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HUA’S THEOREM WITH FIVE ALMOST

EQUAL PRIME VARIABLES
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Abstract

It is proved that each sufficiently large integer N ≡ 5 (mod24) can be written as

N = p2
1+p2

2+p2
3+p2

4+p2
5 with |pj−

�
N/5| ≤ U = N

1
2− 1

35+ε, where pj are primes. This
result, which is obtained by an iterative method and a hybrid estimate for Dirichlet
polynomial, improves the previous results in this direction.

Keywords Additive theory of prime numbers, Circle method, Iterative method
2000 MR Subject Classification 11P32, 11P05, 11N36, 11P55

§ 1 . Introduction

In the additive theory of prime numbers, one studies the representation of positive in-
tegers by powers of primes. For the quadratic case, Hua [1] proved that each large integer
congruent to 5 modulo 24 can be written as the sum of five squares of primes.

Under the General Riemann Hypothesis (GRH), Liu and Zhan [2] sharpened Hua’s result
by showing that each large integer N congruent to 5 modulo 24 can be written as sums of
five almost equal prime squares. More precisely, they proved that under GRH,

N = p2
1 + p2

2 + p2
3 + p2

4 + p2
5, (1.1)

where |pj −
√

N/5| ≤ U, j = 1, 2, · · · , 5 for U = N
1
2− 1

20+ε. Bauer [3] showed that uncon-
ditionally the formula (1.1) holds true for U = N

1
2−δ, where δ ≥ 0 and its exact value

depends on the constants in the Deuring-Heilbronn phenomenon, and is not numerically
determined. In 1998, Liu and Zhan [4] found the new approach to treat the enlarged major
arcs, in which the possible existence of Siegel zero does not have special influence, and hence
the Deuring-Heilbronn phenomenon can be avoided. This approach not only is technically
simpler, but also gives, when applicable, substantially better results than Deuring-Heilbronn
phenomenon. Due to this approach, they obtained that (1.1) is true for U = N

1
2− 1

50 +ε. This
approach is subsequently improved and clarified in [5] and [6]. Recently Bauer [7] used the
approach mentioned above to show that U = N

1
2− 19

850+ε is acceptable.
In this paper, we are able to modify the new ideas of Liu [8], so that they are capable of

treating the present short interval case. This results in the following further improvement.
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Theorem 1.1. Any sufficiently large integer N congruent to 5 modulo 24 can be written
as (1.1) with |pj −

√
N/5| ≤ U, j = 1, 2, · · · , 5, where

U = N
1
2− 1

35+ε. (1.2)

This theorem is proved by the circle method. Here the main difficulty arises in treating
the enlarged major arcs. The idea of the proof will be explained in Section 2.

Notation. As usual, ϕ(n), μ(n) and Λ(n) stand for the function of Euler, Möbius,
and von Mangoldt respectively, and τ(n) is the divisor function. We use χ mod q and
χ0 mod q to denote a Dirichlet character and the principal character modulo q, and L(s, χ)
is the Dirichlet L-function. For integers a, b, · · · , we denote by [a, b, · · · ] their least common
multiple. N is a large integer, and L = log N. And r ∼ R means R < r ≤ 2R. If there is
no ambiguity, we express a

b + θ as a/b + θ or θ + a/b. The same convention will be applied
for quotients. The letter ε denotes a positive constant which is arbitrarily small, but not
necessarily the same at different occurrences.

§ 2 . Outline of the Method

Here we give an outline for the proof of Theorem 1.1. In order to apply the circle method,
for U as in (1.2), we set

P = N2+8εU−4, Q = U7N−5/2−6ε. (2.1)

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q] may be written
in the form

α = a/q + λ, |λ| ≤ 1/(qQ) (2.2)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by M(a, q) the set of
α satisfying (2.2), and define the major arcs M and the minor arcs C(M) as follows:

M =
⋃

q≤P

q⋃
a=1

(a,q)=1

M(a, q), C(M) =
[ 1
Q

, 1 +
1
Q

]∖
M. (2.3)

Our Theorem 1.1 can be easily derived from the following theorem.

Theorem 2.1. Let M be as above with P, Q determined by (2.1). For

N1 =
√

N/5 − U, N2 =
√

N/5 + U, (2.4)

let
S(α) =

∑
N1<p≤N2

(log p)e(p2α). (2.5)

Then we have that for any A > 0,∫
M

S5(α)e(−Nα)dα =
1
32

P0

∑
q≤P

A(N, q) + O(U4N−1/2L−A), (2.6)
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where
U4N− 1

2 � P0 =
∑

m1+m2+m3+m4+m5=N
N2

1 <mj≤N2
2

(m1m2m3m4m5)−
1
2 � U4N− 1

2 (2.7)

and A(n, q) is defined by (3.3).

The proof of Theorem 2.1 forms the bulk of the paper, which will be proved in Section
4.

Now we prove Theorem 1.1 from Theorem 2.1.

Proof of Theorem 1.1. Let N be a sufficiently large integer with N ≡ 5 (mod24). Let

r(N) =
∑

N=p2
1+···+p2

5

|pj−
√

N/5|≤U

(log p1) · · · (log p5),

where U = N
1
2− 1

35 +ε. Then we have

r(N) =
∫ 1

0

S5(α)e(−Nα)dα =
∫
M

+
∫

C(M)

=: r1(N) + r2(N), (2.8)

where M, C(M), and S(α) are as in (2.3) and (2.5).
To estimate the contribution from the minor arcs, we apply Liu and Zhan’s result (see

[2]), which states that

S(α) � U1+ε
(
P−1/4 +

N1/16

U1/4
+

N1/6

U1/2
+

Q1/4N1/8

U3/4

)
� U2N−1/2−ε. (2.9)

Then we have that for any A > 0,

r2(N) �
{

max
α∈C(M)

|S(α)|
} ∫ 1

0

|S(α)|4dα � U4N−1/2L−A. (2.10)

From Theorem 2.1, we obtain that

r1(N) =
1
32

P0

∑
q≤P

A(N, q) + O(U4N−1/2L−A), (2.11)

and
U4N− 1

2 � P0 � U4N− 1
2 .

For the singular series
∑

q≤P

A(N, q) in (2.11), we quote Lemma 4.2 in [2], which states that

∑
q≤P

A(N, q) = (1 + A(N, 2) + A(N, 4) + A(N, 8))
∏
3≤p

(1 + A(N, p)) + O(P−1/2+ε), (2.12)

where the first term on the right hand side is convergent and satisfies > c > 0 for N ≡
5 (mod24).

From (2.8) and (2.10)–(2.12), Theorem 1.1 clearly follows.
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§ 3 . Preliminaries

For χ mod q, define

C(χ, a) =
q∑

h=1

χ(h)e
(ah2

q

)
, C(q, a) = C(χ0, a). (3.1)

If χ1, χ2, · · · , χ5 are characters mod q, then we write

B(N, q, χ1, · · · , χ5) =
q∑

a=1
(a,q)=1

e
(
− aN

q

)
C(χ1, a)C(χ2, a)C(χ3, a)C(χ4, a)C(χ5, a), (3.2)

and
B(N, q) = B(N, q, χ0, χ0, χ0, χ0, χ0), A(N, q) =

B(N, q)
ϕ5(q)

. (3.3)

The following lemma is important when we prove Theorem 2.1.

Lemma 3.1. Let χj mod rj with j = 1, · · · , 5 be primitive characters, r0 = [r1, · · · , r5],
and χ0 the principal character mod q. Then∑

q≤x
r0|q

1
ϕ5(q)

|B(n, q, χ1χ
0, χ2χ

0, · · · , χ5χ
0)| � r

−3/2+ε
0 logc x.

Proof. The proof of this lemma is standard. See [6] for details.
The saving of r

−3/2+ε
0 on the right hand side will play a key role in our argument, and

our result will depend on the magnitude of the exponent 3/2.
Recall N1, N2 as in (2.4), and define

V (λ) =
∑

N1<m≤N2

e(m2λ),

W (χ, λ) =
∑

N1<p≤N2

(log p)χ(p)e(p2λ) − δχ

∑
N1<m≤N2

e(m2λ),
(3.4)

where δχ = 1 or 0 according as χ is principal or not. Define further

J(g) =
∑
r≤P

[g, r]−3/2+ε
∑∗

χ mod r

max
|λ|≤1/(rQ)

|W (χ, λ)|, (3.5)

K(g) =
∑
r≤P

[g, r]−3/2+ε
∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)

|W (χ, λ)|2dλ
)1/2

. (3.6)

Our Theorem 2.1 depends on the following three lemmas, which will be proved in Sections
5 and 6.

Lemma 3.2. For P, Q satisfying (2.1), we have

J(g) � g−3/2+εULc. (3.7)
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Lemma 3.3. Let P, Q be as in (2.1). For g = 1 Lemma 3.2 can be improved to

J(1) � UL−A, (3.8)

where A > 0 is arbitrary.

Lemma 3.4. For P, Q as in (2.1), we have

K(g) � g−3/2+εU1/2N−1/4Lc. (3.9)

§ 4 . Proof of Theorem 2.1

With Lemmas 3.2–3.4 known, we can use the iterative idea to prove Theorem 2.1.

Proof of Theorem 2.1. For q ≤ P and N1 < p ≤ N2, we have (q, p) = 1. Therefore we
can rewrite the exponential sum S(α) as

S
(a

q
+ λ

)
=

C(q, a)
ϕ(q)

V (λ) +
1

ϕ(q)

∑
χ mod q

C(χ, a)W (χ, λ),

where V (λ) and W (χ, λ) are as in (3.4). Thus∫
M

S5(α)e(−Nα)dα = I0 + 5I1 + 10I2 + 10I3 + 5I4 + I5, (4.1)

where

Ij =
∑
q≤P

1
ϕ5(q)

q∑
a=1

(a,q)=1

C5−j(q, a)e
(
− aN

q

)

×
∫ 1/(qQ)

−1/(qQ)

V 5−j(λ)
{ ∑

χ mod q

C(χ, a)W (χ, λ)
}j

e(−Nλ)dλ.

We will prove that I0 gives the main term, and I1, I2, · · · , I5 the error term.

The computation of I0 is standard, and therefore we give the result directly

I0 =
1
32

P0

∑
q≤P

B(N, q)
ϕ5(q)

+ O((PQ)4N−5/2) + O(U4N−1/2L−A)

=
1
32

P0

∑
q≤P

B(N, q)
ϕ5(q)

+ O(U4N−1/2L−A).
(4.2)

To bound the contributions of other terms, we begin with I5, the most complicated one.
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Reducing the characters in I5 into primitive characters, we have

|I5| =
∣∣∣ ∑

q≤P

1
ϕ5(q)

∑
χ1 mod q

· · ·
∑

χ5 mod q

B(N, q, χ1, · · · , χ5)

×
∫ 1/(qQ)

−1/(qQ)

W (χ1, λ) · · ·W (χ5, λ)e(−Nλ)dλ
∣∣∣

≤
∑

r1≤P

· · ·
∑

r5≤P

∑∗

χ1 mod r1

· · ·
∑∗

χ5 mod r5

∑
q≤P
r0|q

|B(N, q, χ1χ
0, · · · , χ5χ

0)|
ϕ5(q)

×
∫ 1/(qQ)

−1/(qQ)

|W (χ1χ
0, λ)| · · · |W (χ5χ

0, λ)|dλ,

where χ0 is the principal character modulo q, r0 = [r1, r2, · · · , r5] depending on r1, r2, · · · , r5,
and the sum

∑∗ is over all primitive characters. For q ≤ P and N1 < p ≤ N2, we have
(q, p) = 1. Using this and (3.4), we have W (χjχ

0, λ) = W (χj , λ) for the primitive characters
χj above. Thus by Lemma 3.1, we obtain

|I5| ≤
∑

r1≤P

· · ·
∑

r5≤P

∑∗

χ1 mod r1

· · ·
∑∗

χ5 mod r5

∫ 1/(r0Q)

−1/(r0Q)

|W (χ1, λ)| · · · |W (χ5, λ)|dλ

×
∑
q≤P
r0|q

|B(N, q, χ1χ
0, · · · , χ5χ

0)|
ϕ5(q)

� Lc
∑

r1≤P

· · ·
∑

r5≤P

r
−3/2+ε
0

∑∗

χ1 mod r1

· · ·
∑∗

χ5 mod r5

∫ 1/(r0Q)

−1/(r0Q)

|W (χ1, λ)| · · · |W (χ5, λ)|dλ.

In the last integral, we take out |W (χ1, λ)|, and then use Cauchy’s inequality, to get

|I5| � Lc
∑

r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W (χ1, λ)|

×
∑

r2≤P

∑∗

χ1 mod r2

max
|λ|≤1/(r2Q)

|W (χ2, λ)|

×
∑

r3≤P

∑∗

χ3 mod r3

max
|λ|≤1/(r3Q)

|W (χ3, λ)|

×
∑

r4≤P

∑∗

χ4 mod r4

(∫ 1/(r4Q)

−1/(r4Q)

|W (χ4, λ)|2dλ
)1/2

×
∑

r5≤P

r
−3/2+ε
0

∑∗

χ5 mod r5

(∫ 1/(r5Q)

−1/(r5Q)

|W (χ5, λ)|2dλ
)1/2

. (4.3)

Now we introduce an iterative procedure to bound the above sums over r5, · · · , r1 con-
secutively.

We first estimate the above sum over r5 in (4.3) via Lemma 3.4. Since

r0 = [r1, · · · , r5] = [[r1, · · · , r4], r5],
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the sum over r5 in (4.3) is∑
r5≤P

[[r1, · · · , r4], r5]−3/2+ε
∑∗

χ5 mod r5

(∫ 1/(r5Q)

−1/(r5Q)

|W (χ5, λ)|2dλ
)1/2

= K([r1, · · · , r4]) � [r1, · · · , r4]−3/2+εU1/2N−1/4Lc.

This contributes to the sum over r4 of (4.3) in amount

� U1/2N−1/4Lc
∑

r4≤P

[r1, · · · , r4]−3/2+ε
∑∗

χ4 mod r4

(∫ 1/(r4Q)

−1/(r4Q)

|W (χ4, λ)|2dλ
)1/2

= U1/2N−1/4LcK([r1, r2, r3]) � [r1, r2, r3]−3/2+εUN−1/2Lc,

where we have used Lemma 3.4 again.
Inserting this last bound into (4.3), we can bound the sum over r3 as

� UN−1/2Lc
∑

r3≤P

[r1, r2, r3]−3/2+ε
∑∗

χ3 mod r3

max
|λ|≤1/(r3Q)

|W (χ3, λ)|

� UN−1/2LcJ([r1, r2]) � U2N−1/2Lc[r1, r2]−3/2+ε.

Similarly we can bound the sums over r2, r1 and find that

|I5| � U2N−1/2Lc
∑

r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W (χ1, λ)|

×
∑

r2≤P

[r1, r2]−3/2+ε
∑∗

χ1 mod r2

max
|λ|≤1/(r2Q)

|W (χ2, λ)|

= U2N−1/2Lc
∑

r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W (χ1, λ)|J(r1)

� U3N−1/2LcJ(1) � U4N−1/2L−A, (4.4)

where we have used Lemma 3.3 and Lemma 3.2 consecutively.
Since the estimations of I4, I3, I2, I1 follow the similar procedure in terms of K and J

in Lemmas 3.2–3.4, we shall omit the details. For example, we have

|I4| � Lc max
|λ|≤1/Q

|V (λ)|
∑

r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W (χ1, λ)|

×
∑

r2≤P

∑∗

χ1 mod r2

max
|λ|≤1/(r2Q)

|W (χ2, λ)|

×
∑

r3≤P

∑∗

χ3 mod r3

( ∫ 1/(r3Q)

−1/(r3Q)

|W (χ3, λ)|2dλ
)1/2

×
∑

r4≤P

[r1, · · · , r4]−3/2+ε
∑∗

χ4 mod r4

(∫ 1/(r4Q)

−1/(r4Q)

|W (χ4, λ)|2dλ
)1/2

.

Obviously to get upper bounds for I4, I3, I2, I1, we need the estimates

max
|λ|≤1/Q

|V (λ)| � U
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and ( ∫ 1/Q

−1/Q

|V (λ)|2dλ
)1/2

� U1/2N−1/4.

The first estimate is trivial and the second estimate can be obtained by partial summation
and the elementary estimate for exponential sums. Inserting these estimates into I4, I3, I2,
I1, we get

I1, · · · , I4 � U4N−1/2L−A. (4.5)

From (4.1), (4.2), (4.4) and (4.5), we complete the proof of Theorem 2.1.

§ 5 . Estimation of K(g)

Let Y ≤ X and M1, · · · , M10 be positive integers such that

2−10Y ≤ M1 · · ·M10 < X and 2M6, · · · , 2M10 ≤ X1/5. (5.1)

For j = 1, · · · , 10, define

aj(m) =

⎧⎪⎪⎨⎪⎪⎩
log m, if j = 1,

1, if j = 2, · · · , 5,

μ(m), if j = 6, · · · , 10,

(5.2)

where μ(n) is the Möbius function. Then we define the functions

fj(s, χ) =
∑

m∼Mj

aj(m)χ(m)
ms

,

F (s, χ) = f1(s, χ) · · · f10(s, χ),

(5.3)

where χ is a Dirichlet character, s a complex variable. The following hybrid estimate for
|F | is one of the key ingredients in carrying out the iterative procedure.

Lemma 5.1. Let F (s, χ) be as in (5.3). Then for any 1 ≤ R ≤ X2 and T > 0,

∑
r∼R
d|r

∑∗

χ mod r

∫ 2T

T

∣∣∣F(1
2

+ it, χ
)∣∣∣dt �

{R2

d
T +

R

d1/2
T 1/2X3/10 + X1/2

}
logc X. (5.4)

Proof. See [8] for details.

Now we prove Lemma 3.4, which determines our result in essence.

Proof of Lemma 3.4. Let

Ŵ (χ, λ) =
∑

N1<m≤N2

(Λ(m)χ(m) − δχ)e(m2λ).

Then
W (χ, λ) − Ŵ (χ, λ) � N1/4. (5.5)
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This contributes to (3.6) in amount

� N1/4
∑
r≤P

[g, r]−3/2+ε r1/2

Q1/2

� g−3/2+εN1/4Q−1/2
∑
r≤P

( r

(g, r)

)−3/2+ε

r1/2

� g−3/2+εN1/4Q−1/2
∑
r≤P

( r

(g, r)

)−1+ε

r1/2

� g−3/2+εN1/4Q−1/2
∑
d|g

d≤P

d1−ε
∑
r≤P
d|r

r−1/2+ε

� g−3/2+εN1/4P 1+εQ−1/2

� g−3/2+εU1/2N−1/4Lc,

where we have used [g, r](g, r) = gr, (2.1) and (1.2).
Thus to establish Lemma 3.4, it suffices to show that∑

r∼R

[g, r]−3/2+ε
∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)

|Ŵ (χ, λ)|2dλ
)1/2

� g−3/2+εU1/2N−1/4Lc (5.6)

holds for R ≤ P .
By Gallagher’s lemma (see [9, Lemma 1]), we have∫ 1/(rQ)

−1/(rQ)

|Ŵ (χ, λ)|2dλ �
( 1

RQ

)2
∫ ∞

−∞

∣∣∣∣ ∑
v<m2≤v+rQ
N2

1 <m2≤N2
2

(Λ(m)χ(m) − δχ)
∣∣∣∣2dv

�
( 1

RQ

)2
∫ N2

2

N2
1−rQ

∣∣∣∣ ∑
v<m2≤v+rQ
N2

1 <m2≤N2
2

(Λ(m)χ(m) − δχ)
∣∣∣∣2dv

�
( 1

RQ

)2
∫ N2

2

N2
1−rQ

∣∣∣∣ ∑
Y <m≤X

(Λ(m)χ(m) − δχ)
∣∣∣∣2dv, (5.7)

where
Y = max(v1/2, N1), X = min((v + rQ)1/2, N2).

We argue exactly as Lemma 5.1 in [8] and see that the inner sum in (5.7) is a linear
combination of O(L10) terms, each of which has the form

Σ(u;M) :=
1
2π

∫ T

−T

F
(1

2
+ it, χ

)X1/2+it − Y 1/2+it

1/2 + it
dt + O

(N1/2L2

T

)
,

where T is a parameter satisfying 2 ≤ T ≤ N1/2. One sees that

X1/2+it − Y 1/2+it

1/2 + it
=

1
2

∫ X2

Y 2
u−3/4+it/2du =

1
2

∫ X2

Y 2
u−3/4e

( t

4π
log u

)
du.
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The integral can be estimated as

� X1/2 − Y 1/2 � (v + rQ)1/4 − v1/4 � v1/4{(1 + rQ/v)1/4 − 1} � N−3/4RQ.

On the other hand, one has trivially

X1/2+it − Y 1/2+it

1/2 + it
� X1/2

|t| � N
1/2
2

|t| � N1/4

|t| .

Collecting the two upper bounds, we get

X1/2+it − Y 1/2+it

1/2 + it
� min

( RQ

N3/4
,
N1/4

|t|
)
.

Taking
T = N1/2, T0 = 8πN/(QR),

we see that

Σ(u;M) � RQ

N3/4

∫
|t|≤T0

∣∣∣F(1
2

+ it, χ
)∣∣∣dt + N1/4

∫
T0<|t|≤T

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

|t| + O(L2).

And consequently (5.7) becomes∫ 1/(rQ)

−1/(rQ)

|Ŵ (χ, λ)|2dλ � UN−1L20 max
M

( ∫
|t|≤T0

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

)2

+
NUL20

(QR)2
max
M

(∫
T0<|t|≤T

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

|t|
)2

+
N1/2UL24

(QR)2
,

where we have used N2
2 − N2

1 � N1/2U and RQ ≤ PQ � N1/2U .
The last term above contributes to the left hand side of (5.6) in amount

�
∑
r∼R

r−3/2+ε
∑

χ mod r

(N1/2U)1/2L12

RQ
� N1/4U1/2L12

Q

� P−3/2+εU1/2N−1/4Lc � g−3/2+εU1/2N−1/4Lc,

and therefore the left hand side of (5.6) is

� U1/2N−1/2L10 max
M

∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫
|t|≤T0

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

+
N1/2U1/2L10

RQ
max
M

∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫
T0<|t|≤T

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

|t|

+ g−3/2+εU1/2N−1/4Lc.

Thus, to prove (5.6) it suffices to show that the estimate

∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫ 2T1

T1

∣∣∣F(1
2

+ it, χ
)∣∣∣dt � g−3/2+εN1/4Lc (5.8)
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holds for R ≤ P and 0 < T1 ≤ T0, and

∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫ 2T2

T2

∣∣∣F(1
2

+ it, χ
)∣∣∣dt � g−3/2+ε(RQ)N−3/4T2L

c (5.9)

holds for R ≤ P and T0 < T2 ≤ T.

To get the estimate (5.8), we note that [g, r](g, r) = gr. Then the left hand side of (5.8)
is

� g−3/2+ε
∑
d|g

d≤R

(R

d

)−3/2+ε ∑
r∼R
d|r

∑∗

χ mod r

∫ 2T1

T1

∣∣∣F(1
2

+ it, χ
)∣∣∣dt

� g−3/2+ε
∑
d|g

d≤R

(R

d

)−1+ε ∑
r∼R
d|r

∑∗

χ mod r

∫ 2T1

T1

∣∣∣F(1
2

+ it, χ
)∣∣∣dt.

(5.10)

By Lemma 5.1, the above quantity can be estimated as

� g−3/2+ε
∑
d|g

d≤R

(R

d

)−1+ε(R2

d
T1 +

R

d1/2
T

1/2
1 N3/20 + N1/4

)
Lc

� g−3/2+ετ(g){R1+εT1 + R1/2+εT
1/2
1 N3/20 + N1/4}Lc

� g−3/2+εN1/4Lc,

provided that R ≤ P = U2+8εN−4. This establishes (5.8). Similarly we can prove (5.9) by
taking T = T2 in Lemma 5.1. Lemma 3.4 now follows.

§ 6 . Estimation of J(g) and J(1)

In this section, we prove Lemma 3.2 and Lemma 3.3.

Proof of Lemma 3.2. Recall that

W (χ, λ) − Ŵ (χ, λ) � N1/4.

This contributes to (3.5) in amount

� N1/4
∑
r≤P

[g, r]−3/2+εr � g−3/2+εN1/4
∑
r≤P

( r

(g, r)

)−3/2+ε

r

� g−3/2+εN1/4
∑
d|g

d≤P

d1−ε
∑
r≤P
d|r

rε � g−3/2+εN1/4P 1+ε � g−3/2+εULc,

where we have used [g, r](g, r) = gr and (2.1). Thus Lemma 3.2 is a consequence of the
estimate ∑

r∼R

[g, r]−3/2+ε
∑∗

χ mod r

max
|λ|≤1/(rQ)

|Ŵ (χ, λ)| � g−3/2+εULc, (6.1)
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where R ≤ P and c > 0 is some constant.
It is easy to establish (6.1) for r = 1. In fact, for r = 1 the left hand side of (6.1) is

� g−3/2+ε
∑

N1<m≤N2

log m � g−3/2+εUL,

which is obviously acceptable. It therefore remains to show (6.1) in the case r > 1.

In this case we have δχ = 0 for all χ mod r. Thus arguing similarly as in the section
before, we find that

|Ŵ (χ, λ)| � L10 max
M

∣∣∣ ∫ T

−T

F
(1

2
+ it, χ

)∫ N2
2

N2
1

v−3/4e
( t

4π
log v + λv

)
dvdt

∣∣∣ + UN−εP−2,

where the maximum is taken over all M = (M1, M2, · · · , M10) and we have taken

T = N1/2+2εU−1P 2(1 + |λ|N). (6.2)

Since
d

dv

( t

4π
log v + λv

)
=

t

4πv
+ λ,

d2

dv2

( t

4π
log v + λv

)
= − t

4πv2
,

by Lemmas 4.4 and 4.3 in [10], the inner integral above can be estimated as

� N−3/4 min

{
UN1/2,

N

(|t| + 1)1/2
,

N

min
N2

1 <v≤N2
2

|t + 4πλv|

}
. (6.3)

Take
T0 = NU−2, T̂0 = 8πN/(RQ). (6.4)

Here the choice of T̂0 is to ensure that |t + 4πλv| > |t|/2 whenever |t| > T̂0. Thus, in order
to prove Lemma 3.2, it is enough to show that for R ≤ P and 0 < T1 ≤ T0,∑

r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫ 2T1

T1

∣∣∣F(1
2

+ it, χ
)∣∣∣dt � g−3/2+εN1/4Lc, (6.5)

for R ≤ P and T0 < T2 ≤ T̂0,∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫ 2T2

T2

∣∣∣F(1
2

+ it, χ
)∣∣∣dt � g−3/2+εUN−1/4T

1/2
2 Lc, (6.6)

while for R ≤ P and T̂0 < T3 ≤ T,

∑
r∼R

[g, r]−3/2+ε
∑∗

χ mod r

∫ 2T3

T3

∣∣∣F(1
2

+ it, χ
)∣∣∣dt � g−3/2+εUN−1/4T3L

c. (6.7)

Following the same procedure that used to prove (5.8) and (5.9), we can establish these
estimates by taking T = T1, T2, T3 in Lemma 5.1 respectively. Thus Lemma 3.2 follows.

Now we complete the proof of Lemma 3.3.
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Proof of Lemma 3.3. The proof of Lemma 3.3 is the same as that of Lemma 3.2
except for the saving L−A on the right hand side. In order to save this factor, we have to
distinguish two cases LB < R ≤ P and R ≤ LB where B is a constant depending on A. The
proof of the first case is the same as that of Lemma 3.2. Here for a certain sufficiently large
B, LB < R ≤ P guarantees that the term g−3/2+εULc can be replaced with g−3/2+εUL−A.
So we omit the details.

Now we prove the second case R ≤ LB. We use the explicit formula (see [11, p.313])∑
m≤u

Λ(m)χ(m) = δχu −
∑
|γ|≤T

uρ

ρ
+ O

{( u

T
+ 1

)
log2(ruT )

}
, (6.8)

where ρ = β + iγ is a non-trivial zero of the function L(s, χ), and 2 ≤ T ≤ u is a parameter.
Taking T = N26/125 in (6.8), and then inserting it into Ŵ (χ, λ), we get

Ŵ (χ, λ) =
∫ N2

N1

e(u2λ)d
{ ∑

n≤u

(Λ(m)χ(m) − δχ)
}

=
∫ N2

N1

e(u2λ)
∑

|γ|≤N26/125

uρ−1du + O{N73/250(1 + |λ|N1/2U)L2}

� U
∑

|γ|≤N26/125

N (β−1)/2 + O(N99/125UQ−1L2)

� U
∑

|γ|≤N26/125

N (β−1)/2 + O(UN−ε),

where we have used (2.1).

Now let η(T ) = c2 log−4/5 T. By Staz VII.6.2 in [12],
∏

χ mod r

L(s, χ) is zero-free in the

region σ ≥ 1 − η(T ), |t| ≤ T except for the possible Siegel zero. But by Siegel’s theorem
(see for example [13, §21]) the Siegel zero does not exist in the present situation, since
r ∼ R ≤ LB. Thus by the large-sieve type zero-density estimates for Dirichlet L-functions
(see for example [14]),

∑
r∼R

∑∗

χ mod r

∑
|γ|≤N26/125

N (β−1)/2 � Lc

∫ 1−η(N26/125)

0

(N26/125)12(1−α)/5N (α−1)/2dα

� LcN−0.0008η(N26/125) � exp(−c3L
1/5).

Consequently ∑
r∼R

∑∗

χ mod r

max
|λ|≤1/(rQ)

|Ŵ (χ, λ)| � UL−A,

where A > 0 is arbitrary. This proves Lemma 3.3 in the second case.
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