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NON-DEGENERATE INVARIANT BILINEAR

FORMS ON NONASSOCIATIVE
TRIPLE SYSTEMS
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Abstract

A bilinear form f on a nonassociative triple system T is said to be invariant if
and only if f(〈abc〉, d) = f(a, 〈dcb〉) = f(c, 〈bad〉) for all a, b, c, d ∈ T . (T , f) is called
a pseudo-metric triple system if f is non-degenerate and invariant. A decomposition
theory for triple systems and pseudo-metric triple systems is established. Moreover, the
finite-dimensional metric Lie triple systems are characterized in terms of the structure
of the non-degenerate, invariant and symmetric bilinear forms on them.
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§ 1 . Introduction

Lie algebras admitting non-degenerate and invariant bilinear forms (i.e. self-dual Lie
algebras or pseudo-metric Lie algebras) has been a hot topic in the study of Lie theory. The
motivation for studying these algebras comes from the fact that metric Lie or associative
algebras have been appearing repeatedly in several areas of mathematics and physics (see,
for example, [1, 2]). Lie triple systems play an important part in the study of the theory of
Lie algebras and Lie groups. It is well known that a Lie algebra becomes a Lie triple system
in a natural way whereas a Lie triple system can be imbedded into a Lie algebra. As Lie
algebras carrying a non-degenerate invariant bilinear form are of particular importance in
studying Lie theory and other related fields, it should be worthwhile to look into the effect
of the action of non-degenerate and invariant bilinear forms on a Lie triple system. In [3] the
authors looked into the properties of Lie triple systems admitting non-degenerate invariant
bilinear forms when discussing the relationship between the symmetric invariant bilinear
forms on a Lie triple system and the ones on its standard embedding Lie algebra. In the
present paper, we investigate the decomposition theory both for a triple system T and for
a metric triple system (T ,f). We also characterize the finite-dimensional metric Lie triple
systems in terms of the structure of the non-degenerate invariant and symmetric bilinear
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forms on them. Jacobi identity is not needed in our discussion before Section 4, so we do
not confine our attention to triple systems of Lie type until then.

Section 2 contains some basic concepts and preliminary results. We prove that a
pseudo-metric triple system is metrizable when it is either commutative or anti-commutative
(see Lemma 2.4). As a result, a pseudo-metric Lie triple system over a field F is a metric
Lie triple system provided CharF �= 2.

In Section 3, we develop the decomposition theory for triple systems in the follow-
ing four steps. Firstly, we establish a theorem for decomposing a finite-dimensional triple
system T into a direct sum of indecomposable ideals, which may be called the general de-
composition theorem for triple systems. Secondly, we give the notion of f -decomposition
of a metric triple system and show that the actual difference between the so-called general
decomposition of a metric Lie triple system and its f -decomposition is that they are the
same up to annihilating Abelian ideals (see Theorem 3.2). Thirdly, in what we may call
an f -decomposition theorem (see Theorem 3.3), we solve the problem of decomposing any
finite-dimensional pseudo-metric triple system (T , f) into an orthogonal direct sum of f -
indecomposable ideals. Finally, we show that, giving a decomposition of (T , f) into a direct
sum of indecomposable ideals, a bilinear form g can be found such that the decomposition
is just an orthogonal direct sum of g-indecomposable ideals.

In Section 4, we advance the results on metric simple Lie triple system to the semi-
simple and reductive Lie triple system. Any Lie triple system T admitting a unique, up to
a constant, quadratic structure over a field F of characteristic zero is necessarily a simple
Lie triple system. If the field F is algebraically closed, such a condition is also sufficient.
In addition, we characterize all the semi-simple and reductive Lie triple systems with the
non-degenerate, invariant and symmetric bilinear forms on them.

§ 2 . Preliminaries

Let T be a nonassociative (i.e. not necessarily associative) triple system over a field F
and f a bilinear form on T . In this section, we first introduce the concept of a pseudo-metric
triple system, a triple system admitting a non-degenerate invariant bilinear form, and give
the preliminary results on them. And then we prove that a pseudo-metric Lie triple system
is metrizable. For basic concepts not specified in this section, the reader is referred to [4–8].

Let R be a commutative ring with 1. A triple system is a unital R-module T together
with a trilinear map T × T × T −→ T , (x, y, z) �−→ 〈xyz〉. T is called a Lie triple system,
if, for all u, v, x, y, z ∈ T ,

〈xxz〉 = 0, (2.1)

〈xyz〉 + 〈yzx〉 + 〈zxy〉 = 0, (2.2)

〈uv〈xyz〉〉 = 〈〈uvx〉yz〉 + 〈x〈uvy〉z〉 + 〈xy〈uvz〉〉. (2.3)

Define L(x, y), R(x, y), P (x, y) ∈ EndR(T ) by

〈xyz〉 = P (x, z)y = L(x, y)z = R(z, y)x.

Then (2.1), (2.2), (2.3) are equivalent to, respectively,
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L(x, x) = 0,

L(x, y) = R(x, y) − R(y, x),

[L(x, y), L(u, v)] = L(〈xyu〉, v) + L(u, 〈xyv〉).

(2.1)′

(2.2)′

(2.3)′

A submodule S of a triple system T is called a subsystem if 〈SSS〉 ⊆ S. S is called
an ideal if 〈ST T 〉 + 〈T ST 〉 + 〈T T S〉 ⊆ S. In the Lie triple system case, S is an ideal of T
if and only if 〈ST T 〉 ⊆ S.

A homomorphism from one triple system T to another, T ′, is a R-linear map f : T −→
T ′, satisfying f(〈xyz〉) = 〈f(x)f(y)f(z)〉 for all x, y, z ∈ T .

The image of any homomorphism is a subsystem of T ′ whereas the kernel is an ideal
of T . Conversely, if S is an ideal of a triple system T , then T = T /S, together with
〈(x + S)(y + S)(z + S)〉 := 〈xyz〉 + S, is again a triple system. T /S, is called the factor
triple system of T modS.

Definition 2.1. A bilinear form f : T × T −→ F is called invariant, if

f(〈abc〉, d) = f(a, 〈dcb〉) = f(c, 〈bad〉), ∀a, b, c, d ∈ T .

For any subspace V of T , let V⊥ (resp. ⊥V) denote the right orthogonal space (resp. the
left orthogonal space) of V , i.e. V⊥ := {t ∈ T | f(v, t) = 0, ∀v ∈ V}; ⊥V := {t ∈ T | f(t, v) =
0, ∀v ∈ V}. f is called non-degenerate if T ⊥ = 0 =⊥T .

We see that the equation in Definition 2.1 is equivalent to f(R(c, b)a, d) = f(a, R(b, c)d)
and f(L(a, b)c, d) = f(c, L(b, a)d), which corresponds to right- and left-invariant, respec-
tively.

If f is invariant and symmetric, then f(〈abc〉, d) = f(b, 〈cda〉). Therefore, a symmetric
bilinear form f on a Lie triple system T is invariant if and only if f is left invariant (see [3,
Lemma 4.1]).

Definition 2.2. A pseudo-metric triple system (T , f) is a triple system admitting a
non-degenerate invariant bilinear form f . In this case, T is pseudo-metrizable. If in addition
f is symmetric, we call (T , f) a metric triple system. T is then called metrizable.

Definition 2.3. The annihilator of a triple system T is the set

Z(T ) := {x ∈ T | 〈xT T 〉 = 〈T xT 〉 = 〈T T x〉 = 0}. (2.4)

More generally, for any submodule V of T , the annihilator ZT (V) of V in T is defined
as the set of all x in T such that for any permutation of x, T and V , the triple composition
of the three is zero.

ZT (V) is a submodule, but not a subsystem, even if V is an ideal. For a Lie triple
system T , Z(T ) is also called the center of T .

Definition 2.4. A triple system T is decomposable if it is either zero or equal to a
direct sum of two non-zero ideals. T is called reductive if Rad (T ) = Z(T ).

Any Abelian or semi-simple triple system is a reductive Lie triple system.
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Lemma 2.1. For any subspaces V and W of T , the following basic duality relations
hold:

V ⊆ W implies V⊥ ⊇ W⊥ and ⊥V ⊇⊥W , (2.5)

(V + W)⊥ = V⊥ ∩W⊥ and ⊥(V + W) =⊥V ∩⊥W , (2.6)

(V ∩W)⊥ ⊇ V⊥ + W⊥ and ⊥(V ∩W) ⊇⊥V +⊥W . (2.7)

Furthermore, when T is in the finite case, the following formulae hold:

⊥(V⊥) = V +⊥T and (⊥V)⊥ = V + T ⊥, (2.8)

dimV⊥ = dim T − dimV + dim(V ∩⊥T ), (2.9)

dim⊥ V = dim T − dimV + dim(V ∩ T ⊥), (2.10)

dim(V ∩ V⊥) = dim(V ∩⊥V). (2.11)

For the special case that f is a symmetric non-degenerate bilinear form on T , we have
(⊥V)⊥ = V and dimV⊥ = dim⊥ V = dim T − dimV.

Let f (resp. g) be a bilinear form on a vector space T1 (resp. T2) over a field F . Then
there is a canonical bilinear form f⊥g on the direct sum T1+̇T2 of T1 and T2 defined by

f⊥g(t1 + t2, t
′
1 + t′2) := f(t1, t′1) + g(t2, t′2)

for all t1, t
′
1 ∈ T1, t2, t

′
2 ∈ T2. Moreover, f⊥g is non-degenerate if and only if both f and g

are non-degenerate.
A subspace V of T is called non-degenerate if V ∩V⊥ = 0 and V ∩ ⊥V = 0. For a finite

dimensional triple system T , the two conditions are equivalent according to (2.11) in Lemma
2.1. Moreover, Lemma 2.1 tells us T = V ⊕ V⊥ and T = V ⊕⊥ V for each non-degenerate
V and each finite dimensional T . Hence, it is readily checked that the bilinear form f on
T is non-degenerate if and only if both the restrictions of f to V × V and to V⊥ × V⊥ are
non-degenerate.

Definition 2.5. The intersection of ⊥T and T ⊥ is called the kernel of f and is denoted
by Nf . If T ′ is another vector space over the field F and m : T ′ −→ T is a linear map, then
the pull back m∗f is defined to be the bilinear form (a, a′) �−→ f(ma, ma′) for all a, a′ ∈ T ′.

The kernel Nm∗f of m∗f contains the kernel of m. It is readily checked that for a
surjective m, Nm∗f = m−1Nf .

Suppose g is a bilinear form on T ′, m is surjective and kerm ⊆ Ng. Then the projective
gm of g given by gm(ma′

1, ma′
2) := g(a′

1, a
′
2) is a well-defined bilinear form on T , with the

kernel Ngm ∼= Ng/kerm.
Let T be a Lie triple system and H the submodule of derivation algebra V (T ) of T

(V (T ) is the F -module of all derivations of T together with the map (D1, D2) �−→ [D1, D2].
V (T ) is also an algebra). If H is generated by all L(x, y), ∀x, y ∈ T , then H is an ideal of
V (T ) (see [5] for the definition of L(x, y)).

Lemma 2.2. Let (T , f) be a pseudo-metric triple system over a field F and V an
arbitrary vector subspace of T .
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(1) If I is an ideal of T , ⊥I and I⊥ are both ideals and 〈IT I⊥〉 + 〈I⊥T I〉 = 0.
Moreover, if f is symmetric, we have I⊥ ⊆ ZT (I) and ⊥I ⊆ ZT (I).

(2) ZT (V) = (〈VT T 〉)⊥∩(〈T VT 〉)⊥∩(〈T T V〉)⊥∩⊥ (〈VT T 〉)∩⊥ (〈T VT 〉)∩⊥ (〈T T V〉).
In particular, if f is symmetric or antisymmetric, or T is commutative or anti-

commuta- tive (i.e. 〈xyz〉 = 〈yxz〉 or 〈xyz〉 = −〈yxz〉, ∀x, y, z ∈ T ), then

ZT (V) =⊥ (〈T T V〉 + 〈T VT 〉 + 〈VT T 〉) = (〈T T V〉 + 〈T VT 〉 + 〈VT T 〉)⊥.

And ZT (V) is an ideal if V is.
(3) Z(T ) =⊥ (T (1)) = (T (1))⊥, where T (1) := 〈T T T 〉.

Remark 2.1. Any solvable nonzero finite dimensional pseudo-metrizable triple system
has a nonzero annihilator. Because T (1) ⊂ T , T (1) �= T and dim T (1)+dim(T (1))⊥ = dim T ,
we have dim(T (1))⊥ = dimZ(T ) > 0.

Two dimensional non-Abelian Lie triple systems cannot be pseudo-metrizable because
it has nonzero annihilator.

The next lemma is a basic result about the transfer of invariant bilinear forms from
one triple system to another.

Lemma 2.3. Let T and T ′ be two triple systems over a field F and f (resp. g) an
invariant bilinear form on T (resp. on T ′). If m : T −→ T ′ be a homomorphism of triple
systems, then

(1) The pull back m∗g of g is an invariant bilinear form on T .
(2) When m is surjective and Kerm is contained in the kernel of f , the projection fm

of f is an invariant bilinear form on T ′.
(3) When H is a subsystem of T and H ∩ H⊥ = H ∩⊥ H, H ∩ H⊥ is an ideal of H.

Given that p : H −→ H/(H∩H⊥) is the canonical projection and fH the restriction of f to
H×H, then the projection (fH)p is a non-degenerate invariant bilinear form on the factor
system H/(H ∩H⊥).

(4) The bilinear form f ⊥ g is invariant on the direct sum T ⊕T ′. Moreover, f ⊥ g is
non-degenerate if and only if f and g are non-degenerate.

Definition 2.6. Let (T , f) and (T ′, g) be two pseudo-metric triple systems. A linear
map φ : T −→ T ′ is an isometry or isomorphism of pseudo-metric triple systems if φ is an
isomorphism of the two triple systems and f = φ∗g.

Lemma 2.4. Let T be a triple system over a field F , satisfying 〈xyz〉 = ε〈yxz〉 for
ε = ±1 and all x, y, z in T . If f is an invariant bilinear form on T , then

(1) f(〈xyz〉, w) = f(w, 〈xyz〉), ∀x, y, z, w ∈ T .
(2) If CharF �= 2 and (T , f) is a pseudo-metric triple system, T is metrizable.

Proof. (1) As 〈xyz〉 = ε〈yxz〉 for ε2 = 1, we have

f(〈xyz〉, w) = f(x, 〈wzy〉) = εf(x, 〈zwy〉 = εf(〈xyw〉, z)

= εf(w, 〈yxz〉) = ε2f(w, 〈xyz〉) = f(w, 〈xyz〉).
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(2) Let f t(x, y) = f(y, x), ∀x, y ∈ T . Clearly, f t is a non-degenerate bilinear form on
T . We point out that f t is invariant. In fact, ∀x, y, z, w ∈ T ,

f t(〈xyz〉, w) = εf t(〈yxz〉, w) = εf(w, 〈yxz〉) = εf(〈xyw〉, z)

= εf t(z, 〈xyw〉) = f t(z, 〈yxw〉).

Since fs(a, b) := 1
2 (f(a, b) + f t(a, b)) (resp. fas(a, b) := 1

2 (f(a, b) − f t(a, b))) is a
symmetric (resp. anti-symmetric) invariant bilinear form on T , f = fs + fas is a sum with
one part symmetric and the other anti-symmetric.

By (1) and the definition of invariance, we get the equalities

fas(T , T (1)) = fas(T (1), T ) = 0 and f(T , T (1)) = fs(T , T (1)). (2.12)

Let N be the kernel of fs and T ⊥′
(resp. ⊥′T ) be the left (resp. right) orthogonal space

of T with respect to fs. Since N = T ⊥′
=⊥′ T by the symmetry of fs, N is an ideal of T

by Lemma 2.3(3). As a particular case of (2.12), we get

f(T ,N ∩ T (1)) = fs(T ,N ∩ T (1)) ⊂ fs(T ,N ) = 0,

meaning N ∩ T (1) = 0. Since f is non-degenerate, it is easy to deduce N ⊆ Z(T ) from

〈NT T 〉 + 〈T NT 〉 + 〈T T N〉 ⊂ N ∩ T (1) = 0.

Now take any vector subspace V of T such that T = V⊕ (T (1)⊕N ). Let B := V⊕T (1)

be an ideal. Since N ⊆ Z(T ), the restriction of the canonical projection p : T −→ T /N to
B is an isomorphism of triple systems. Again by Lemma 2.3(3) we see that fs restricting to
B is non-degenerate. Choose a vector space base (ei) of N and define g(ei, ej) := δij . Then
g is a non-degenerate symmetric invariant bilinear form on triple system N .

It is clear from Lemma 2.3(4) and T = N⊕B that g ⊥ fs is a non-degenerate symmetric
invariant bilinear form on T . Hence T is metrizable.

Corollary 2.1. A finite dimensional pseudo-metric Lie triple system T over a field F
with CharF �= 2 is a metric Lie triple system.

§ 3 . Decomposition Theory

In this section, we give a decomposition theorem for a finite dimensional triple system T
and an f -decomposition theorem for a finite dimensional pseudo-metric triple system (T , f).
We also investigate the connection between the two different kinds of decompositions.

Theorem 3.1. Let T be a finite-dimensional triple system over a field F . If there are
two decompositions of T into direct sums of indecomposable ideals

T = I1 ⊕ · · · ⊕ Ik ⊕ · · · ⊕ IK and T = J1 ⊕ · · · ⊕ Jm ⊕ · · · ⊕ JM ,

where k, K, m, M are integers with 0 ≤ k ≤ K, 0 ≤ m ≤ M and the ideal Ii (resp. Jj) is
non-Abelian for 1 ≤ i ≤ k (resp. 1 ≤ j ≤ m) and Abelian (i.e. 〈IiIiIi〉 = 0) otherwise, then

(1) K = M and k = m. And there is a permutation of the set {1, 2, · · · , M} leaving
invariant the set {1, 2, · · · , m} such that the restriction of the canonical projection pj′ :
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T −→ Ij′ to the ideal Jj is an isomorphism of the triple systems. The induced permutation
of {1, 2, · · · , m} is uniquely defined by the condition Jj ∩ Ij′ �= 0.

(2) All the indecomposable Abelian ideals in the above decomposition are one dimen-
sional and belong to the annihilator Z(T ) of T .

(3) Jj + Z(T ) = Ij′ + Z(T ) and Jj
(1) = Ij′

(1) for all 1 ≤ j ≤ M .
(4) If T is perfect, i.e. T has a vanishing annihilator, then m = M and the above

decomposition is unique up to permutations.

Proof. Let LRP(T ) denote the associative subalgebra of the space of all F -linear maps
T −→ T generated by L(x, y), R(x, y) and P (x, y), with the multiplication of the subalgebra
being the composition of maps, i.e. for any f1, f2 in LRP(T ) and x in T ,

(f1f2)(x) = (f1 · f2)(x) = f1(f2(x)).

Then (f1(f2f3)) = ((f1f2)f3)). So LRP(T ) is associative.
Next, without loss of generality, we make a standard construction to imbed LRP(T )

into the algebra LRP(T , 1) with unit element. Consider the F -module

LRP(T , 1) := F · 1 ⊕ f = {(α, f) | ∀α ∈ F , f ∈ LRP(T , 1)}.

LRP(T , 1) is an algebra with the multiplication defined by the formula

(α, f1)(β, f2) = (αβ, αf2 + βf1 + f1f2).

It is evident that LRP(T , 1) has a unit element (1, 0) and f �−→ (0, f) defines a homo-
morphism from LRP(T ) to LRP(T , 1). So LRP(T , 1) is a unital associative algebra since
LRP(T ) is associative.

As a unital associative algebra, LRP(T , 1) is both Artinian and Noetherian. In fact,
as T is a finite-dimensional module over F , so is the space Endφ(T ) of F -linear maps.
Then LRP(T , 1) is finite dimensional as a subspace of Endφ(T ) and is both Artinian and
Noetherian, for a finite-dimensional ring is both Artinian and Noetherian.

Next, we observe that T is a finite-dimensional triple system and a module over the
ring LRP(T , 1). Let LRP(T , 1) × T −→ T be defined by

(f, x) �−→ f(x), ∀f ∈ LRP(T , 1), ∀x ∈ T .

Obviously T is a LRP(T , 1)-module. Moreover, since the map F · 1 −→ LRP(T , 1) is a
standard imbedding map and F · 1 is isomorphic to F and T is finite-dimensional as a
F -module, T is a finite LRP(T , 1)-module. So T is both Noetherian and Artinian because
LRP(T , 1) is both Noetherian and Artinian.

An LRP(T , 1)-submodule T1 of module T is an ideal of the triple system T and vice
versa because

〈T1T T 〉 + 〈T T 1T 〉 + 〈T T T 1〉 ⊆ T1 iff L(T T )T1 + R(T T )T1 + P (T T )T1 ⊆ T1.

Moreover, the LRP(T , 1)-submodule T1 of T is an indecomposable submodule if and only if
T1 is indecomposable as an ideal of the triple system T . Use the first part of Krull-Schmidt
theorem (Let T be a module that is both Artinian and Noetherian and let

T = I1 ⊕ · · · ⊕ IK and T = J1 ⊕ · · · ⊕ JM ,
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where the submodule Ii and Jj are indecomposable. Then K = M) (see [9]), we see that
the first statement of the theorem has been proved, i.e. K = M . Moreover, it is seen
from the proof of Krull-Schmidt theorem (see [9, pp.110-115]) that there is a permutation
of {1, 2, · · · , M} such that T = Jj ⊕ I(j′), where I(j′) denotes the ideal I1 ⊕ · · · ⊕ Ij′−1 ⊕
Ij′+1 ⊕ · · · ⊕ IM . Hence Jj is isomorphic to the factor module T /I(j′) which is obviously
isomorphic to Ij′ . In order to prove that the above module isomorphism is also a triple
system isomorphism it now suffices to show that the canonical projection pj′ : T −→ Ij′ is

a triple system homomorphism. In fact, for any x =
m⊕

i=1

xi, y =
m⊕

i=1

yi, z =
m⊕

i=1

zi ∈ T and

xi, yi, zi ∈ Ii,

pj′(〈xyz〉) = pj′ (L(x, y)z) = L(x, y)pj′(z) = 〈xyzj′〉

=
〈 m⊕

i=1

xi,

m⊕
i=1

yi, zj′
〉

= 〈xj′yj′zj′〉 = 〈pj′(x)pj′ (y)pj′ (z)〉.

Therefore, the restriction of pj′ to Jj is indeed a triple system isomorphism.
The annihilator ZT (I(j′)) of I(j′) in T contains the ideals Ij′ ,Jj and Z(T ). Hence

Ij′ ⊕ (ZT (I(j′)) ∩ I(j′)) = ZT (I(j′)) = Jj ⊕ (ZT (I(j′)) ∩ I(j′)).

On the other hand, ZT (I(j′)) ∩ I(j′) is contained in Z(T ). Therefore

Ij′ + Z(T ) = Jj + Z(T ).

Cubing both sides of this equation gives I(1)
j′ = J (1)

j . Clearly, Ij′ is non-Abelian if and only
if Jj is. And in this case, Ij′ ∩Jj �= 0, which determines a 1–1 correspondence between the
non-Abelian ideals I ′

j and the non-Abelian ideals Jj . Therefore k = m. With this we come
to the end of the proof of (1) and (3).

(2) is true since every Abelian ideal I of T (i.e. 〈III〉=0) whose dimension is greater
than one can be decomposed into a direct sum of one-dimensional Abelian ideals and every
Abelian indecomposable ideals in the theorem belongs to the annihilator Z(T ) of T .

Next we prove (4). If T is perfect, T (1) = 〈T T T 〉 = T by definition. Then

T = T1 ⊕ · · · ⊕ TM = T (1)
1 ⊕ · · · ⊕ T (1)

m = T (1).

So T (1)
i = Ti for all i ≤ m and Ti = 0 for all i > m. Because J (1)

j = I(1)
j′ ,Jj = J (1)

j =

I(1)
j′ = Ij′ , it follows that m = M and the decomposition in the theorem is unique. If T has

a vanishing annihilator, we have the same conclusion because

Jj + Z(T ) = Jj = Ij′ = Ij′ + Z(T ).

We now consider the decomposition problem for a finite-dimensional pseudo-metric
triple system (T , f).

Definition 3.1. An ideal I of a finite-dimensional pseudo-metric triple system (T , f)
is f -non-degenerate if I ∩ I⊥ = 0.
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By the dimension formulae in Lemma 2.1, it is easy to see that, for an ideal I in a
pseudo-metric triple system (T , f),

I ∩ I⊥ = 0 iff I ∩⊥ I = 0 iff T = I ⊕ I⊥ iff T = I ⊕⊥ I.

So the following four statements are equivalent:
(1) I is f -non-degenerate;
(2) I⊥ is f -non-degenerate;
(3) the restriction of f to I × I is non-degenerate;
(4) the restriction of f to I⊥ × I⊥ is non-degenerate.

Definition 3.2. A pseudo-metric triple system (T , f) is called f -decomposable if T =
0 or T contains a nonzero f -non-degenerate ideal I �= T . Otherwise, (T , f) is called f -
indecomposable.

Lemma 3.1. A finite-dimensional pseudo-metric triple system has a decomposition
into a direct sum of f -indecomposable ideals.

Proof. Let (T , f) be a finite-dimensional pseudo-metric triple system. If (T , f) is
f -indecomposable or zero, the proof is self-evident.

Suppose that (T , f) is f -decomposable and that I is an f -non-degenerate ideal of T .
Then T = I ⊕I⊥. Since the restriction of f to I ×I is non-degenerate, there is a nontrivial
f -non-degenerate ideal J of I. Let J ⊥′

denote the right orthogonal space of J in I. Then
J⊥′

is f -non-degenerate as I(I⊥) = (I⊥)I = 0. Hence T can be decomposed into a direct
sum J ⊕ J ⊥′ ⊕ I⊥. Proceeding in this way, we end up with a decomposition of T into a
direct sum of finite f -indecomposable f -non-degenerate ideals.

Before discussing the relationship between any two f -decompositions of (T , f) into
orthogonal f -indecomposable ideals, we first look into the connection between the f -inde-
composability and the indecomposability in the general sense of a pseudo-metric triple sys-
tem.

Theorem 3.2. Let (T , f) be a finite f -indecomposable pseudo-metric triple system
over a field F .

(1) If T is non-Abelian, T is indecomposable.
(2) If T (1) = 0, then either T is one dimensional and hence indecomposable or T is

two-dimensional with f being anti-symmetric.

Proof. First, if T is such that T = I +J , where I and J are ideals in T , and for any
permutation of T , I and J , the multiplication of the three is zero, then T (1) = I(1) ⊕J (1).

In fact, from I ⊆ ZT (J ) and J ⊆ ZT (I), we have

〈IT T 〉 = 〈I(I + J )(I + J )〉 = I(1) = 〈T IT 〉 = 〈T T I〉,
〈J T T 〉 = 〈T J T 〉 = 〈T T J 〉 = J (1).

So T (1) = I(1) + J (1). Since I(1) and J (1) are ideals of T , we get by Lemma 2.1(2.6),

⊥(I(1)) =⊥ (〈IT T 〉 + 〈T IT 〉 + 〈T T I〉) ⊇ ZT (I),

(〈IT T 〉 + 〈T IT 〉 + 〈T T I〉)⊥ = (I(1))⊥ ⊇ ZT (I).
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Hence J ⊆ ZT (I) ⊆ ⊥(I(1)) and J ⊆ (I(1))⊥. It follows that

I(1) ⊆ ⊥J ∩ J⊥.

Similarly, J (1) ⊆ ⊥I ∩ I⊥ since

I⊥∩ J⊥ = (I + J )⊥ = T ⊥ = 0 =⊥T = 0 =⊥I ∩⊥J .

Therefore I(1) ∩ J (1) = 0, which then gives T = I(1) ⊕ J (1).
(1) Let (T , f) be f -indecomposable and T (1) �= 0. We prove in three steps that either

I = T and J ⊆ Z(T ) ⊆ I(1) or J = T and I ⊆ Z(T ) ⊆ I(1), thus reaching the conclusion
that T is indecomposable.

First, we show Z(T ) ⊆ T (1). Let Z0 be a subspace of Z(T ) such that Z(T ) =
Z0 ⊕ (Z(T ) ∩ T (1)). Using Lemma 2.1(2.7), we get

T (1) = Z(T )⊥ = Z(1)
0 ∩ (T (1) + Z(T )),

the last equality being from

(Z(T ) ∩ T (1))⊥ = (⊥(T (1)) ∩⊥ Z(T ))⊥ = (⊥(T (1) + Z(T )))⊥ = T (1) + Z(T ).

Consequently
0 = Z0 ∩ T (1) = T0 ∩ Z⊥

0 ∩ (T (1) + Z(T )) = Z0 ∩ Z⊥
0 .

Hence, as a subspace of Z(T ), Z0 is an f -non-degenerate ideal of T . By the f -indecom
-posability of (T , f), we get Z0 = 0. Therefore, Z(T ) ⊆ T (1).

Next, without loss of generality, suppose I(1) �= 0 . We shall prove I ∩⊥I = I ∩ I⊥,
from which it is clear that I ∩ I⊥ is an ideal of T by Lemma 2.3(3). Since I(1) ⊆ I, it
follows that

⊥I ⊆⊥ (I(1)) = ZT (I) = (I(1))⊥ ⊇ I⊥.

So
I ∩ I⊥ ⊆ ZT (I) and I ∩⊥ I ⊆ ZT (I).

Thus
I ∩ I⊥ ⊆ Z(T ) and I ∩⊥I ⊆ Z(T )

because I ∩ I⊥ ⊆ I ⊂ ZT (J ). Furthermore

I ∩ I⊥ ⊆ Z(T ) ⊆ T (1) = I(1) ⊕ J (1).

Since I(1) ∩ I⊥ ⊆ J ⊥ ∩ I⊥ = T ⊥ = 0, we have I ∩ I⊥ ⊆ J (1). Thus I ∩ I⊥ ⊆ J (1) ∩ I.
On the other hand, J (1) ∩ I ⊆ I ∩ I⊥ as J (1) ⊆ I⊥. Therefore

I ∩ I⊥ = I ∩⊥ I = J (1) ∩ I.

Since 0 = T ⊥ = I⊥ ∩ J⊥ ⊇ I⊥ ∩ I(1) = I ∩ I⊥ ∩ I(1),

(I ∩ I⊥) + I(1) = (I ∩ I⊥) ⊕ I(1).

Choose a vector subspace V of I such that I = V ⊕ I(1) ⊕ (I ∩ I⊥). Then I ′ := V ⊕ I(1) is
an ideal of I.
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Finally, we show that I ′ is an f -non-degenerate ideal of T , which will lead to I ′ = T
and I = T . Indeed, let x ∈ I′ be such that f(x, I ′) = 0. Obviously, f(x, I ∩ I⊥) = 0. And
hence f(x, I′ ⊕ (I ∩ I⊥) = 0. So I = T and J ⊆ Z(T ) ⊆ I(1) = T (1).

(2) In the case where T is Abelian, every f -non-degenerate one-dimensional subspace
of T is an f -non-degenerate ideal. Therefore, either there is a one-dimensional f -non-
degenerate subspace, meaning T is one-dimensional by the f -non-degeneracy of T or every
one dimensional subspace is f -degenerate, which implies that f is anti-symmetric by The-
orem 3.1(2). In the latter case, for every nonzero vector a in T , there is another nonzero
vector b ∈ T , such that a and b are independent. Then f(a, b) �= 0 by the f -non-degeneracy
of T . Since f(b, a) = −f(a, b), the restriction of f to the two-dimensional ideal B of T
spanned by a and b is non-degenerate, which leads to T = B. With this the proof of the
theorem is completed.

The next theorem tells us the connection between f -decomposition and f ′-decompo
-sition of the same pseudo-metric triple system. It could be regarded as an f -decomposition
theorem for finite-dimensional pseudo-metric triple systems.

Theorem 3.3. Let (T , f) be a finite-dimensional pseudo-metric triple system over a
field F and f ′ another non-degenerate invariant bilinear form on T . If there is a decompo-
sition T = I1 ⊕ · · · ⊕Ik ⊕ · · ·⊕ IK (resp. T = J 1 ⊕ · · · ⊕Jm ⊕ · · · ⊕JM ) of T into a direct
sum of f -indecomposable (resp. f ′-indecomposable) ideals, where k, K, m, M are integers
with 0 ≤ k ≤ K and 0 ≤ m ≤ M and the ideals Ii (resp. Jj) are non-Abelian for 1 ≤ k ≤ K

(resp. for 1 ≤ m ≤ M) and Abelian otherwise, then
(1) k = m and there is a permutation of {1, 2, · · · , m} such that the restriction of the

canonical projection pj′ : T −→ Ij′ to the ideal Jj is an isomorphism of the triple systems,
with the permutation being uniquely defined by Jj ∩ Ij′ �= 0.

(2) Jj + Z(T ) = Ij′ + Z(T ), J (1)
j = I(1)

j′ for all 1 ≤ j ≤ m.
(3) if T is perfect or has a vanishing annihilator, then m = M and the above decom-

position is unique up to permutations.
(4) If f and f ′ are symmetric and CharF �= 2, then K = M and all f -indecomposable

(resp. f ′-indecomposable) Abelian ideals are one-dimensional.

Proof. Every non-Abelian f -indecomposable ideal of T is indecomposable by Theorem
3.2. So (1)–(3) of the theorem follows from the decomposition Theorem 3.1. Moreover, if f

and f ′ are symmetric bilinear forms, then they are not antisymmetric because CharF �= 2
and f (resp. f ′) is not zero. Since every f -indecomposable Abelian ideal is one-dimensional
by Theorem 3.1(2), every f -indecomposable ideal is indecomposable.

Corollary 3.1. Let (T , f) be a finite-dimensional pseudo-metric Lie triple system over
a field F with CharF �= 2. Let f ′ be another non-degenerate invariant bilinear form on T .
If T = I1⊕· · ·⊕IK (resp. T = J 1⊕· · ·⊕JM ) is a decomposition of T into a direct sum of
f -indecomposable (resp. f ′-indecomposable) ideals, then K = M and all f -indecomposable
(resp. f ′-indecomposable) Abelian ideals are one-dimensional.

Theorem 3.4. Let (T , f) be a pseudo-metric triple system over a field F and T = G1⊕
· · · ⊕ GN a decomposition of T into indecomposable ideals Gr, where N is a positive integer
with 1 ≤ r ≤ N . Then there is a non-degenerate invariant bilinear form g on T such that
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each ideal Gr of T is g-non-degenerate.

Proof. Rearrange the index of Gi such that, for an integer n (0 ≤ n ≤ N), the first k

ideals Gr are non-Abelian ideals and Abelian otherwise in the decomposition. Then we have

T = T 1 ⊕ · · · ⊕ Tk ⊕ · · · ⊕ TK

as a decomposition of T into f -indecomposable ideals where the ideals Ti are non-Abelian
for 1 ≤ i ≤ k and Abelian otherwise. Let (zi), (k + 1 ≤ i ≤ K ′ = dimZ(T ) + k) be a
vector space basis for the direct sum Z0 = Tk+1 ⊕ · · · ⊕ TK of the Abelian ideals. Define
f0 : Z0 × Z0 −→ F to be the bilinear form f0(zi, zj) := δij . Then f0 is a non-degenerate
invariant bilinear form on Z0 with the one-dimensional ideals Fzi being f0-indecomposable
and hence indecomposable. Let f1 be the restriction of f to the direct sum T1 ⊕ · · · ⊕ Tk of
the non-Abelian ideals. Then the orthogonal sum h := f0⊥f1 is a non-degenerate invariant
bilinear form on T . By Theorem 3.2 and Theorem 3.1, we get k = n and K = N because
the h-indecomposable Abelian ideals Fzk+1, · · · FzK′ are one-dimensional and so are the
indecomposable Abelian ideals Gn+1, · · · ,GN . Denote by hi (1 ≤ i ≤ k′) the restriction
of h to the ideal Ii. Then hi is a non-degenerate invariant bilinear form on Ti. Since
T = T 1 ⊕· · ·⊕Tk ⊕Fzk+1⊕· · ·⊕FzK′ is a decomposition of T into indecomposable ideals,
the restriction of the canonical projection pj′ : T −→ Tj′ to the ideal Gj (i.e. pj

j′ : Gj −→ Tj′ )
is an isomorphism of the triple systems by Theorem 3.1. Let gj := p∗j′ (hj′) be the pull back
bilinear form on Gj . Then gj is an invariant bilinear form on Gj . gj is non-degenerate since
pj

j′ is an isomorphism by Lemma 2.3(1) and (3). The orthogonal sum g := g1⊥g2⊥ · · ·⊥gN

is then a non-degenerate invariant bilinear form on T , with each Gr being g-non-degenerate.

Remark 3.1. For any finite-dimensional metric triple system (T , f) over a field F and
CharF �= 2, there is always a decomposition of T into a direct sum of f -indecomposable
ideals such that the number of summand components is constant and independent of the
choice of non-degenerate invariant bilinear form f .

Corollary 3.2. Let (T , f) be a pseudo-metric triple system. If I(1) �= 0 for every
nonzero ideal I of T , then T is a direct sum of simple ideals of T .

Proof. Let I be a minimal ideal of T , then I⊥ is an ideal of T by Lemma 2.1 and
hence I ∩ I⊥ = I or I ∩ I⊥ = 0. Suppose the first case occurs. Then we have

0 = f(〈yxx′〉, x′′) = f(y, 〈x′′x′x〉), ∀ x, x′, x′′ ∈ I, y ∈ T

because f is invariant. Since f is non-degenerate, 〈x′′x′x〉 = 0 and I(1) = 0, which is
contrary to the assumption. Hence I ∩ I⊥ = 0 and T = I⊕I⊥ by the dimension formula in
Lemma 2.1. Any ideal of I is an ideal of T . By the minimality of I, it has no proper ideals.
As I(1) �= 0 by assumption, we see that I is simple. Since the assumption also holds in I⊥,
we get a decomposition of T into a direct sum of simple ideals by an recursive argument.

§ 4 . Metric Lie Triple System

From now on, we confine ourself to finite dimensional Lie triple systems, on a field
F of characteristic zero, with an invariant non-degenerate bilinear form. A pseudo-metric
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Lie triple system is a metric Lie triple system by Lemma 2.3(2) when CharF �= 2. In this
section, we first find a sufficient condition for a symmetric invariant bilinear form on T to
be non-degenerate and then discuss how to characterize a Lie triple system by the bilinear
forms on it.

Let T be a finite-dimensional triple system over a field F of characteristic zero and
A be an algebra respectively. Let us denote by F(T ) (resp. F(A)) the linear space of all
symmetric invariant bilinear form on T (resp. on A) and by B(T ) (resp. B(A)) the subspace
of F(T ) (resp. F(A)) spanned by the set of invariant symmetric and non-degenerate bilinear
forms. We shall say that T (resp. A) admits a unique (up to constant) quadratic structure
if B(T ) (resp. B(A)) is one dimensional.

I. Bajo and S. Benayadi characterized the Lie algebra with a unique quadratic structure
(see [10]). Their result is as follows.

Lemma 4.1. Let G be a Lie algebra over F such that dimG > 1.
(1) If dimB(G) = 1, then G is a simple Lie algebra;
(2) If F is algebraically closed, then dimB(G) = 1 if and only if G is a simple Lie

algebra.

Readers can refer to [10]–[17] for more conclusions on self-dual Lie algebra and Lie
superalgebra. We will soon find that a metric Lie triple system T can be characterized by
dimB(T ).

Lemma 4.2. Let F be an algebraically closed field of characteristic zero and T a
nonabelian L.t.s. over F . Then T is simple iff dimP(T ) = 1.

Proof. See [3].

Example 4.1. Let T be the four-dimensional Lie triple system with the basis h, e±, g

and the Lie triple product

[h, e+, e−] = g, [h, e−, e+] = g, [e±, h, h] = e±.

The triple system is solvable but not nilpotent. For any scalars α �= 0 and β, the bilinear
form f :

f(e+, e−) = α, f(h, h) = β and f(h, g) = α,

is invariant and non-degenerate. Hence it is a metric Lie triple system. It is readily verified
that (T , f) is f -indecomposable but T is not a simple triple system.

Lemma 4.3. Let (T , f) be a metric Lie triple system and I ⊂ T be a minimal ideal.
(1) If I is f -non-degenerate, then I is a factor and hence simple or one-dimensional;
(2) If I is f -degenerate, then it is isotropic (i.e. I ⊆ I⊥) and Abelian;
(3) I⊥ is a maximal ideal.

Proof. If I ⊂ T is an ideal, so are I⊥ and I ∩ I⊥ ⊂ I since the intersection of two
ideals is an ideal. Since I is minimal, I ∩ I⊥ is either 0 or I.

(1) Let us consider the first possibility, I ∩I⊥ = 0. Then I is f -non-degenerate by the
definition and the symmetry of f . Since I and I⊥ are ideals of T , T = I ⊕ I⊥ means that
I is a factor of T . Any ideal of I is automatically an ideal of T . So I is either simple or
one-dimensional because I is a minimal ideal.
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(2) The second possibility, I ∩ I⊥ = I, which means that I is f -degenerate. In this
case, I ⊆ I⊥ is isotropic by definition. And by Lemma 2.1, I ⊆ I⊥ ⊆ ZT (I), where I is
Abelian.

(3) Finally, suppose that there exists a proper ideal J such that I⊥ ⊂ J . Then we
find J ⊥ ⊂ I⊥⊥ = I, which violates the minimality. Hence I⊥ is maximal.

The following preposition is an immediate consequence of Lemma 4.3.

Lemma 4.4. Let (T , f) be f -indecomposable Lie triple system. Then exactly one of
the following cases holds:

(1) T is a simple Lie triple system;
(2) T is a one-dimensional Lie triple system;
(3) T is not simple, dim T > 1 and every proper ideals of T is f -degenerate.

Let (T , f) be a metric triple system over F and T = T1⊕· · ·⊕Tn be the f -decomposition
of T into a direct sum of f -indecomposable ideals. Denote by F(Ti) (resp. B(Ti)) a subspace
of F(T ) (resp. B(T )) by extending any ri ∈ F(Ti) (resp. B(Ti)) by zero in a natural way.
Since f is symmetric, n is an invariant in F by Theorem 3.3. We denote it by n(T ). Then
F(T ) contains the direct sum F(T1) ⊕ · · · ⊕ F(Tn(T )).

Lemma 4.5. Let (T , f) be a metric triple system and T = T 1 ⊕ · · · ⊕ Tn(T ) be the
f -decomposition of T into f -indecomposable ideals. If T is perfect, then

F(T ) = F(T1) ⊕ · · · ⊕ F(Tn(T )).

Proof. It is obvious that F(T ) ⊇ F(T1) ⊕ · · · ⊕ F(Tn(T )) from the statement made
before Lemma 4.5. Given f0 in F(T ), we have, for all 0 ≤ i, j ≤ n(T ), i �= j,

f0(Ti, Tj) = f0(Ti, 〈TjTjTj〉) = f0(〈TiTjTj〉, Tj) = f0(0, Tj) = 0.

Because T is perfect, we have

f0 ∈ F(T1) ⊕ · · · ⊕ F(Tn(T )),

which completes the proof.

Theorem 4.1. Let (T , f) be a finite-dimensional metric Lie triple system.
(1) If dimF(T ) = n(T ) and every one-dimensional ideal is f -degenerate, then T is

semi-simple.
(2) If F is algebraically closed, then the above condition is also necessary.

Proof. Let T = T1 ⊕ · · · ⊕ Tn(T ) be an orthogonal direct sum of f -non-degenerate
f -indecomposable ideals. Then n(T ) is an invariant number and independent of the choice
of the non-degenerate symmetric and invariant bilinear form f .

(1) Since F(T ) ⊇ F(T1) ⊕ · · · ⊕ F(Tn(T )) and

n(T ) = dimF(T ) ≥
n(T )∑
i=1

dimF(Ti) ≥ n(T ),
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we have
n(T )∑
i=1

dimF(Ti) = n(T ) and hence dimF(Ti) = 1 for any f -non-degenerate f -

indecomposable Ti. For every i ≤ n(T ), one gets

dimB(Ti) = dimF(Ti) = 1 and dim(Ti) > 1

since every one-dimensional ideal is f -degenerate. Then Ti is a simple Lie triple system by
Theorem 3.4. And thus T is a direct sum of simple ideals.

(2) If T is a semi-simple metric Lie triple system over an algebraically closed field F ,
then

F(T ) = F(T1) ⊕ · · · ⊕ F(Tn(T )).

What remains to be proved is that either dimF(Ti) = 1 or Ti is a simple ideal. In fact,
Z(T ) = 0 since T is a semi-simple triple system. And hence T = T1 ⊕ · · · ⊕ Tn(T ) as an
f -decomposition is also a decomposition of T into a direct sum of indecomposable ideals
in the general sense. This decomposition is unique up to permutations by Theorem 3.1
for the perfect triple system T . At the same time, T is a direct sum of simple ideals, so
every Ti (1 ≤ i ≤ n(T )) is a simple ideal of T and dimB(Ti) = dimF(Ti) = 1. Thus

dimF(T ) =
n(T )∑
i=1

dimF(Ti) = n(T ) is a natural result.

Theorem 4.2. Let (T , f) be a metric Lie triple system over F .
(1) If dimF(T ) = n(T ), T is a reductive Lie triple system with dimZ(T ) ≤ 1.

(2) If F is algebraically closed, then dimF(T ) = n(T ) if and only if T is a reductive
Lie triple system with dimZ(T ) ≤ 1.

Proof. (1) If T has no one-dimensional f -non-degenerate Abelian ideals, then Theorem
4.1 is applicable and thereby T is semi-simple. Hence T is reductive with Z(T ) = 0. Let
us suppose that T has a one-dimensional f -non-degenerate Abelian ideal. Then we have
a decomposition T = Fe1 ⊕ · · · ⊕ Fer ⊕ I of f -non-degenerate ideals, where every one-
dimensional ideals of I is f -degenerate. Since I ∩ I⊥ = 0, we have I⊥ = Fe1 ⊕ · · · ⊕ Fer.
Then dimF(T ) = n(T ) = r + n(I) by hypothesis and the definition of n(T ). On the other
hand, for given symmetric bilinear forms rij on T by rij(ei, ej) = 1 and zero otherwise, one
can easily verify that rij are invariant for all i, j ≤ k. In this way, we get r2+r

2 symmetric
invariant bilinear forms. Hence

dimF(T ) ≥ dimF(I) +
r2 + r

2
≥ n(I) +

r2 + r

2
.

We therefore get n(T ) = r + n(I) ≥ n(I) + r2+r
2 . Thus r = 1 for r ≥ r2+r

2 . Moreover

dimF(I) ≤ n(T ) − 1 = n(I) ≤ dimF(I).

It follows that I is semi-simple by Theorem 4.1(2) and the fact that every one-dimensional
ideal of I is f -degenerate. Thus T is a direct sum of the semi-simple ideals I and Z(T )
with dimZ(T ) ≤ 1.

(2) Let T be a reductive Lie triple system over an algebraically closed field F with
dimZ(T ) ≤ 1. When dimZ(T ) = 0, the conclusion is immediate from Theorem 4.1(ii). We
consider the case dimZ(T ) = 1 and T = Fe ⊕ S, where S is semi-simple and Z(T ) = Fe.
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Since [S,S] = S, r(Fe,S) = 0 for every r ∈ F(T ). Hence, by the semi-simplicity of S and
Theorem 4.1(ii),

dimF(T ) = dimF(Fe) + dimS = 1 + n(S).

Since 1 + n(S) = n(T ), we have dimF(T ) = n(T ). With this we come to the end of the
proof.
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