ1|k).
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Equation f̃(ρ1, ρ2) = 0 yields ρ1 = 0 or f̃1(ρ1, ρ2) = 0. If ρ1 = 0, then by (3.27) we have
ε = O(ρ2

2), which has at most two inverse functions. If f̃1(0, ρ2) �≡ 0, by an analysis similar to
the above, we know f̃1(ρ1, ρ2) = 0 and (3.27) have at most 2(k−1) solutions, hence Equations
(3.25) and (3.26) have at most 2k solutions. If f̃1(0, ρ2) ≡ 0, let f̃1(ρ1, ρ2) = ρ1f̃2(ρ1, ρ2),
where f̃2(ρ1, ρ2) is analytic in (ρ1, ρ2), which has the form

f̃2(ρ1, ρ2) = akρk−2
1 + O(|ρ2| + |ρ1|k−1).

Repeat the same process as above. In general, there is a natural number m and an analytic
function f̃m(ρ1, ρ2), such that

f̃(ρ1, ρ2) = ρm
1 f̃m(ρ1, ρ2),

where m ≤ k − 1 and f̃m(0, ρ2) �≡ 0 or m = k. If m ≤ k − 1 and f̃m(0, ρ2) �≡ 0, then
Equations (3.25) and (3.26) have at most 2(k − m + 1) solutions. If m = k, then

f̃k(ρ1, ρ2) = ak + O(|ρ1| + |ρ2|) �= 0. (3.31)

In this case Equations (3.25) and (3.26) have at most two solutions. Summarizing the above,
we conclude that (3.25) and (3.26) have at most 2k solutions. Hence L generates at most
2k closed orbits of System (1.3).

(2) For k = 1, by (3.28), we have

ρ1 = −β2

a1
ρ2
2 + O(|ρ2|3) ≡ ρ1(ρ2). (3.32)

Substituting (3.32) into (3.27), we obtain

ε = − d̃5

K2
ρ2
2 + O(|ρ2|3). (3.33)

If K2d̃5ε > 0, then (3.33) has no inverse functions. If K2d̃5ε < 0, then (3.33) has two inverse
functions

ρ2 = (−1)i
(
− K2

d̃5

ε
) 1

2
+ o(|ε| 12 ) ≡ ρ2i(ε), i = 1, 2.

Hence (3.25), (3.26) have no solutions when K2d̃5ε > 0 and have two solutions

(ρ1, ρ2) = (ρ1(ρ2i(ε)), ρ2i(ε)), i = 1, 2,

when K2d̃5ε < 0.
(3) For k = 2, similarly to the proof of Theorem 3.3(1), we conclude that (3.28) has no

solutions when β2
1 − 4a2β2 < 0. If β2

1 − 4a2β2 > 0, then (3.28) has two solutions

ρ1 =
−β1 + (−1)i

√
β2

1 − 4a2β2

2a2
ρ2 + O(ρ2

2) ≡ ρ̃1i(ρ2), i = 1, 2. (3.34)

Substituting (3.34) into (3.27), we have

ε = −α1i

K2
ρ2
2 + O(|ρ2|3), i = 1, 2. (3.35)
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If K2α1iε > 0, i = 1, 2, then (3.35) has no inverse functions for i = 1, 2 respectively. If
K2α11ε < 0, then (3.35) for i = 1 has two inverse functions

ρ2 = (−1)l
(
− K2

α11
ε
) 1

2
+ o(|ε| 12 ) ≡ ρ21l(ε), l = 1, 2.

If K2α12ε < 0, then (3.35) for i = 2 has two inverse functions

ρ2 = (−1)j
(
− K2

α12
ε
) 1

2
+ o(|ε| 12 ) ≡ ρ22j(ε), j = 1, 2.

Therefore for β2
1 − 4a2β2 > 0, if α11α12 < 0, then (3.35) has only two inverse functions

ρ2 = ρ21l(ε) (l = 1, 2) or ρ2 = ρ22j(ε) (j = 1, 2). Thus (3.25), (3.26) have exactly two
solutions

(ρ1, ρ2) = (ρ̃11(ρ21l(ε)), ρ21l(ε)), l = 1, 2,

or
(ρ1, ρ2) = (ρ̃12(ρ22j(ε)), ρ22j(ε)), j = 1, 2.

If α11α12 > 0, then (3.35) has no inverse functions for i = 1 and i = 2 when K2α11ε > 0
and has four inverse functions ρ2 = ρ211(ε), ρ2 = ρ212(ε), ρ2 = ρ221(ε) and ρ2 = ρ222(ε)
when K2α11ε < 0. Thus (3.25) and (3.26) have no solutions when K2α11ε > 0 and have
four solutions

(ρ1, ρ2) = (ρ̃11(ρ21l(ε)), ρ21l(ε)), l = 1, 2,

(ρ1, ρ2) = (ρ̃12(ρ22j(ε)), ρ22j(ε)), j = 1, 2,

when K2α11ε < 0.
(4) For k > 2, suppose β1β2 �= 0. Similarly to the proof of Theorem 3.3(2), we know

that (3.28) has two solutions

ρ1 = −β2

β1
ρ2 + O(|ρ2|2) ≡ ˜̃ρ1(ρ2), (3.36)

ρ2 = −ak

β1
ρk−1
1 + O(|ρ1|k) ≡ ˜̃ρ2(ρ1). (3.37)

Substituting (3.36) into (3.27), we have

ε =
1

K2β1
(β2d̃3 − β1d̃5)ρ2

2 + O(|ρ2|3) =
1

K2β1
(c̃6d̃3 − c̃5d̃5)ρ2

2 + O(|ρ2|3). (3.38)

If K2β1(c̃6d̃3 − c̃5d̃5)ε < 0, then (3.38) has no inverse functions. If K2β1(c̃6d̃3 − c̃5d̃5)ε > 0,
then (3.38) has two inverse functions

ρ2 = (−1)i
( K2β1ε

c̃6d̃3 − c̃5d̃5

) 1
2

+ o(|ε| 12 ) ≡ ρ̃2i(ε), i = 1, 2.

Substituting (3.37) into (3.27), we have

ε =
akd̃3

K2β1
ρk
1 + O(|ρ1|k+1). (3.39)
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If k is even, then (3.39) has no inverse functions when akd̃3K2β1ε < 0 and has two inverse
functions

ρ1 = (−1)i
(K2β1

akd̃3

ε
) 1

k

+ o(|ε| 1
k ) ≡ ˜̃ρ1i(ε), i = 1, 2

when akd̃3K2β1ε > 0. If k is odd, then (3.39) has a unique inverse function

ρ1 =
(K2β1

akd̃3

ε
) 1

k

+ o(|ε| 1
k ) ≡ ˜̃ρ13(ε).

Therefore if k is odd, then (3.25) and (3.26) have exactly one solution

(ρ1, ρ2) = (˜̃ρ13(ε), ˜̃ρ2(˜̃ρ13(ε))),

when K2β1(c̃6d̃3 − c̃5d̃5)ε < 0 and have three solutions

(ρ1, ρ2) = (˜̃ρ1(ρ̃2i(ε)), ρ̃2i(ε)), i = 1, 2,

and
(ρ1, ρ2) = (˜̃ρ13(ε), ˜̃ρ2(˜̃ρ13(ε)))

when K2β1(c̃6d̃3 − c̃5d̃5)ε > 0.

If k is even and akd̃3(c̃6d̃3 − c̃5d̃5) < 0, then (3.25) and (3.26) have two solutions

(ρ1, ρ2) = (˜̃ρ1(ρ̃2i(ε)), ρ̃2i(ε)), i = 1, 2,

or
(ρ1, ρ2) = (˜̃ρ1i(ε), ˜̃ρ2(˜̃ρ1i(ε))), i = 1, 2.

If k is even and akd̃3(c̃6d̃3 − c̃5d̃5) > 0, then (3.25) and (3.26) have four solutions

(ρ1, ρ2) = (˜̃ρ1(ρ̃2i(ε)), ρ̃2i(ε)), i = 1, 2,

and
(ρ1, ρ2) = (˜̃ρ1i(ε), ˜̃ρ2(˜̃ρ1i(ε))), i = 1, 2.

when akd̃3K2β1ε > 0 and have no solutions when akd̃3K2β1ε < 0. Hence Theorem 3.5(4)
follows from the above analysis. This completes the proof.

If K2 = 0, we have

Theorem 3.6. Let (1.3) be an analytic system. Suppose that L is a k multiple closed

orbit of System (2.1) and σ2 =
∫ T

0

b(s)ds = K2 = 0. For small ε �= 0, we have

(1) For k = 1, assume d̃5 �= 0. Then L generates at most two closed orbits of System
(1.3). Furthermore, L generates exactly two closed orbits of System (1.3) when Δ̃ > 0 and
generates no closed orbits of System (1.3) when Δ̃ < 0, where

Δ̃ =
(
d̃6 − 1

a1
d̃3e

σ1K1

)2

− 4d̃5

(
d̃7 − 1

a1
d̃4e

σ1K1

)
.

(2) If k > 1 and K1d̃4 �= 0, then L generates at most 2k+2 closed orbits of System (1.3).
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(3) For k > 1, if K1d̃3d̃4d̃5 �= 0, assume

γ̃1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃6 − c̃5d̃5

d̃3

+
a2d̃

2
5

d̃2
3

, k = 2,

c̃6 − c̃5d̃5

d̃3

, k > 2.

Then
( i) For odd k, L generates exactly one closed orbits of System (1.3) when K1γ̃1ε > 0 and

generates exactly three closed orbits of System (1.3) when K1γ̃1ε < 0.
(ii) For even k, if akγ̃1 < 0, then L generates exactly two closed orbits of System (1.3);

if akγ̃1 > 0, then L generates exactly four closed orbits of System (1.3) when K1γ̃1ε < 0 and
no closed orbits of System (1.3) when K1γ̃1ε > 0.

Proof. If σ2 =
∫ T

0
b(s)ds = K2 = 0, then (3.25) and (3.26) become

akρk
1 + eσ1K1ε + c̃5ρ1ρ2 + c̃6ρ

2
2 + c̃7ρ1ε + c̃8ρ2ε + c̃9ε

2

+ O(|ρ2, ε||ρ1, ρ2, ε|2 + |ρ1|k+1) = 0, (3.40)

d̃3ρ1ρ2 + d̃4ρ1ε + d̃5ρ
2
2 + d̃6ρ2ε + d̃7ε

2

+ O(|ρ2, ε||ρ1, ρ2, ε|2) = 0. (3.41)

(1) If k = 1, by the Implicit Function Theorem, (3.40) has a unique solution

ρ1 = − 1
a1

(eσ1K1ε + c̃6ρ
2
2) + O(|ρ2|3 + |ε|2 + |ρ2ε|). (3.42)

Substituting (3.42) into (3.41), we have

d̃5ρ
2
2 +

(
d̃6 − 1

a1
d̃3e

σ1K1

)
ρ2ε +

(
d̃7 − 1

a1
d̃4e

σ1K1

)
ε2 + O(|ρ2, ε|3) = 0. (3.43)

Suppose that d̃5 �= 0. It is easy to see that (3.43) has at most two solutions in ρ2. Hence
(3.40) and (3.41) have at most two solutions. Furthermore, similar to the proof of Theorem
3.3(1), we obtain that (3.43) has no solutions when Δ̃ < 0 and has two solutions of the forms

ρ2 =
−d̃6 + 1

a1
d̃3e

σ1K1 ±
√

Δ̃

2d̃5

ε + O(ε2)

when Δ̃ > 0. Therefore Theorem 3.6(1) holds.
(2) If k > 1 and K1 �= 0, then by (3.40) we have

ε = − 1
eσ1K1

(akρk
1 + c̃5ρ1ρ2 + c̃6ρ

2
2) + O(|ρ1|k+1 + |ρ2

1ρ2| + |ρ1ρ
2
2| + |ρ2|3). (3.44)

Substituting (3.44) into (3.41), we have

− d̃4ak

eσ1K1
ρk+1
1 + d̃3ρ1ρ2 + d̃5ρ

2
2 + O(|ρ1, ρ2|3) = 0. (3.45)
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If d̃4 �= 0, using (3.44) and (3.45), by a process similar to the proof of Theorem 3.5(1), we
have that the conclusion of Theorem 3.6(2) holds.

(3) For k > 1, if K1d̃3d̃4d̃5 �= 0, in a way similar to the analysis of Theorem 3(2), we
obtain two solutions of Equation (3.45) as follows

ρ1 = − d̃5

d̃3

ρ2 + O(ρ2
2) ≡ ¯̄ρ1(ρ2), (3.46)

ρ2 =
d̃4ak

eσ1K1d̃3

ρk
1 + O(|ρ1|k+1) ≡ ¯̄ρ2(ρ1). (3.47)

Substituting (3.46) into (3.44), we have

ε = − γ̃1

eσ1K1
ρ2
2 + O(|ρ2|3). (3.48)

Hence (3.48) has no inverse functions when K1γ̃1ε > 0 and has two inverse functions

ρ2 = (−1)i
(
− eσ1K1

γ̄1
ε
) 1

2
+ o(|ε| 12 ) ≡ ¯̄ρ2i(ε), i = 1, 2,

when K1γ̃1ε < 0.
Substituting (3.47) into (3.44), we have

ε = − ak

eσ1K1
ρk
1 + O(|ρ1|k+1). (3.49)

For even k, if K1akε > 0, then (3.49) has no inverse solutions. If K1akε < 0, then (3.49)
has two inverse solutions

ρ1 = (−1)i
(
− eσ1K1

ak
ε
) 1

k

+ o(|ε| 1
k ) ≡ ¯̄ρ1i(ε), i = 1, 2.

For odd k, (3.49) has a unique inverse function

ρ1 =
(
− eσ1K1

ak
ε
) 1

k

+ o(|ε| 1
k ) ≡ ¯̄ρ13(ε).

Therefore for odd k, (3.40) and (3.41) have exactly one solution

(ρ1, ρ2) = (¯̄ρ13(ε), ¯̄ρ2(¯̄ρ13(ε)))

when K1γ̃1ε > 0 and have exactly three solutions

(ρ1, ρ2) = (¯̄ρ1(¯̄ρ2i(ε)), ¯̄ρ2i(ε)), i = 1, 2

and
(ρ1, ρ2) = (¯̄ρ13(ε), ¯̄ρ2(¯̄ρ13(ε)))

when K1γ̃1ε < 0.
For even k, if akγ̃1 < 0, then (3.40) and (3.41) have two solutions

(ρ1, ρ2) = (¯̄ρ1(¯̄ρ2i(ε)), ¯̄ρ2i(ε)), i = 1, 2,
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or
(ρ1, ρ2) = (¯̄ρ1i(ε), ¯̄ρ2(¯̄ρ1i(ε))), i = 1, 2.

If akγ̃1 > 0, then (3.40) and (3.41) have four solutions

(ρ1, ρ2) = (¯̄ρ1(¯̄ρ2i(ε)), ¯̄ρ2i(ε)), i = 1, 2

and
(ρ1, ρ2) = (¯̄ρ1i(ε), ¯̄ρ2(¯̄ρ1i(ε))), i = 1, 2,

when K1γ̃1ε < 0 and have no solutions when K1γ̃1ε > 0.
From the analysis above, we conclude that Theorem 3.6(3) holds. This completes the

proof.
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