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BIFURCATION OF PERIODIC ORBITS OF
A THREE-DIMENSIONAL SYSTEM™***

LIU XUANLIANG* HAN MAOAN*

Abstract

Consider a three-dimensional system having an invariant surface. By using bifurca-
tion techniques and analyzing the solutions of bifurcation equations, the authors study
the spacial bifurcation phenomena of a k& multiple closed orbit in the invariant surface.
The sufficient conditions of the existence of many closed orbits bifurcate from the k
multiple closed orbit are obtained.
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8§ 1. Introduction

There has been a general theory on bifurcation of periodic orbits for two or higher-
dimensional systems, and the theory for two-dimensional systems is much richer than that
for higher-dimensional systems (see [1-11]). We have a relatively complete understanding
to bifurcation phenomenon of plane systems (see [1, 2, 5, 6]). For example, a k multiple
limit cycle of two-dimensional systems can generate one, two, even k limit cycles, and at
most k£ limit cycles under autonomous perturbations. For three-dimensional systems, the
bifurcation of periodic orbits were also studied in some cases. For example, from [3, 5, 8]
we know that a non-hyperbolic periodic orbit of three-dimensional systems can generate
one, two or more periodic orbits under suitable perturbations. The bifurcation of periodic
orbits near a homoclinic or heteroclinic loop in the space were investigated in [7-11] in some
details. A special three-dimensional analytic system

T = fl(x) + €g1($,y) + €2gl(x7ya5)a
y:fg(l‘,y)+€g2($7y)+52§2($,y75)7 (11)
where x € R?,y € R, f2(z,0) = 0, was studied in [4]. Suppose that for e = 0 System (1.1)

has an m multiple closed orbit I' on invariant plane y = 0. Sufficient conditions for T' to
generate one, two and at most m periodic orbits are obtained respectively. In this paper,
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we consider the bifurcation of periodic orbits for a C°° three-dimensional system of the

following form

&= F(x,y,¢),
Y= G(m,y,s), (12)

where © = (21,72) € R%y € R,e € R. Suppose that for ¢ = 0 System (1.2) has a
C* invariant surface of the form y = M(z). Assume that a closed orbit of multiplicity
k restricted on the invariant surface is known. Our goal is to study the bifurcations of
periodic orbits near a neighborhood of the surface. Without loss of generality, we may
assume M (x) = 0. Then System (1.2) can be written as follows

&= f(z) +yfi(z,y) +eP(z,y,¢),
v =vyg(r,y) +eQ(x,y,¢), (1.3)

where
f(@) = (for(x), for(x))", Nz, y) = (fulz,y), fhalz,y)",
P(l‘,y,&f) = (Pl(x,y,e),PQ(x,y,e))T.

It is obvious that the form of (1.3) is more general than (1.1). We will obtain some results of
new types for the number of periodic orbits of (1.3). For example, we give conditions for the
k multiple closed orbit to generate 1,--- ,4 periodic orbits and at most k, k + 1, 2k, 2k + 2
periodic orbits under suitable conditions respectively.

8§ 2. A Transformation of Variables and Bifurcation Equations
Suppose the two-dimensional system
i= f() (2.1)

has a k multiple closed orbit L with a parameter representation

Consider a transformation of variables from (z,y) to (0, h) defined by the relation
(z,9)" = (u(0),0)" + Z(0)h, (2.2)

where
0<0<T, h = (h1,h2)" € R%



BIFURCATION OF PERIODIC ORBITS OF A THREE-DIMENSIONAL SYSTEM 255

Applying Theorem 1.4 of Chapter two of reference [5] or [3], the transformation (2.2) trans-
forms System (1.3) into a system for 0, h as follows

6 =1+ f1(0,h) + E@, h)(P(a(f) + Z(0)h, ), Q(a(6) + Z(6)h,e))e,
h=AO)h+ f2(0,h) + B0, h)(P(a(6) + Z(O)h, <), Qa(8) + Z(B)h, )", (2.3)

where

a(0) = (u(9),0)",  9(0) = (" (9),0)", T = (),

Fle.y) = <f(w) + yfl(xvy)> |
yg(z,y)
F1(8,1) = E(6, h)[f(@(9) + Z(6)h) — f(a(8)) — Z'(6)h],
E(0,h) = [|u'(0)] + 37 (0)Z'(0)h] 137 (8),
A0) = 2" (0)[=2'(0) + fx(a(6)) Z(0)]
f2(0,h) = =Z7(0)Z' (0)hf1(0, h) + ZT (O)[f (@(0) + Z(0)h) — f(@(0)) — f(a(9))Z(0)h],
B(0,h) = ZY(0)[I — Z'()hE(6,h))].

Since ZT(0)Z'(#) = 0, we have

B0, h) = Z7(0),

where (see [5])

By Taylor Theorem and direct computation, we obtain

. 1

fi(0,h) = 0] (0"(0) f2(u(0)) (v (0))" = (V' (0)) " v(6), 0" (8) f1(u(6),0))h + O(|h]?).
Let
wi(0) = (" (0) £ (w(0)) (v (0)" = (v/(0)0(0)]/] ()],
w2(0) = [v7(8) f1(u(8),0)]/[u ()],
w3(0) = [v" () P(u(6),0,0)]/[ ()]
Then

0 =14 w(0)h1 + wa(0)ha + w3(8)e + O(|h,el?). (2.4)
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Noting
0f2(6,0)

f2(6,0) =0, o

=0,
it follows that
hwmw—< 1d1(0)3 + da(0)hihs + Lds(0)h3 + O(|h]?) >’
92 (u(0),0)(v(0)) haha + gy (u(B),0)h3 + O(|ha||h|?)

where

d1(8) = —v2(8)v ™ (6) f (u(8)) (v (8)" + w1 (B)v™(8) faa (u(B)) (v (6)) ",

da(0) = —v2(0) fr1z(u(9),0) (v (0)" + v1(6) fr22(u(8),0) (0™ ()7,

d3(0) = 2[—v2(0) f11y(u(8), 0) + v1(6) fi2y (u(6), 0)],

0 foi(u(8))  9°foi(u(6))

fawon = |, 0 ono =12
(1w = 9 1= » =
o O foi(u(9)) 9 foi(u(9))

0x2011 dx3

Hence, we have from (2.3)
. 1
hn = a(0)h1 + ar(O)ha + az(0)e + as(0)hae + aa(0)hae + a5 (0)e” + 5d1(0)hT + da(0)h1 o
1 :
+ 5ds(0)h3 + O(h ef),

ha = bi(0)ha + ba(0)e + b3(0)hie + ba(B)hae + bs(0)hiha + bs(0)h3 + by ()<

+O(lha|[B]* + el . e]?), (2.5)

where

ay(0) = v (0) f1(u(0),0), ax(0) = v*(0)P(u(6),0,0),

az(0) = v (0) P (u(6),0,0)(v(6))" a4(0) = v+ (0) Py (u(9),0,0)

as(0) = v*(0)P-(u(6),0,0) b1(0) = g(u(0),0),

b2(0) = Q(u(6),0,0) b3(6) = Qu(u(9),0,0)(v=(6))"

ba(0) = Qy(u(6),0,0), b5(6) = g=(u(0),0)(v*(0)),

bs(0) = gy (u(6),0) b7(0) = Q=(u(0),0,0)

Therefore we have the following lemma.

Lemma. The periodic transformation (2.2) transforms System (1.3) into Equations
(2.4) and (2.5).

Using Equations (2.4) and (2.5), we obtain
% =a(0)hy + a1 (0)ha + az(0)e + az(0)hie + as(0)hoe + as(0)h3 4 ag(0)hihy
+ a7(0)h3 + ag(0)e? + O(|h1, ha, €[?),
% =b1(0)ha + ba(0)e + b3(0)h1e + by(0)hoe + bs(0)h1ha + bs(0)h2 + by (0)e?

+O(|h1, ho,el), (2.6)
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where
i3(0) = a3(0) — az(0)w (0) — a(O)ws(0),  a(6) = as(0) — az(B)ws(0) — ar (O)ws (6),
5(6) = 31(6) — a(B)uwn (6), 6(6) = d(60) — a(0)ws(0) — a1 (B)w (9),
7(6) = 3d5(6) — a1 (6)uw (), s (6) = —ws (9)as(6) + as(6),
b3(0) = bs(0) — ba(O)wn (0), ba(6) = ba(6) — ba(0)w2(6) — by (6)ws(6),
bs(0) = bs(68) — b1 (0)w1 (6), bo(8) = b(6) — bi(B)wa(6),

b7(0) = —w3(0)ba(6) + b7 (6).

Equation (2.6) can be rewritten as

dh (a(0) a1(0)\ [ az(0) 2
5 (0 00) () (m(@)) Frolen)
— AO)h + 27 (O)Fy(u(6))z + O(|h, ), (2.7)
where
Fo(u(9)) = (P(u(9),0,0),Q(u(0),0, 0))T :
Let Y (#) be the fundamental matrix solution of the following equation

dh

=5 = A (2.8)

with Y (0) = I (the identity matrix).
The Poincaré map of (2.7) has the form (see [5])

P(ho,e) = Y (T)ho + Y (T) /0 Y=Y0)ZT (0) Fo(u(0))dbz + O(|ho,e]?).  (2.9)

Let
E=Y(T)-1I, K = / Y(T)Y1(0)Z7(0) Fo(u(6))do.
0

For small € # 0, System (1.3) has a closed orbit near L if and only if there exists a point hg
with |ho| small, such that

P(hg,&) — ho = Ehg 4+ Ke + O(|ho, ¢]?) = 0. (2.10)
By (2.8), we have
0
efoe a(s)ds efoe a(s)ds / b(S)dS
Y(9) = 0 ,
0 eJs 9(u(s),0)ds

where

bs) = v () a9, 0)exp ([ Tatu(©).0) - al€))

1 s
= S ) A Siu(s), 0 exp ( / [9(u(€), 0) = trfu (u(€))]d¢).
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Thus
T
Y(T) = e 601/0 b(s)ds |
0 e92
0 0 ,
) exp(—/O a(s)ds) —exp(-/o g(’t;(s),O)ds)/O b(s)ds |
0 exp ( —/0 g(u(s),o)ds)
where
o1 = %Ltrfxdt — jigdt
0 " .
eXP(—/O a(S)ds) = %exp(—/o trfx(u(s))d5>.
Therefore
B e’t —1 e"l/o b(s)ds |
0 €2 — 1
K = (7 Ky, e Ko)
where

t
Ko = (e Bttty Py ittt [ ot Quds £ 3 fy)at| (o)
L 0
K> = 7{ e~ Jo 9 Qo
L
Py=P(z,y,0),  Qo=Q(z,y,0). (2.11)
Let ho = (p1,p2)T. We can rewrite (2.10) as
T
(et —1)py + e / b(s)dsps + e K1 + O(|p1, p2,€|*) = 0, (2.12)
0
(€7 = 1)p2 + €7 Koe + O(|p1, p2,€*) = 0. (2.13)

Since y = 0 is an invariant plane of System (1.3) for e = 0, the second coordinate of
P(hg,e) — ho must be 0 as € = pa = 0, namely, (2.13) always holds when e = ps = 0. Hence
we can write (2.13) as the following form

(€7 = 1)p2 + €7 Koe + O(|p1p2| + p3 + |pre] + |p2e| + %) = 0. (2.14)

Equations (2.12) and (2.14) are called the bifurcation equations of System (1.3).
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§ 3. Bifurcation near the Closed Orbit L

Case I. 02 #0

If 09 # 0and eis small enough, by the Implicit Function Theorem, Equation (2.14) has
a unique solution

e K.
pr= (= S22+ O(el + i) = palon, ). (31)

Let G(p1) denote the left-hand side function of (2.12) with € = ps = 0. Then G(p1)
represents the succession function of System (2.1) in the neighborhood of closed orbit L,
and (2.12) becomes

T
G(p1) +e™ / b(s)dspa + 7 K1 + O(|p1p2| + p5 + |pre| + |poc| + %) = 0. (3.2)
0
Substituting (3.1) into (3.2), we obtain

G(p1) + €7 Kze + O(|p1e| + £2) = 0. (3.3)

where

e’z —1

UQK T
K3 = K1 — © 2 / b(S)dS
0

Since L is a k multiple limit cycle of System (2.1), k > 1, there exists ay # 0 such that
G(p1) = axpt + O(p} ). (3.4)

Applying the Rolle Theorem, we conclude that (3.3) has at most k solutions in p;. Further-
more, if o1 # 0, then

G(p1) = (e = 1)p1 + O(p?).

It follows that Equations (2.12) and (2.14) have exactly one solution. Hence the following
theorem holds.

Theorem 3.1. Suppose that oo # 0, for small € # 0. We have

(1) If L is a k multiple closed orbit, k > 1, then System (1.3) has at most k closed orbits
in the neighborhood of L. At least one closed orbit near L exists if k is odd.

(ii) If o1 # 0, then System (1.3) has exactly one closed orbit in the neighborhood of L.

Let K3 # 0. We have

Theorem 3.2. Let (1.3) be an analytic system. Suppose that 09 K3 # 0 and ¢ # 0 is
small enough. Let (3.4) hold.

(1) If k is odd, then System (1.3) has exzactly one closed orbit.

(ii) If k is even, then System (1.3) has exactly two closed orbits when arKze < 0 and no
closed orbits when apKse > 0.

Proof. Equation (3.3) can be written as

arps + e Kze + O(|p1 [T + |pre] +€%) = 0. (3.5)
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By the Implicit Function Theorem, we can obtain from (3.5) that

k
_ _ %P1 EH1y — =
e = - L L O =< (o),

which is analytic. If & is odd, then function £*(p;) has a unique inverse function of the form

e K3e\ % 1 .
pr= (=) Hollelh) = i)

Let pi(e) = pa(pi(e),e). Then (2.10) has exactly one solutionhg = (pi(e), p3(¢)). Thus
System (1.3) has exactly one closed orbit near L. If k is even and arKse < 0, then the
function £*(p1) has two inverse functions

e’' K3e

agk

pr=(-1( ) Hollel) =piie),  i=1.2.

It follows that (2.10) has precisely two solutions

ho = (p1i(e), p2(p1i(e), ) = poile),  i=1,2,

which means that System (1.3) has exactly two closed orbits in the neighborhood of closed
orbit L. If k is even and arK3e > 0, then (3.5) has no solution and hence System (1.3) has
no closed orbits in a neighborhood of the closed orbit L. This completes the proof.

In order to obtain further bifurcations, we suppose that
(h1(97 P1, P2, 6)) h2(97 P1, P2, 6))
is a solution of System (2.6) satisfying

(h1(0, p1, p2,€), h2(0, p1, p2,€)) = (p1, p2),
which has an expansion of the following form
hi(8, 1, p2,) = A1(0)p1 + A2(8)pa + A3(0) + Au(0)pT + A5 (0)p1p2 + As ()3
+ A7(0)p1e + Ag(0)p2e + Ag(0)e® + O(|p1, p2, €]?),
ha(6, p1, p2,€) = Bi(0)p2 + B2(0)e + Bs(0)p1p2 + Bu(0)pre + Bs(6)p3 + Bs(6)pae
+ Br(0)* + O(|p2, ¢llp1, p2, ), (3.6)
where
A1(0)=1, Bi(0)=1, 4,0)=0, B;(0)=0, =2 -9, j=2---,T.

Substituting (3.6) into (2.6) and comparing the coefficients of both sides of the resulting
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equations, we obtain

Bi(0) = b1(0)B1(0),
B;(0) = b1(0)B2(0) + ba(0),
A1(0) = a(0) A1 (0),
A5(0) = a(0)A2(0) + a1 (0) B1(0)
A5(0) = a(0)As(0) + a1 (0)B2(0) + a2 (),
B;(9) = b1(6)Bs(6) + bs(6) B1(9) A (0),
B (0) = b1(0)B4(0) + bs(0) A1 (0) + bs(0) Bo(0) A1 (6)
B§(0) = b1(0)Bs(0) + bs(0) B1(0) A2(0) + bs(0) B (0),
BL(6) = b1(0)Bg(0) + b3(0)A2(0) + b4(6) By (8) + bs(0)[B1(0)A3(0) + Ba(6) Az (6)]
+ 2bg(0) B1(0) Ba(6),
BL(0) = b1(0) B7(8) + b3 (0) A3(6) + ba(8) B2(0) + bs(0) Ba2(8) A3 (8) + bs(0)B2(8) + by (6),
A(0) = a(9)A4(8) + as(0)AT(6),
AL(6) = a(0) As(0) + a1 (0)Bs(6) + 25 (0) A1 (0) A2(0) + a6 (0) A1 (0) By (6),
AL(0) = a(8)Ag(0) + a1(6)Bs(0) + a5 (0) A2(6) + de(6) A2(0) By (0) + az(6) B2(6),
AL(0) = a(0)A7(0) + a1(0)B4(0) + as(0) A1 (0) + 2as(0) Ay (0) A3 (0) + ag(0) Ay (8)Ba(6),
Ag(0) = a(0)As(0) + a1 (0)Bs(0) + as(

+ ag(0)(A3(0) B1(0) + A2(0) B2(0)) + 2a7(0) B1(0) B2(0),
A3(0) + aq(0)B2(0) + as(0)A3(6)

)
)
a3(0)Aa(0) + a4 (0)B1(0) + 2as(6) Az (0) A3 (6)
(
(0)
+ a6(0) A3 (0)B2(0) + az(0) B3 (0) + as(6).

It is easy to solve all the above equations and obtain

B1(0) = els 190 _ o[ 9(u(s),0)ds

0
Bs(0) = eld bl(e)da/ e Io bi(s)dsp, (9)dh
0

[%
_ efoe g(u(s),0)ds / o 1e g(u(s)70)dSQ(u(9), 0,0)d6,
0

6
A (0) = e O —exp ([ (o)) s L O 17O,

6
As(6) = e a(9)ds / e Io a)ds g (9) B, (0)do
0

[4
= el ewtonie [ 0L WO (o)) A f(0(6),0)d8) |0,
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A3(6) = elo (s)ds /O " g ()45 (g1 () Ba(6) + as(6))do
= el [ oo 0 a0)) 1 Pla),0,0)0
0
0
+/ ef(f(g(u(S),O)—trfz(u(S)))de(u(g)) A fi(u(6),0)
0
0
(e o0 Quge).0.0)ds) ] /1 (o))
0 0
By(0) = exp ( / g(u(s), 0)ds ) / bs(0) A1 (0)do),
0 0
Bi(0) = exp [ a(u(2).00s) [ Bs(0)410) + 55(0)52(6) 41 0)
0
- exp ( - /0 g(u(s), O)ds) de,
0 0
Ba(0) = exp ([ atu(s).0)ds) [ B(0)B1(0)42(6) + 5o(0) 5 0)
%
- exp ( - /0 g(u(s), O)ds) de,
% % B B
Bo(0) = exp ([ ofu(s).0)ds) [ 0)4a(0) + Ba(0)51(0) + Ba(0)(51(0) 430
%
+ B (0)A(0)) + 2b6(0) B1 (9) B (9)] exp ( / 9(u(s), 0)ds ) db,
% %
Br(0) = exp ( /0 o(u(s).0)ds) /0 (55 (0) A5(8) + 54(0) Ba(6) + b5 (6) B (6) As(0)
0
+56(0)B3(0) + b ()] exp ( / 9(u(s), 0)ds ) db,
T 0
Ay = et [ fas@)esp ([ ensiu)as) o)1 )] a0
As(T) = e [ Tan(O)Ba(0) +265(0) 41 (0) 420) + 5(0) A1 (0) B3 0)
0 0
cexp (= [ tnfuu(s))ds) £ )/ (u(0))d0
AT) = et [0 (0)B(0) + 35(0)430) + 36(0) A2(0)51(0) + 1 0) 55 0)
0
cexp (= [ tnfu)ds) (@)1 (w(0)) 100
A7(T) = en /O [a1(0) B4(0) + G3(0) Ay (0) + 2a5(0) Ay (0) A3 (0)
%
+a0) OB exp (= [ rf u()ds) Fu)I/15 o)) do
0

T
Ag(T) = et /0 [a1 (9)36(9) + &3(9)142 (9) + &4(9)31 (9) + 2&5(9)142 (H)Ag (9)
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+ a6 (0)(A3(0)B1(0) + A2(0)Ba(0)) + 2a7(0)B1(0)Ba(0)]
0
coxp (= [ enfa(ue))ds) (@)l (0D a0
T
Ay(T) = e / [a1(0) B7(0) + a3(0) A5(0) + aa(0) B2(0) + as(0) A3(0)
0
T 6(0) A5 (0)B(0) + = (0) B(6) + ax(6)]
0
cexp (= [ nfuu(o)ds) £ u(O)]/1F(w(0))d0.
Then the succession function of (2.6) is
hi(p1, p2,€) = ha(T, p1, p2,€) — p1
= (Ai(T) = V)pr + Aa(T)pa + A3(T)e + éapi
+ Esp1p2 + Coph + Erpre + Cspac + oe” + O(|p1, p2,€l?),
h3(p1,p2,€) = ha(T, p1, p2,€) — p2
= (B1(T) = 1)p2 + B2(T)e + dsp1ps + dapre + &5/)3 + dgpac
+J7€2+O(|p27€||p1ap27€|2)7 (38)
where
61:A1(T)ﬂ J]:Bj(0)|9:T’ Z:4ﬂ79a]:3a77
Similarly to (3.2), we obtain bifurcation equations as follows
T
i (p1, p2.€) = arph + e / b(s)dspa + €7 K1& + E5p1p2 + Cep3 + Erpre
0
+ spac + 92 + O(|p2,el[p1, pa, e + | |*T1) = 0, (3.9)
W (p1, pa,€) = (€72 — 1)pa + €72 Koe + dsp1pa + dapre + dsp2 + depac
+ d7e% + O(|p2, €l|p1, p2, €|?) = 0. (3.10)
If o9 # 0, we can solve (3.10) and obtain
p2 = (P21 + paz pr + paze + O(|p1, el?)) = pa(pr,e), (3.11)

where
. €Ky
p21 = 1_ ooz’
- 602J3K2 + (1 — 602)624
p22 = 2 )
(1 —eo2)
6202625 (K2)2 €a2d6K2 CZ7

P =T o) T (I _er2)2 T 1_eo2
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Substituting (3.11) into (3.9), we have

Hi(pr,€) = hi(p1, pa(p1,€),€) = appl + arpie + ae?

+ e Kae + O(Ipa " + [pe| + |pi|e? + [ef*) = 0, (3.12)

where

T
ap = et / b(s)ds paz + és5p21 + C7,
0

T
ag = et / b(s)ds 23 + 6y + Cspar + Co,
0
Hy(p1,¢) is C*® in (p1,¢) for |p1| + || small.
Theorem 3.3. Suppose that oo # 0 and K3 = 0. Let L be a closed orbit of System (2.1)
of multiplicity k, k > 2. For small € # 0, we have
(1) If k = 2, then L generates exactly two hyperbolic closed orbits (resp. no closed orbits)
of System (1.3) when A1 >0 (resp. Ay <0), where A1 = af — 4azas.
(ii) If k > 2 and anag # 0, then for odd number k, L generates exactly one closed orbit

(resp. three closed orbits) of System (1.3) when earar > 0 (resp. eaiar < 0), for even
number k, L generates exactly two closed orbits of System (1.3).

Proof. Since K3 = 0, by (3.12), we have
Ha(pr,€) = Hi(p1,€)| ka0
= agp} + arpre + aze® + O(|pr "+ + |pie] + |p1le? + |¢]®) = 0. (3.13)
(i) If k = 2, we rewrite Ha(p1,¢€) as
Hy(p1,€) = ao(e) + a@i(e)p + aa(e)pi(1+o(1)),
where
ap(e) = aae? + O(?), a1 (e) = are + O(e?), aa(e) = az + O(e).

OH3(p1,¢€)

= 0 and obtain
op1

We can solve
pr=—ge + O() = nle)

Then by the Taylor Formula, we can obtain

2
%%ZU)@ — (€)1 + o(1))

2 *
= 5 o) (01— 00 - )

Hy(p1,€) = Ha(n(e),e) +

where

. 2Hs(n(e), e Aq
HQ(n(g)ag) - 4 262 + O(|E|3)a Al =-— 82H2(77(€)),6)) = 40% e+ 0(63)'
ap3
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Thus (3.13) has two solutions when A; > 0, which have the forms

—ay £ +/a? — 4
A C;l 22 4 O(e?), (3.14)
2

2

p1 =

and no solutions when Ay < 0. Therefore the conclusion (i) holds.

(i) If £ > 2 and a2 # 0, by using (3.13) and the Malgrange Preparation Theorem (cf.
[5] or [1]), (3.13) has at most two solutions in e. In order to obtain the solution of (3.13),
let € = pyv;. Substituting it into (3.13), we know that vy satisfies

@1(p1,1)1) = a1V + agvf + akp’f72 + O(|p1|k71 + |p11)1|) = 0. (315)

0%, (0,— =L
Since <I>1( , —g—;) =0 and % = —a1 # 0, by using the Implicit Function Theorem,

(3.15) has a solution v1 = —¢&L + O(|p1|). Hence (3.13) has a solution
(5] 9
e =pvr=——p1+0(lp:f). (3.16)
2

To obtain another solution of (3.13), let ¢ = p¥~v,. Substituting it into (3.13), we know
that vy satisfies

Do(p1,v2) = ag + ave 4+ anph 202 + O(|p1|) = 0. (3.17)
. a 0@, (0,— 2 ) . . .
Since ®o (0, —m) = 0 and — 0, = # 0, by using the Implicit Function Theorem,
(3.17) has a solution vy = — &% + O(p1). Hence (3.13) has a solution

_ Ak j_
e=pi =22 O ). (3.18)

(3.16) and (3.18) are the two solutions of (3.13).
The function in (3.16) has an inverse function

p1L= _22o 0(e*) = p1(e). (3.19)

If k is odd, then (3.18) has exactly two inverse functions

i 1€\ ToT IR .
pr= (0 (= )T o) = puile), =12 (3.20)

when eajar < 0 and has no inverse functions when eaqag > 0. If k is even, then (3.18) has

exactly one inverse function

p1= (_ 0;—1:>m +0(|E|ﬁ) = pis(e). (3.21)

By (3.11), and (3.19)—(3.21), we see that if &k is odd and eajar < 0, then the bifurcation
equations (3.9) and (3.10) have exactly three solutions

(p1,p2) = (p1(€), p2(p1 (), €)),

(p1,p2) = (p11(e), p2(p11
(p1,p2) = (p12(€), p2(pr2(e
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If k is odd and eajar > 0, then the bifurcation equations (3.9) and (3.10) have a unique
solution

(p1,p2) = (p1(e), p2(p1(e),€))-

If k is even, then the bifurcation equations (3.9) and (3.10) have exactly two solutions

(p1, p2) = (P1(2), p2(p1(e), €))
(p1,p2) = (P13(€), p2(p13(€), €))-
This completes the proof.
Case II. 02 =0

If 0o =0 and fOT b(s)ds # 0, by (3.9) and the Implicit Function Theorem, we have

p2 = ne + opt + O(|pa "+ + | + |prcl) = pa(pr,€) (3.22)
where
~ Kl ~ (7%
d = ———— Gg=———" .
fOT b(s)ds et fOT b(s)ds

Substituting (3.22) into (3.10), we obtain

QafBipi 4 Kog +7apie + 7387 + O(|; |2 + |pie| + [p1e®| + [e]*) = 0, (3.23)
where
Js, k>1,
Bk = ds - a;d}; 7 P
et [ b(s)ds
duds + dy + 261 6ods + dod, k=1,
7 s + d ke,

v3 = &ds + G ds + d.

If f1x # 0, then (3.23) has at most k + 1 solutions in p; and at least one solution in p; when
k is even.
Suppose Ko # 0. If k is odd, then (3.23) has exactly two solutions

1
T E+1
[ et b(s)dsK, )
pl—c4y<—;%;%%——f> +o(le|=T) = pufe),  i=12

when Kseay 1k fOT b(s)ds > 0, and no solutions when Kseay 1 fOT b(s)ds < 0. Hence
Equations (3.9) and (3.10) have exactly two solutions

(p1,p2) = (p1i(e), p2(p1i(€),€)), i=1,2,
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when Kocay Gy fo s)ds > 0, and no solutions when Kacar[1x fo s)ds < 0. If k is even,
then (3.23) has a unique solution

T
el b(s)dsKa \ 7 1
or = (T B o) = e
Hence Equations (3.9) and (3.10) have exactly one solution

(p1,p2) = (p13(2), p2(p13(€), €))-

If 03 = 0 and K3 =0, then (3.23) becomes

GaBepi Tt +v2p1E + 7387 + O(|p1 M2 + |ple| + |p1e®| + [e]*) = 0. (3.24)

Similarly to the proof of Theorem 3.3 and the discussion above, we have
Theorem 3.4. Suppose that L is a k multiple closed orbit of System (2.1), o2 =0 and

T
61k/ b(s)ds # 0. For small € # 0, we have

0
(1) L generates at most k+1 closed orbits of System (1.3). At least one closed orbit near
L ezxists if k is even.

(2) If K3 # 0, then

(1) For odd number k, L generates exactly two closed orbits of System (1.3) when Koeay,
T T

'ﬂlk/ b(s)ds > 0, and no closed orbits when ngakﬂlk/ b(s)ds < 0.

(ii) For even number k, L generates exactly one closed orbit of System (1.3).

(3) For K2 =0, we have

(i) If k =1, then L generates exactly two hyperbolic closed orbits (resp. no closed orbits)
of System (1.3) when Ay >0 (resp. Ay < 0), where Ay = 73 — 44231173-

(ii) If k > 1 and va7y3 # 0, for even number k, L generates exactly one closed orbit (resp.
T

T
three closed orbits) of System (1.3) when Eakﬂlk/ b(s)dsvys <0 (resp, Eakﬁlk/ b(s)dsy2
0 0

> O), for odd number k, L generates exactly two closed orbits of System (1.3).

If o = fo s)ds = 0, then (3.9) and (3.10) become

appt + €7V K1 + Espips + Gep3 + Erpie + Capac + Coe>

+ O(|pa,ellpr, pa,el* + | |*F) = 0, (3.25)
Koe + dspipa + dapre + J5p§ + dgpae + dre?
+O(lp2,llp1, p2,el*) = 0. (3.26)

If Ko # 0, we have

Theorem 3.5. Let (1.3) be an analytic system. Suppose that L is a k multiple closed

orbit of System (2.1), o2 = / b(s)ds =0 and Ko # 0. For small € # 0, we have
(1) L generates at most 2k closed orbits of System (1.3).



268 LIU, X. L. & HAN, M. A.

(2) For k = 1, L generates exactly two closed orbits of System (1.3) when Kodse < 0
and no closed orbits when K2J55 > 0.

(3) Let
—B1 + (—1)"\/ 5% — 4azfs . i=1.2
20,2

For k = 2, if 32 — 4axfB2 < 0, then System (1.3) has no closed orbits in the neighborhood
of L. If 6% —4azfB2 > 0 and aj1a12 < 0, then System (1.3) has exactly two closed orbits in
the neighborhood of L. If ﬁ% —4azfBy > 0 and a2 > 0, then System (1.3) has no closed
orbits in the neighborhood of L when Koai1e > 0 and has exactly four closed orbits when
Ksaq1e < 0.

(4) For k > 2, if 182 # 0, then we have

(1) If k is odd, then L generates exactly one closed orbits of System (1.3) when Ko (66J3
—65cf5)5 < 0 and L generates exactly three closed orbits of System (1.3) when K31 (66&3 -
55625)5 > 0.

(ii) If k is even and ak&3(66&3 - 55625) < 0, then L generates exactly two closed orbits of

ay = ds +

System (1.3). If k is even and akJ3(66&3 — 65&5) > 0, then L generates exactly four closed
orbits of System (1.3) when ards K281 > 0 and no closed orbits when apdsK2(1€ < 0.

Proof. If o5 = fOT b(s)ds = 0 and K» # 0, by (3.26), we have

e= dsp1p2 + dsp3) + O(p2lp1, p2l), (3.27)

1
_E(
Substituting (3.27) into (3.25), we have

arpf + Brpipz + B2ps + O(|pzllp1, pol® + |p2/FT) = 0, (3.28)

where 31 = é5 — ﬁ—;e"ld}, (o = Cg — %601J5.

(1) Let f(p1,p2) = anpf + Bip1p2+ Bap3 + Ol pallp1, pal*+ |p1|*+1). By using the Weier-
strass Preparation Theorem (cf. [6] or [1]), we see that Equation (3.28) has at most k
solutions in py. If f(0,ps) # 0, then by Theorem 1.9 of [6] (or by [1]) we know that the
solutions of Equation (3.28) (if they exist) have the forms

pr=r0v;(py),  j=1,-.0, 1<I<k, (3.29)

where ©;(0) # 0, v;(u) is analytic in u near v = 0 and 3;,7; are positive rational numbers.
Substituting (3.29) into (3.27), we see that there exist ¢; and &; such that the resulting
equation has the form

5:Ejp§J +O(|p2laj)7 .7: 1) 7l7 (330)

where ¢; € R and @; is a positive rational number. It is easy to see that (3.30) has at
most two inverse functions for every j. Hence by (3.29) and (3.30), we know that Equations
(3.25) and (3.26) have at most 2k solutions. If f(0,ps) = 0, then we can rewrite f(p1, p2)
as f(pl,pg) = plfl(pl,pg), where fl(pl, p2) is analytic in (p1, p2), which has the form

filpr, p2) = arpy™" + Bipz + O(p1pa| + |p2|* + |1 ]").
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Equation f(pl,pg) = 0 yields p; = 0 or f~1(p1,p2) = 0. If py = 0, then by (3.27) we have
e = O(p2), which has at most two inverse functions. If fl(O, p2) # 0, by an analysis similar to
the above, we know fi(p1, p2) = 0 and (3.27) have at most 2(k—1) solutions, hence Equations
(3.25) and (3.26) have at most 2k solutions. If fl(O,pg) =0, let fl(pl,pg) = plfg(pl,pg),
where fy(p1, p2) is analytic in (py, p2), which has the form

Fa(prs p2) = aip ™ + O(|p2| + |pr[* ).

Repeat the same process as above. In general, there is a natural number m and an analytic
function f, (p1, p2), such that

f(pla P2) = p;nfm(pla p2)7

where m < k —1 and f,,(0,p2) Z 0 or m = k. If m < k—1 and f,,(0,p2) # 0, then
Equations (3.25) and (3.26) have at most 2(k — m + 1) solutions. If m = k, then

frlp1, p2) = ar + O(lp1] + |p2|) # 0. (3.31)

In this case Equations (3.25) and (3.26) have at most two solutions. Summarizing the above,
we conclude that (3.25) and (3.26) have at most 2k solutions. Hence L generates at most
2k closed orbits of System (1.3).

(2) For k =1, by (3.28), we have

pL = _f—jpg +O0(|p2*) = p1(p2)- (3.32)

Substituting (3.32) into (3.27), we obtain
e=——2p210(pa)?). (3.33)

If Kodse > 0, then (3.33) has no inverse functions. If Kodse < 0, then (3.33) has two inverse

functions L
. K 2
p= (1) (= 226)" bolleh) = pule), =12
5

Hence (3.25), (3.26) have no solutions when Kydse > 0 and have two solutions

(p1, p2) = (p1(p2i(€)), pai(€)), i=1,2,

when K2J55 < 0.
(3) For k = 2, similarly to the proof of Theorem 3.3(1), we conclude that (3.28) has no
solutions when 32 — 4as32 < 0. If 37 — 4aaB2 > 0, then (3.28) has two solutions

B 1vi /AT
_ A+ (D) \/mpz +0(p3) = pri(p2),  i=1,2. (3.34)

20,2

P1

Substituting (3.34) into (3.27), we have

(&5T)

Ky

e=——p+0(pal’), i=1.2. (3.35)
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If Koase > 0,4 = 1,2, then (3.35) has no inverse functions for ¢ = 1,2 respectively. If
Ksaiie <0, then (3.35) for ¢ = 1 has two inverse functions

K 1
Pzz(_l)l(_a_jE)Q +o(le|?) = pau(e), I=1,2.

If Koaqse < 0, then (3.35) for ¢ = 2 has two inverse functions

o Ko \3 ,
p= (17 (= 22)" bollelh) = pye). =12
12

Therefore for 37 — 4az(2 > 0, if a11a12 < 0, then (3.35) has only two inverse functions
p2 = poule) (I = 1,2) or pa = pagj(e) (j = 1,2). Thus (3.25), (3.26) have exactly two
solutions

(1, p2) = (P11(p2u(€)), p2ule)),  1=1.2,
or

(p1,p2) = (P12(p22j(€)), p22i(€)), j=1,2.
If aj112 > 0, then (3.35) has no inverse functions for ¢ = 1 and ¢ = 2 when Ksaq16 > 0
and has four inverse functions pa = p211(€), p2 = p212(€), p2 = pa21(€) and pa = paza(e)
when Ksaqie < 0. Thus (3.25) and (3.26) have no solutions when Ksai1e > 0 and have
four solutions

(p1, p2) = (P11(p211()), p21(€)), 1=1,2,
(p1,p2) = (P12(pa2j(€)), pa2j(€)),  j=1,2,

when Ksaqi1e < 0.
(4) For k > 2, suppose (102 # 0. Similarly to the proof of Theorem 3.3(2), we know
that (3.28) has two solutions

m=—%m+omm%z&@m (8:36)
=~ S+ Ol ) = falo) (3.37)

Substituting (3.36) into (3.27), we have

_ 1 5 a5 2 sy L s sy 3
S =% (B2ds — Brds)p3 + O(|p2]”) = o (Cods — Csds)p3 + O(|p2]). (3.38)

If Koy (66J3 — 65&5)6 < 0, then (3.38) has no inverse functions. If KQﬁl(éGdg — 65J5)6 >0,
then (3.38) has two inverse functions

Kypie

1

2 1
- 4 o(|e|2) = poi(e), 1 =1,2.
) olel) = o)

p2 = (-1)'(
Substituting (3.37) into (3.27), we have

akd~3 k
P1
Kop1

€= +O(|p1|FTh). (3.39)
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If k is even, then (3.39) has no inverse functions when akd~3K2ﬂ1€ < 0 and has two inverse

functions K )
P = (_1)1< Qélg)k +O(|€|%) 5511'(5)7 i=1,2
akdg

when akd~3K2616 > 0. If k is odd, then (3.39) has a unique inverse function

o K26 % % _ =z
pr = (Wzg e)" +olel ) = fuse).

Therefore if k is odd, then (3.25) and (3.26) have exactly one solution

(p1, p2) = (p13(€), p2(pr3(e))),

when K>3, (éﬁdg — E5CZ5)€ < 0 and have three solutions

(p1,p2) = (p1(p2i(e)), pai(e)),  i=1,2,

and
(p1,p2) = (P13(€), p2(p13(¢)))

when Kgﬁl(égdg — 55625)6 > 0.

If k is even and ayds(éeds — sds) < 0, then (3.25) and (3.26) have two solutions

(pla p2) = (51(/321'(5))7/321'(6))) 1=1,2,

or
(p1, p2) = (P1i(e), p2(p1i(e))), =12

If k is even and ayds(éeds — ¢sds) > 0, then (3.25) and (3.26) have four solutions

(p1,p2) = (p1(p2i(e)), pai(€)), i=1,2,
and
(p1, p2) = (pri(e), p2(pri(e))), i=1,2.

when ak&gKgﬁls > 0 and have no solutions when Clk(}ZgKQﬁlE < 0. Hence Theorem 3.5(4)
follows from the above analysis. This completes the proof.

If Ky =0, we have
Theorem 3.6. Let (1.3) be an analytic system. Suppose that L is a k multiple closed
T
orbit of System (2.1) and o9 = / b(s)ds = Ko = 0. For small € # 0, we have
0

(1) For k = 1, assume ds # 0. Then L generates at most two closed orbits of System
(1.3). Furthermore, L generates exactly two closed orbits of System (1.3) when A > 0 and
generates no closed orbits of System (1.3) when A < 0, where

ay ay

A= (d"ﬁ - 11 J3601K1>2 — 4ds (c'i7 _ 11 d'4e”1K1).

(2) If k > 1 and Kydy # 0, then L generates at most 2k+2 closed orbits of System (1.3).
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(3) For k> 1, if Kidsd,ds # 0, assume

E_T ) k:2,
) A
A= -
&g — 3% k>2
ds3

Then

(i) For odd k, L generates exactly one closed orbits of System (1.3) when K191 > 0 and
generates exactly three closed orbits of System (1.3) when K191€ < 0.

(ii) For even k, if a1 < 0, then L generates exactly two closed orbits of System (1.3);
if ag1 > 0, then L generates exactly four closed orbits of System (1.3) when K151 < 0 and
no closed orbits of System (1.3) when K131 > 0.

Proof. If o3 = fOT b(s)ds = Ko = 0, then (3.25) and (3.26) become

axpl + €7 K1 + Esp1pa + Gops + Erpie + Espac + Eo’
+O(lp2,¢ellp1, pasel” + | [F1) = 0, (3.40)
623,01,02 + CZ4P1£ + d5p3 + J6p2€ + d752

+ O(|p2llp1, pa, el*) = 0. (3.41)

(1) If kK = 1, by the Implicit Function Theorem, (3.40) has a unique solution

1 i
p1=——(e" Kie + &op3) + Olpal® + e[ + |pocl). (3.42)
1

Substituting (3.42) into (3.41), we have
7 .2 7 L5 o 7 L5 o 2 3
dsp2 + (dﬁ — —de lKl)pge + (d7 — —die lKl)a +O(|p2,e?) = 0. (3.43)
1 1
Suppose that ds # 0. It is easy to see that (3.43) has at most two solutions in py. Hence

(3.40) and (3.41) have at most two solutions. Furthermore, similar to the proof of Theorem
3.3(1), we obtain that (3.43) has no solutions when A < 0 and has two solutions of the forms

—d~6 + a—11d~3601K1 + \/Z

= e+ 0(e?
P2 24 (€7)
when A > 0. Therefore Theorem 3.6(1) holds.
(2) If K > 1 and K # 0, then by (3.40) we have
1 - -
€= _M(aw’f +25p1p2 + G6p3) + O(Ip1 | + pipa| + [p103] + [p2]*). (3.44)
Substituting (3.44) into (3.41), we have
dsa - -
2P+ dapipa + dspi + O(|pa, pal) = 0. (3.45)

Tk K, P1
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If dy # 0, using (3.44) and (3.45), by a process similar to the proof of Theorem 3.5(1), we
have that the conclusion of Theorem 3.6(2) holds.

(3) For k > 1, if Kydsdsds # 0, in a way similar to the analysis of Theorem 3(2), we
obtain two solutions of Equation (3.45) as follows

d -
pr= —dipz +0(p3) = pr(p2), (3.46)
3
Ci Q. =
pr = —HYE_ k4 O(1p1 ) = (). (3.47)
e’ Kds

Substituting (3.46) into (3.44), we have

Yoo 3
= p5 + O(|pa]?). 3.48
Tk, (lp=1%) (3.48)

Hence (3.48) has no inverse functions when K341 > 0 and has two inverse functions

e’ K4

p2 = (—1)i( - e)i to(le]2) = paile), i=1,2,

when K7y < 0.
Substituting (3.47) into (3.44), we have

___% ok k+1 4
e =g 0o, (3.49)

For even k, if Kjare > 0, then (3.49) has no inverse solutions. If Kjaxe < 0, then (3.49)
has two inverse solutions

e’ K4

o= (= ) ol =, =12

For odd k, (3.49) has a unique inverse function

e K1 \* P
p= (= te) " olllt) = Auste)

Therefore for odd k, (3.40) and (3.41) have exactly one solution

(p1,p2) = (p13(2), p2(p13(€)))

when Kj71€ > 0 and have exactly three solutions

(p1, p2) = (p1(p2i(€)), p2i(€)), i=1,2
and
(p1,p2) = (p13(e), p2(p13(€)))

when K7y < 0.
For even k, if apy; < 0, then (3.40) and (3.41) have two solutions

(p1,p2) = (p1(p2i(€)), p2i(€)), i=1,2,
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or

(p1,p2) = (p1i(€), p2(p1i(€)))s i=1,2.

If a1 > 0, then (3.40) and (3.41) have four solutions

and

(p1,p2) = (p1(p2i(€)), pai(e)), i=1,2

(p1,p2) = (p1i(€), p2(p1i(€)))s i=1,2,

when K;79,¢ < 0 and have no solutions when K17y, > 0.

From the analysis above, we conclude that Theorem 3.6(3) holds. This completes the

proof.
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