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Abstract

The authors extend Hua’s fundamental theorem of the geometry of Hermitian matri-
ces to the infinite-dimensional case. An application to characterizing the corresponding
Jordan ring automorphism is also presented.
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§ 1 . Introduction and Statement of Results

The study of the geometry of matrices was initiated by Hua [11–18] in the middle of
twenty century. In this geometry, the points of the space are a certain kind of matrices
of a given size (rectangular matrices, symmetric matrices, Hermitian matrices, etc.). With
each such space of matrices, we associate a group of motions. The main problem is to
characterize this group by a geometric invariant called adjacency (see [23]). Recently, some
authors have generalized a part of Hua’s results (see, for example, [19–22]) and given other
proofs of the Hua’s fundamental theorems of the geometry of rectangular matrices (see [19])
and Hermitian matrices (see [21]). Motivated by [19], where the fundamental theorem of the
geometry of rectangular matrices is extended to the infinite-dimensional case, we consider
the question of extending the fundamental theorem of the geometry of Hermitian matrices
over the complex fields to the infinite dimensional case in this paper.

The idea of the geometry of matrices has been recently generalized to the study of gen-
eral preserver problems, that is, the problems of characterizing the maps between operator
algebras which preserve certain properties (see, for example, [1–3]). If the maps are linear,
the general preserver problems become the linear preserver problems which have attracted
much attention in last decades (for some papers on this topic, see [4–9]). We remark here
that the results in this paper were used in [10] to get the classification of the zero-product
preserving additive maps on self-adjoint operator spaces.

Let C be the field of complex numbers and R be the field of real numbers. Denote
Mn(C) and Hn(C) the algebra of all n × n matrices over C and the real linear space of all
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Hermitian matrices in Mn(C), respectively. As usual, GLn(C) denotes the general linear
group of degree n over C, that is, the group of all nonsingular matrices in Mn(C).

Let X1, X2 ∈ Hn(C). X1 and X2 are said to be of arithmetic distance r, denoted by
ρ(X1, X2) = r, if rank(X1 − X2) = r. In the case that r = 1, we say that X1 and X2

are adjacent. It is easy to verify that ρ satisfies the requirements for a distance function
in a metric space. With the space Hn(C) we associate naturally a group of motions which
consists of transformations of the form

X �→ PXP ∗ + H0

for all X ∈ Hn(C), where P ∈ GLn(C), H0 ∈ Hn(C) and P ∗ denotes the conjugate trans-
pose of P , i.e., P ∗ = P

t
, where X = [x̄ij ] if X = [xij ] ∈ Mn(C). Obviously the elements

of the group of motions leave the arithmetic distance between any pair of points of Hn(C)
invariant. Hua’s remarkable fundamental theorem states that the adjacency alone is suffi-
cient to characterize the motions to automorphisms of the underlying field. More precisely,
we have

Theorem 1.1. Let n be an integer ≥ 2, and Φ be a bijective map from Hn(C) onto itself.
Assume that Φ preserves adjacency in both directions, that is, for every pair X1, X2 ∈ Hn(C),
X1 and X2 are adjacent if and only if Φ(X1) and Φ(X2) are adjacent. Then there exist a
non-zero real number c, a nonsingular matrix P ∈ GLn(C) and a matrix X0 ∈ Hn(C) such
that either Φ has the form Φ(X) = cPXP ∗ + X0, for all X ∈ Hn(C), or has the the form
Φ(X) = cPXP ∗ + X0, for all X ∈ Hn(C).

For the general result that C is replaced by a division ring with involution, we refer
to Wan’s book [23]. We also point out that the bijectivity assumption of the fundamental
theorem of the geometry of Hermitian matrices can be relaxed to the surjectivity assumption.
The proof is similar to that in the proof of Theorem 1.2 below.

The purpose of this paper is to extend the above fundamental theorem of the geometry
of Hermitian matrices to the infinite dimensional case.

Let H be a Hilbert space over C and B(H) the algebra of all bounded linear operators
acting on H . We denote by Sa

F (H) ⊆ B(H) the real linear space of all finite rank self-adjoint
operators and Sa(H) ⊆ B(H) the real linear space of all self-adjoint operators. As in the
finite dimension case, we say that two operators X1, X2 ∈ Sa(H) are adjacent if X1 −X2 is
a rank-one operator.

Note that a rank-1 operator X is self-adjoint if and only if there exists a vector x ∈ H

and a nonzero real number c such that X = cx⊗ x. Moreover, every element in Sa
F (H) can

be expressed as a sum of finite many rank-one elements in Sa
F (H). A map A : H → H is

said to be conjugate-linear if A is additive and A(tx) = t̄Ax for all x ∈ H and t ∈ C. Note
that, the dual operator A∗ of a conjugate-linear operator A is defined by 〈A∗x, y〉 = 〈Ay, x〉
for every x, y ∈ H .

The following are our main results.

Theorem 1.2. Let Φ : Sa
F (H) → Sa

F (H) be a surjective map. Then Φ preserves the
adjacency in both directions if and only if there exist an X0 ∈ Sa

F (H), a bijective linear or
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conjugate-linear operator A on H and a scalar c ∈ R \ {0} such that X �→ Φ(X) − X0 is a
linear or conjugate-linear bijective map and

Φ(x ⊗ x) = cAx ⊗ Ax + X0

for all x ∈ H.

Theorem 1.3. Let Φ : Sa
F (H) → Sa

F (H) be a surjective continuous map. Then Φ
preserves adjacency in both directions if and only if there exists an operator X0 ∈ Sa

F (H), a
bounded bijective linear or conjugate linear operator A on H and a scalar c ∈ R \ {0} such
that

Φ(X) = cAXA∗ + X0

for all X ∈ Sa
F (H).

Theorem 1.4. Let Φ : Sa(H) → Sa(H) be a surjective strongly continuous map. Then
Φ preserves adjacency in both directions if and only if there exist a bounded bijective linear
or conjugate-linear operator A on H, a scalar c ∈ C\ {0} and an operator X0 ∈ Sa(H) such
that

Φ(X) = cAXA∗ + X0

for all X ∈ Sa(H).

It is clear that Sa(H) is a Jordan ring with respect to the addition (X, Y ) �→ X +Y , and
the Jordan multiplication (X, Y ) �→ XY + Y X. Recall that a bijective map Φ : Sa(H) →
Sa(H) is called a Jordan ring automorphism if

Φ(X + Y ) = Φ(X) + Φ(Y )

and
Φ(XY + Y X) = Φ(X)Φ(Y ) + Φ(Y )Φ(X)

for every X, Y ∈ Sa(H). As an application of Theorem 1.2, we get easily a maybe known
characterization of Jordan ring automorphism of Sa(H).

Corollary 1.1. A map Φ : Sa(H) → Sa(H) is a Jordan ring automorphism if and only
if there exists a unitary or conjugate unitary operator U on H such that

Φ(X) = UXU∗

for every X ∈ Sa(H).

§ 2 . Proofs of the Results

In this section we give the proofs of Theorems 1.2–1.4 and Corollary 1.1.

Proof of Theorem 1.2. The “if ” part is obvious. To check the “only if ” part we
assume that Φ is surjective and preserves adjacency in both directions. There is no loss
of generality in assuming that Φ(0) = 0. Otherwise we let Ψ(X) = Φ(X) − Φ(0) and then
consider Ψ. We proceed in steps.



308 DI, Q. H., DU, X. F. & HOU, J. C.

Step 1. Φ is injective.

Assume that Φ(X1) = Φ(X2), X1, X2 ∈ Sa
F (H) and denote Y = X2 − X1. Define a

new map Ψ : Sa
F (H) → Sa

F (H) by Ψ(X) = Φ(X + X1) − Φ(X1). Then Ψ maps both 0
and Y into 0 and preserves the adjacency in both directions. In particular, Φ maps rank-1
self-adjoint operators into rank-1 self-adjoint operators. If Y 
= 0, then Y can be expressed

as Y =
n∑

i=1

εiyi ⊗ yi for some yi ∈ H and εi ∈ {−1, 1}, i = 1, 2, · · · , n. Choose y ∈ H

such that y is linearly independent of y1, · · · , yn. Obviously, rank(y ⊗ y − Y ) 
= 1. But
1 = rank(Ψ(y ⊗ y) − Ψ(Y )) = rank(Ψ(y ⊗ y)), contradicting the fact that Ψ maps rank-1
self-adjoint operators into rank-1 self-adjoint operators.

Step 2. We assert that both Φ and Φ−1 preserve the arithmetic distance, that is,

rank(X − Y ) = rank(Φ(X) − Φ(Y ))

for any X, Y ∈ Sa
F (H).

If rank(X − Y ) = r, then there exist ti ∈ R \ {0} and unit vectors xi ∈ H such that

X − Y =
r∑

i=1

tixi ⊗ xi. Let Y0 = Y , Y1 = Y + t1x1 ⊗ x1, Y2 = Y + t1x1 ⊗ x1 + t2x2 ⊗

x2, · · · , Yr = Y +
r∑

i=1

tixi ⊗ xi = X . Since Φ preserves adjacency, we have rank(Φ(X) −

Φ(Y )) ≤
r∑

i=1

rank(Φ(Yi) − Φ(Yi−1)) = r. The same argument applied to Φ−1 ensures that

rank(Φ(X) − Φ(Y )) = rank(X − Y ).

By Step 2, for any non-zero vector x ∈ H , there exist nonzero y ∈ H and a ∈ R\{0}, such
that Φ(x⊗x) = ay⊗y. Indeed, we have Φ(Rx⊗x) = Ry⊗y, where Rx⊗x = {αx⊗x | α ∈ R}.

Denote by ranT the range of a map T and spanS the linear space spanned by S. Some
times, we also denote the linear span of vectors x1, x2, · · · , xn by [x1, x2, · · · , xn].

Step 3. Suppose that x1, x2, · · · , xn are linearly independent vectors in H and write
Φ(xi ⊗ xi) = aiyi ⊗ yi, yi ∈ H , i = 1, 2, · · · , n. Then for any X ∈ Sa

F (H) with ranX ⊆
[x1, x2, · · · , xn], we have ran(Φ(X)) ⊆ [y1, y2, · · · yn].

When n = 1, the assertion is obvious. In the following we assume n ≥ 2.

Claim 1. y1, y2, · · · , yn are linearly independent.

Assume, on the contrary, that y1, y2, · · · , yn are linearly dependent. Without loss of
generality, we may assume that y1, y2, · · · , yn−1 are linearly independent and yn = y1 +y2 +

· · · + yn−1. Then, for any j ∈ {1, 2, · · · , n − 1}, rank
( n−1∑

i=1

yi ⊗ yi − yj ⊗ yj

)
= n − 2. So

Φ−1
( n−1∑

i=1

yi ⊗ yi

)
= Φ−1(yj ⊗ yj) + Rj , where Rj ∈ Sa

F (H) and rank(Rj) = n − 2. Hence

ran(Φ−1(yj ⊗ yj)) ⊆ ran
(
Φ−1

( n−1∑
i=1

yi ⊗ yi

))
, i.e.

{x1, x2, · · · , xn−1} ⊆ ran
(
Φ−1

( n−1∑
i=1

yi ⊗ yi

))
.
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Since rank
(
Φ−1

( n−1∑
i=1

yi ⊗ yi

))
= n − 1, we have

ran
(
Φ−1

( n−1∑
i=1

yi ⊗ yi

))
= [x1, x2, · · · , xn−1].

On the other hand, rank(Φ−1(yn ⊗ yn)) = 1, rank
(
yn ⊗ yn −

n−1∑
i=1

yi ⊗ yi

)
= n − 1, rank

(
Φ−1(yn ⊗ yn) − Φ−1

( n−1∑
i=1

yi ⊗ yi

))
= n − 1. So

ran(Φ−1(yn ⊗ yn)) ⊆ ran
(
Φ−1

( n−1∑
i=1

yi ⊗ yi

))
⊆ [x1, x2, · · · , xn−1],

arriving at a contradiction.

Claim 2. If x′ ∈ [x1, x2, · · ·xn] and if Φ(x′ ⊗ x′) = a′y′ ⊗ y′, then y′ ∈ [y1, y2, · · · , yn].
Let x′ = α1x1 +α2x2 + · · ·+αnxn, where αi ∈ C. Without loss of generality, we assume

that αi = 1, i = 1, 2, · · · , n. For any j ∈ {1, 2, · · · , n}, rank
( n∑

i=1

xi ⊗ xi − xj ⊗ xj

)
= n − 1.

So Φ
( n∑

i=1

xi ⊗ xi

)
= Φ(xj ⊗ xj) + Sj , where Sj ∈ Sa

F (H) and rank(Sj) = n − 1. It follows

that ran
(
Φ

( n∑
i=1

xi ⊗ xi

))
= span{ran(Φ(xj ⊗ xj)), j = 1, 2, · · · , n} = [y1, y2, · · · , yn]. Since

rank(Φ(x′ ⊗ x′)) = 1 and rank
(
x′ ⊗ x′ −

n∑
i=1

xi ⊗ xi

)
= n, we have

rank
(
Φ(x′ ⊗ x′) − Φ

( n∑
i=1

xi ⊗ xi

))
= n.

It is easily seen now that ran(Φ(x′ ⊗ x′)) ⊆ [y1, y2, · · · yn].

Claim 3. If X ∈ Sa
F (H) and ran(X) ⊆ [x1, x2, · · · , xn], then

ran(Φ(X)) ⊆ [y1, y2, · · · , yn].

Assume rank(X) = s, 1 ≤ s ≤ n; then there exist linearly independent vectors x′
1, x

′
2,

· · · , x′
s ∈ [x1, x2, · · · , xn] such that X =

s∑
i=1

a′
ix

′
i ⊗ x′

i, 0 
= ai ∈ R (i = 1, 2, · · · , n). Let

Φ(x′
i ⊗ x′

i) = b′iy
′
i ⊗ y′

i, i = 1, 2, · · · , s. By Claim 2, we see that y′
i ∈ [y1, y2, · · · , yn]. Then,

by the proof of Claim 1, we have ran(Φ(X)) ⊆ [y′
1, y

′
2, · · · , y′

s] ⊆ [y1, y2, · · · , yn], as desired.
Let Ω be the direct set consisting of all finite dimensional linear subspaces of H , ordered

by inclusion.

Step 4. If λ = [x1, x2, · · · , xn] ∈ Ω and Φ(xi ⊗ xi) = aiyi ⊗ yi, i = 1, 2, · · · , n, then
there exist a nonzero cλ ∈ R and a linear or conjugate-linear operator Aλ : H → H with
ran(Aλ) = μ = [y1, y2, · · · , yn] and ker(Aλ) = λ⊥ such that, for every X ∈ Sa

F (H) with
ran(X) ⊆ λ, we have Φ(X) = cλAλXA∗

λ.

We may assume that dim λ = n. By Claim 1 in Step 3, μ = [y1, y2, · · · , yn] has dimension
n, too. Let Pλ and Qλ be the projections with ranges λ and μ, respectively. Let φ1 :
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PλSa
F (H)Pλ → Hn(C) be the real linear isomorphism determined by φ1(xj ⊗ xj) = ej ⊗ ej ,

φ1(xk ⊗ xj + xj ⊗ xk) = ek ⊗ ej + ej ⊗ ek and φ1(ixk ⊗ xj − ixj ⊗ xk) = iek ⊗ ej − iej ⊗ ek,
where i is the imaginary unit, ej denotes the jth standard unit row vector in Cn and
ek ⊗ ej denotes the n × n matrix with 1 in position (k, j) and 0 elsewhere. We define
similarly φ2 : QλSa

F (H)Qλ → Hn(C). Let ϕ be the map from Hn(C) onto Hn(C) defined
by ϕ = φ2φφ−1

1 , which is a surjective map preserving adjacency in both directions, where
φ = Φ|PλSa

F (H)Pλ
. Applying the fundamental theorem of the geometry of Hermitian matrices

due to Hua (i.e., Theorem 1.1 in Section 1), it is easily seen that there exist some c ∈ R\{0}
and nonsingular n × n matrix A such that ϕ(T ) = cλAT fA� for every T ∈ H1

n(C), where f

is the identity or the conjugation of C. Thus φ(X) = φ−1
2 ϕφ1(X) = φ−1

2 (cλAφ1(X)fA�) for
every X ∈ PλSa

F (H)Pλ. We first consider the case that f is the identity of C, that is,

φ(X) = φ−1
2 (cλAφ1(X)A�).

Write A in

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠ .

Note that by Step 3 we have φ(xj ⊗ xj) = αjyj ⊗ yj (j = 1, · · · , n). A computation of
φ(xj ⊗ xj) = φ−1

2 (cλAφ1(xj ⊗ xj)A�) shows that A = diag{a11, a22, · · · , ann} and φ(xj ⊗
xj) = cλ|ajj |2yj ⊗ yj = αjyj ⊗ yj. Define a linear operator Aλ on H by Aλxj = βjyj

(j = 1, 2, · · · , n), Aλx = 0 if x ∈ λ⊥, where βj ∈ C satisfies |βi|2 = |aii|2. Then Aλ

satisfies that Φ(X) = cλAλXA�
λ for every X ∈ Sa

F (H) with ran(X) ⊆ λ. For the case
that φ(X) = φ−1

2 (cλAφ1(X)A�) for every X ∈ PλSa
F (H)Pλ, φ is conjugate linear. We

define a map Jn : Cn → Cn by Jn( ξ1 ξ2 · · · ξn )t = ( ξ̄1 ξ̄2 · · · ξ̄n )t. Then
T = JTJ and hence φ(X) = φ−1

2 (cλBφ1(X)B�) with B = AJ a conjugate linear map from
Cn onto itself. Similarly, φ(xj ⊗ xj) = αjyj ⊗ yj (j = 1, · · · , n) implies that Bej = ajjej

and φ(xj ⊗ xj) = cλ|ajj |2yj ⊗ yj = αjyj ⊗ yj. In the same way as linear case, we find a
conjugate linear operator Aλ : H → H with ran(Aλ) = μ and (ker(Aλ))⊥ = λ such that
Φ(X) = cλAλXA�

λ for every X ∈ Sa
F (H) with ran(X) ⊆ λ.

As a consequence of Step 4, Φ is additive.

Step 5. If there exists λ0 ∈ Ω with dimλ0 ≥ 2 such that Aλ0 is linear (resp., conjugate-
linear), then for every λ ∈ Ω, Aλ is linear (resp., conjugate-linear).

Otherwise, assume that Aλ0 is linear but there exists λ1 ∈ Ω so that Aλ1 is conjugate-
linear. Take λ′ ∈ Ω such that λ1∪λ0 ⊂ λ′. For any x ∈ λ0 ⊂ λ′, Φ(x⊗x) = cλ0Aλ0x⊗Aλ0x =
cλ′Aλ′x⊗Aλ′x. Hence Aλ0x, Aλ′x are linear dependent. It follows that Aλ′ |λ0 = α0Aλ0 for
some α0 ∈ C \ {0}. With the same reason, we have Aλ′ |λ1 = α1Aλ1 for some α1 ∈ C \ {0}.
Thus we get a contradiction since, by Step 4, Aλ′ is linear or conjugate-linear.

Step 6. There exist a nonzero real number c and a bijective linear or conjugate-linear
operator A : H → H such that

Φ(x ⊗ x) = cAx ⊗ Ax.
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Without loss of generality, we assume that, for any λ ∈ Ω, Aλ is linear. Fix λ0 ∈ Ω with
dimλ0 ≥ 2. For any λ ∈ Ω, if λ ⊆ λ0, as in Step 4, there exists a nonzero a ∈ C such that
Aλ = aAλ0 |λ. Absorbing a scalar vector, we can assume that Aλ = Aλ0 |λ and consequently,
cλ = cλ0

With the same reason, if λ0 ⊂ λ or if λ ∩ λ0 
= {0}, we can assume Aλ|λ0 = Aλ0 or
Aλ|λ∩λ0 = Aλ0 |λ∩λ0 and cλ = cλ0 .

If λ∩λ0 = {0}, let λ+λ0 = μ ∈ Λ. Then we have Aμ|λ0 = α0Aλ0 for some α0 ∈ C\ {0}.
Let A′

λ = α−1
0 Aμ|λ. For every x ∈ λ0 ⊆ μ, we have

Φ(x ⊗ x) = cλ0Aλ0x ⊗ Aλ0x = cμAμx ⊗ Aμx

= cμα0Aλ0x ⊗ α0Aλ0x = cμ|α0|2Aλ0x ⊗ Aλ0x.

And for every x ∈ λ ⊆ μ we have

Φ(x ⊗ x) = cλAλx ⊗ Aλx = cμAμx ⊗ Aμx = cμα0A
′
λx ⊗ α0A

′
λx

= cμ|α0|2A′
λx ⊗ A′

λx = c0A
′
λx ⊗ A′

λx.

So, we can assume cλ = c0 and Aλ = A′
λ.

In conclusion, for any λ1, λ2 ∈ Ω, we have Aλ1 |λ1∩λ2 = Aλ2 |λ1∩λ2 . So we can find a linear
operator A : H → H such that Ax = Aλx, if x ∈ λ for some λ ∈ Ω, and there is a c ∈ R\{0}
such that Φ(x ⊗ x) = cAx ⊗ Ax, for all x ∈ H .

Proof of Theorem 1.3. The “if ” part is obvious. For the “only if ” part, we use
Theorem 1.2 to see that Φ has the form stated in Theorem 1.2. Since Φ is continuous, the
linear or conjugate linear operator A must be bounded and A∗ exists. Now the desired
conclusion follows.

Proof of Theorem 1.4. We only need to check the “only if ” part. Assume that Φ
is surjective and preserves adjacency in both directions. Without loss of generality we may
require that Φ(0) = 0.

For any X, Y ∈ Sa(H), it is easy to see that rank(X − Y ) = r implies the existence
of operators X = X0, X1, · · · , Xr = Y in Sa(H) such that Xi−1 and Xi are adjacent,
i = 1, 2, · · · , r. By the triangle inequality, we get rank(Φ(X) − Φ(Y )) ≤ r = rank(X − Y ).
Considering Φ−1 instead of Φ, we arrive at rank(Φ(X)−Φ(Y )) = rank(X−Y ). In particular,
we have Φ(Sa

F (H)) = Sa
F (H). Since, by the closed graph theorem, the strong continuity of

Φ implies the (norm) continuity, it follows from Theorem 1.3 that there exist a bounded
invertible linear or conjugate-linear operator A and a scalar c ∈ R \ 0 such that Φ(X) =
cAXA∗ for all X ∈ Sa

F (H). For any X ∈ Sa(H), there exist a net {αγ | γ ∈ Γ} of complex

numbers and a net {Pγ | γ ∈ Γ} of projections such that
{ ∑

γ∈Γ′
αγPγ

∣∣∣ Γ′ is finite subset

in Γ
}

converges to X uniformly. And for every finite subset Γ′ in Γ,
∑

λ∈Γ′
αλPλ is a strong

limit of some monotone increasing net of operators in Sa
F (H). Now the strong continuity of

Φ is used to complete the proof.
Now let us give a proof of Corollary 1.1 by use of Theorems 1.2–1.4.
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Proof of Corollary 1.1. Assume that Φ is a Jordan ring isomorphism of Sa(H). We
have to show that there exists a unitary or conjugate unitary operator U on H such that
Φ(X) = UXU∗, for every X ∈ Sa(H). It is trivial to check that

Φ(0) = Φ(0), (2.1)

Φ(X2) = Φ(X)2, (2.2)

Φ(I) = I, (2.3)

Φ(XY X) = Φ(X)Φ(Y )Φ(X) (2.4)

hold for every X, Y ∈ Sa(H). We divide the rest of proof into several steps.

Step 1. If X, Y ∈ Sa(H) satisfy X2 = X 
= 0, Y 2 = Y 
= 0 and XY = Y X = 0, then

Φ(X)Φ(Y ) = Φ(Y )Φ(X) = 0.

By (2.1), 0 = Φ(0) = Φ(XY + Y X) = Φ(X)Φ(Y ) + Φ(Y )Φ(X). Thus Φ(X)Φ(Y ) =
−Φ(Y )Φ(X). It follows from (2.2) and (2.4) that

0 = Φ(XY X) = −Φ(X)2Φ(Y ) = −Φ(X)Φ(Y ).

Therefore
Φ(X)Φ(Y ) = Φ(Y )Φ(X) = 0.

Step 2. Φ maps rank-one projections into rank-one projections.
By (2.2), Φ maps projections into projections.
Assume that there exists a rank-one projection P ∈ Sa(H) such that rank(Φ(P )) > 1.

Write Q = Φ(P ). Then there exist projections Q1, Q2 ∈ Sa(H) with Q1Q2 = Q2Q1 = 0
such that Q = Q1 + Q2. Thus we have P = Φ−1(Q) = Φ−1(Q1) + Φ−1(Q2). By Step 1,
Φ−1(Q1)Φ−1(Q2) = Φ−1(Q2)Φ−1(Q1) = 0. This implies that rank(P ) = rank(Φ−1(Q1) +
Φ−1(Q2)) > 1, a contradiction.

Step 3. Φ maps rank-1 self-adjoint operators into rank-1 self-adjoint operators.
For any rank-1 self-adjoint operator X = tx⊗ x ∈ Sa(H) (t ∈ R \ {0} and x ∈ H \ {0}),

b−1X is a rank-one projection, where b = t〈x, x〉 
= 0. By Step 2, rank(Φ(b−1X)) = 1. As
X = (b−1X)X(b−1X), by (2.4), we get Φ(X) = Φ(b−1X)Φ(X)Φ(b−1X). Therefore Φ(X) is
of rank-one.

Step 4. There exists a real number c 
= 0 and a bijective linear or conjugate-linear
operator B : H → H such that Φ(x ⊗ x) = cBx ⊗ Bx holds for all x ∈ H .

As in the proof of Theorem 1.4, it is easily checked that Φ(Sa
F (H)) = Sa

F (H). So the
assertion is obtained by Step 3 and Theorem 1.2. Particularly, Φ is linear or conjugate-linear
when restricted to Sa

F (H).
Let us first consider the case that Φ is linear, i.e., B is linear.

Step 5. 〈Bx, By〉 = c−1〈x, y〉 for all x, y ∈ H.

Firstly, we show that 〈Bx, Bx〉 = c−1〈x, x〉 for all x ∈ H. This is obviously true if
x = 0. Assume that x 
= 0, then Φ(‖x‖−2x ⊗ x) = ‖x‖−2Φ(x ⊗ x) = ‖x‖−2cBx ⊗ Bx.
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Since ‖x‖−2x⊗ x is a rank-one projection, (‖x‖2)−1cBx⊗Bx is a rank-one projection, too.
Therefore 〈x, x〉−1〈cBx, Bx〉 = 1, i.e., 〈Bx, Bx〉 = c−1〈x, x〉. As a result, we have c > 0.

Now the general equation 〈Bx, By〉 = c−1〈x, y〉 follows from the polarization identity.
Let U =

√
c−1B. Then U is a unitary operator.

Step 6. Φ(X) = UXU∗ holds for all X ∈ Sa
F (H).

By the additivity of Φ, we only need to check the case that X is of rank-one . Let
X = x ⊗ x. For any y ∈ H,

Φ(x ⊗ x)y = (Ux ⊗ Ux)y = 〈y, Ux〉Ux = 〈U∗y, x〉Ux

= U(〈U∗y, x〉)x = U(x ⊗ x)U∗y.

So Φ(x ⊗ x) = U(x ⊗ x)U∗.

Step 7. Φ(X) = AXA∗ holds for all X ∈ Sa(H).
For any X ∈ Sa(H) and y ∈ H , we have

Φ(X(y ⊗ y)X) = Φ(X)Φ(y ⊗ y)Φ(X)

= Φ(X)U(y ⊗ y)U∗Φ(X)

= Φ(X)Uy ⊗ Φ(X)Uy.

On the other hand

Φ(X(y ⊗ y)X) = Φ(Xy ⊗ Xy) = UXy ⊗ UXy.

So there exists a number λX with |λX | = 1 such that

Φ(X)U = λXUX.

Thus
Φ(X) = λXUXU∗.

By Step 6 and (2.3), we see that λX = 1 and hence

Φ(X) = UXU∗

for every X ∈ Sa(H).
The proof is similar when Φ is conjugate-linear.
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