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THE EXPONENTIAL STABILIZATION FOR
A SEMILINEAR WAVE EQUATION WITH
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Abstract

This paper considers the exponential decay of the solution to a damped semilinear
wave equation with variable coefficients in the principal part by Riemannian multi-
plier method. A differential geometric condition that ensures the exponential decay is
obtained.
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§1. Introduction

In this paper, we will consider the following semilinear damped wave equation with
variable coefficients in the principal part:

no 9 ou .
v 32 (o) +F) e =0 i @ x (0,00
w=0 on 99 x (0,00), (1.1)
u(0) = u®, w(0) =u' in &,

where a;;(x) = aj;i(z) are C* functions in R™ satisfying

n

Y ag@)& = ad &, VeeQ VE= (6,6, &) R (12)
=1

ij=1

for some positive constant «. € is assumed to be a bounded domain in R (n > 1) with a
smooth boundary 9Q =T. f € C}(R) is such a function that

f(s)s >0, Vs eR, (1.3)
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and satisfies the following growth condition
[f(s1) = fls2)| S C* (L + [sa]PF + [s2lP7h)[s1 — 2, Vsi,s2€R (1.4)

for some constant C* > 0 and p > 1 with (n — 2)p < n. In addition, f is assumed to be
superlinear in this paper, i.e.,

6>0: f(s)s>(2+9) /Sf(z)dz, VseR. (1.5)
0

Let w be a neighbourhood of the whole boundary I" (here and in what follows by a neigh-
bourhood of the boundary or of a portion I'y C T' we mean the intersection of {2 with some
neighbourhood of those sets in R™). a(x) € L*>(Q) is a nonnegative bounded function such
that

a(x) > ag > 0, a.e. in w (1.6)

for some constant ag > 0. The condition (1.6) implies that the damping is not effective in
the whole €2, but only in the subset w C .

Under the above conditions, the system (1.1) is well posed in the space H}(Q) x L2(Q),
i.e., for any initial data {u® u'} € H}(Q2) x L?(Q2), there exists a unique weak solution u of
(1.1) such that

w € C([0,00); H(2) N C ([0, 00); LA(2)

(see [1]). Then we define the energy of u at instant ¢t by

E(t) = %/Q (|ut|2 + .znz:l Clij(.l?)g—;i %)dw —l—/ﬂ‘b(u(x,t))dm, (1.7)

where

D(s) = /0S f(z)dz, Vs eR, (1.8)

and it is easy to check that ®(s) is non-negative for any s € R. Multiplying (1.1); ( the first
equation of the system (1.1)) by u; and integrating over Q x (s,s +T) with s > 0,7 > 0,

we have
s+T
E(s+T)—E(s) = —/ / a(x)|ug|*dzdt <0, (1.9)
s Q

which signifies that the energy E(t) is a non-increasing function of the time variant t. In
fact, it is just our purpose to show that E(t) decays exponentially to 0 as ¢ — oo under
certain differential geometric conditions which will be specified later on, i.e., to prove for
every energy finite solution u of (1.1),

E(t) < Ce™E(0), Vt>0 (1.10)

with some positive constants C' and A under certain conditions.
On the exponential decay of the energy for semilinear damped wave equations, there
have been a plenty of literatures. Here we cite [1] among others. In [1], Zuazua considered
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the following semilinear damped wave equation with constant coefficients in the principal

part:
uge — Au+ f(u) +a(x)uy =0 in Q x (0,00),
u=0 on 09 x (0,00), (1.11)
uw(0) = u®, u(0) = ul in Q.

The author in [1] investigated:

(1) f € C*(R) satisfies (1.3) and (1.4), and is globally Lipschitz, i.e., f' € L>(R).

(2) f € C*(R) satisfies the conditions (1.3)—(1.5).

For the second case, by multiplier methods, the author proved that the energy of (1.11)
decays exponentially, i.e.,

E\(t) 2 %/Q(|ut|2 + |Vul?)dx +/Q<I>(u(x,t))dx < Ce ™ E(0)

for some positive constants C' and A\. And in §3.2 of [1], Zuazua thought that for the system
(1.1) with variable coefficients in the principal part, the exponential decay would hold under
a restrictive condition:

n

> (ai; — (x - m0) - Vai;) &g > 2B¢)°, Yz eQ, VEER” (1.12)
i,j=1
for some xg € R™ and 3 > 0, but the general case remained open.

In this paper, motivated by the Riemann multiplier method developed by Yao [2], we
discuss the exponential decay for the system (1.1) by Riemannian geometry method. A
general differential geometric condition which is sufficient for the exponential decay for the
system (1.1) is obtained.

The paper is organized as follows: In Section 2, we first introduce some notations and
geometry identities we work on, and then state the main result. Section 3 is devoted to the
proof of the main result.

§ 2. Preliminaries and Main Result

We first introduce some notations in Riemann geometry and multiplier identities devel-
oped in [2] (see also [5, 6]) which are needed in the proof of our main result.

Let R™ have the usual topology and © = (x1,2, - ,z,) be the natural coordinate
system. For each x € R™, we denote by A(z) an n X n matrix and G(z) its inverse, i.e.,

A(z) = (aij(@)axn and G(z) = (gij(@))nxn = Ax) .

We define the inner product (-, -), and norm | - |, over the tangent space R? by
(X,Y)g=9(X, V)2 > gij(@)u3;, (2.1)
ij=1

1 n B n 9
(Xlg=(X,X)5, VX=) aiz—, V=) Biz— R (2.2)
i=1 ! i=1 i
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It is easy to check that (R™,g) is a Riemann manifold with Riemann metric g defined by
(2.1). Let D be the Levi-Civita connection in metric g. For a vector field H on (R, g), the
covariant differential DH of H determines a bilinear form on R} x R” for each x € R by

DH(X,Y) = (DxH,Y),, VX,Y €R?, (2.3)

where Dx H is the covariant derivative of vector field H with respect to X.
At the same time, we denote the usual Euclidean inner product and norm by (-, - )¢ and
| - |o respectively, i.e.,

(X, Y)o=XY = Zazﬂz, (2.4)
|X|0=(ZO&%)§, Zaz , Y = Zﬁz ER" (25)
=1 Li

For a vector field X = 3 a;(z) > on R, we denote the divergence of X in the Euclidean
i=1 '

metric by diveX,

=1 axz
It is clear that
divo(pX) = @dive X + X (o) for any ¢ € C1(R"), (2.6)
/ divo Xdx = X -vdo, (2.7)
Q o0
where v = (v1, 2, -, V) is the unit normal vector of 99 pointing towards the exterior of

), and do is the Euclidean surface element on 0.
In the following Lemma 2.1, we introduce some elementary identities. For the proof, we
refer the readers to [2] and omit it here.

Lemma 2.1. Let x = (%1, %2, - ,2y) be the natural coordinate system in R™, p 1) €
CY(Q) and H,X vector fields. We denote by Vg and Vg the gradient operators in the
Riemannian metric and in the Buclidean metric respectively. Then for all x € Q,

(H(z), A(x)X (2))g = H(z) - X (), (2.8)

o= 3 (S0 7 20
(Vgp, Vi) g = JVgsO(w) = Voyp - A(z)Vorh, (2.10)
IVoel; = zn:la 1€ )gi gz (2.11)

(Vo Vo (H(p)))g(x) = DH(V 4, Vo) (2) + %diVo(lvgsé’@H)(fC)

%|Vgga|§(a:)divoH(x). (2.12)
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For the sake of convenience, we set the differential operator

Au = — Zn:l ({%1 (a”(x)aa—;j)

i,5=
Now we list some multiplier identities needed later.

Lemma 2.2. Let u solve the equation
uge + Au + f(u) + a(z)us =0 (2.13)

on Qx (s,s+T) with s >0,T >0, and let H be a vector field on Q. Then we have

s+T 1 [stT )
+ 5/ /Qutdivodedt

s+T
/ /uttH(u)dxdtz/utH(u)da:
s Q Q s

1 S+T
- —/ / u?H - vdodt (2.14)
2 s o0
and

s+T +T s+T
/ / A(u)H (u)dzdt = / / H(Vu,Vu)dzdt + = / / \Vgul2H - vdodt
s Q

1 s+T s+T ou
——/ /|Vgu|§diV0Hdmdt—/ / — H(u)dodt, (2.15)
2 /s Q s 0N Ova

where

is the conormal derivative. Moreover, if 1 € C?(Q) then

s+T s s+T
/ / ¥(uf — ‘Vgui)dxdt = / Yuude o —|—/ Yu(f(u) + a(z)uy)dzdt
s Q Q s s Q

1 s+T s+T
+—/ /uQ.Awdxdt—/ / —wudadt
2 s Q s aVA

1 S+T
+3 / /d . u?V g1 - vdodt. (2.16)
S

Proof. (2.14) and (2.15) can be obtained directly from Lemma 2.1 by integrating by
parts. We now prove (2.16). It is obvious that

A = —divo(V410)

by (2.9) of Lemma 2.1, and we have
1
(Vgu, Vg(ihu))g = ¢|Vgu|!2] +u(Vgu, Vgih)g = w|Vgu|§ + §vgw(u2)

1 . 1
= ¢|Vgu|_(2] + §d1v0(u2vgw) + EUQ.Aw.
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Then by (2.7) and Green’s formula we deduce that
s+T 1 s+T s+T
—/ /¢|V ul?dadt = 2/ divo(u?V g1p)dzdt + 2/ /uQ.Awdxdt
s s Q

s+T
/ (Vgu, Vg (yhu))gdrdt

1 s+T 1 s+T
= = / / u?V gt - vdzdt + = / / u? Apdadt
2 o9 2J)s Ja
s+T s+T 8
/ / YuAudxdt — / / wu—dadt
s o0 aV.A

Moreover, integrating by parts yields
s+T s+T s+T
/ wufdxdt = / Yuuidr — / Yuugydedt.
s Q Q S s Q

Combining the above two identities, and noting (2.13) we then complete the proof.

Based on the above preparations, we now state our main result as follows.

Theorem 2.1. Let w be a neighbourhood of the whole boundary T and let f satisfy (1.3)—
(1.5). Let H= (H',H? --- ,H") be a vector field on the Riemannian manifold (R™, g) such
that

inf{ divoH ; 2 € Q } >0, (2.17)
DH(X,X) > v|X|2, VX eR!, VzeQ (2.18)
for some constant v > 0, and set
Io={x€dQ| H- -v>0} I' ={x €| H v<0}.

Then for any given initial data {u®,ul} € HE(Q) x L?(2), the energy of the system (1.1)
with variable coefficients decays exponentially to 0 as t — oo, i.e., there exist two constants
C >0 and X\ > 0, such that

E(t) = %/ﬂ(u? + |Vgul2)dx + /Q ®(u)dz < Ce M E(0), Vit > 0. (2.19)

Remark 2.1. The existence of the vector field H on the Riemannian manifold (R", g)
satisfying the geometric condition (2.18) can be guaranteed in some cases by curvature
conditions on Riemannian manifold (see [2] where some examples are given).

Remark 2.2. The differential geometric condition (2.18) is more general than the
condition (1.12) given by Zuazua [1]. In [5], the authors have shown that (2.18) is equivalent
to the following condition

377 > 07 Z (Zazk + Za]k Voaij : H)flf] > 77|£|27
4,j=1 k=

verv Vé': (51;527"' agn) € R".
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Thus if we take H = (z1 — 29,29 — 29, , 2, — 22) for some z° € R", then (1.12) can be

deduced from (2.18).

8§ 3. Proof of Theorem 2.1
In the present section, we adopt Riemannian multiplier method introduced by Yao in [2]

to prove Theorem 2.1. Inspired by the work by J. Rauch and M. Taylor [4] we aim at to
establish the energy estimate of type

s+T
E(s+T)< C/ /Qa(x)|ut(x,t)|2dxdt.

We first introduce the well-known Sobolev-Poincaré inequality which will be needed later
(see for example [9]).

Lemma 3.1. (Sobolev-Poincaré Inequality) Let g be a number with 2 < ¢ < 400 (n =
2
1,2) or2<¢ < _n2 (n > 3). Then there is a constant c,. = ¢(2, q) such that
n—

lullg < el Vulla - for u € Hy(R).
In addition, the following inequality is obvious,

ac > o, / udr < C/ |Vgu|£27dx, Yu e Hy(Q).
Q Q

In fact, it is just the consequence of Poincaré inequality in Hg(£2) in the case of (1.2).
In the following, we will denote by C' constant independent of s and 7" which may be

varying at different places. Otherwise we will employ subscripts.

Proof of Theorem 2.1. Multiplying (1.1); by H(u) and integrating over Q x (s,s+7T)
with arbitrary s > 0 and T > 0, by (2.14) and (2.15) of Lemma 2.2, we obtain

1 s+T s+T
5/ divo H (u? — |Vgu|§)dxdt +/ DH(V ju,V qu)dxdt
s Q s Q

; /”/ s+ [ s+ [ )|

s+T s+T
u)do dt— = |V yul>H - vdodt. (3.1)
81/
a0 A a0

Referring to the proof of Lemma 2.3 in [ ], we know that on the boundary 02,

1 Ou 1 | Ou |2
Hu)=—-—H- 2o | —
(u) |VA|!2] EO v, |vgu|g |VA|!2] ova

s+T

Ve of.

Then (3.1) gives

1 s+T s+T
5/ divoH (u? — |Vgu|§)dxdt +/ DH(V u,V qu)dzdt
s Q s Q

s+T s+T
—|—/ /a(x)utH(u)dxdt—/ /@(u)divodedt—i—/utH(u)dx
s Q s Q Q

s+T

S
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1 [stT 1
= — H - 2
2/s /asz VAl am’ vdod. (32)

Now we multiply (1.1); by Cu with some ¢ € W1°°(Q) and integrate by parts to achieve

/Cu(ut—i— —u dm

s+T s+T
—l—/s /Qu<Vgu, VgC)gdxdt—l—/s /quf(u)dxdt:O. (3.3)

When we take ¢ = divoH in (2.16) of Lemma 2.2 and take into account that v = 0 on
00 x (0,00), the following identity holds:

s+T
/ / divoH (uf — |Vgul2)dzdt
s Q

s+T
/ / A(divoH)dxdt

s+T
/ / w)u + a(z)uu)divo Hdzdt. (3.4)

s+T
/ C(u |Vgu|£27)dxdt

/ ugudivoH dm

It follows from (3.2)—(3.4) with ¢ =1 that

s+T s+T
/ / — V4 u| dmdt—f—/ DH(V g u, Vg u)dzdt

1 s+T 1 s+T
— = / / _ ‘ H - vdodt — / / )y H(u)dwdt
2 a9 |VA| 3%4
s+T s+T
— —/ / x)upudivo Hdxdt — —/ / A(divoH)dxdt

. /SerT/Q ((T _ %diVOH) wf(u) + (I)(u)diVOH) dzdt

1 ) a o s+T
_ / (utH(u) + —upudivoH — T(utu + §u ))dm
Q S

; (3.5)

for any 7 € R. Now we take 0 < 7 < min{'y, %inf{divoH; x € ﬁ}} On one hand, we have

s+T s+T
C/ / (ui + |V, u| dxdt<7/ / — V4 u| )dxdt

s+T
—|—/ /DH(Vgu,Vgu)dxdt. (3.6)
s Q

On the other hand, there exists a # > 0 such that

diVOH
2< ——+0<2494
%diVoH -7 tO= 2

for 7 small enough. Then by this choice of 7 and (2.17), we have

/S S+T/Q ((T - %diVOH)u Flu) + @(u)divoH) dwdt < 0. (3.7)
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From (3.5)—(3.7) we deduce that

s+T
C/ /(Uf + |Vgul?)dadt
s Q
1 s+T 1 ST
<= . ‘
- 2/5 /ro [val2 81/,4‘ vdodt + / / z)uy H (u)dwdt

1 s+T 1 s+T
+5‘/ /a(m)utudivodedt‘ +1/ /u2|A(div0H)|cla:clt—l—./\/7 (3.8)
s Q s Q

where
s+T ‘

= ‘/ ut )+ utudlvoH — Tu(ut + ;u))dx

S

Noting that
0 < f(s)s < C*(|s|* + |s[PT), VseR

by (1.3) and (1.4), and using Poincaré inequality, we have the following estimate

s+T s+T
/ / u)dzdt < C/ Vg u| dxdt (3.9)

for some positive constant C' dependent on u° and «! but independent of s and 7. Thus it
is easy to see from (3.8) and (3.9) that

s+T

s+T s+T 1
c| E@dt<- / ‘H vdodt + @)uH (u)dzdt

To |l/_,4|g 81/A
s+T

S

1 s+T
(x)utudivoHda:dt‘ +N+Z / /u2|.A(div0H)|dxdt. (3.10)
s Q

Now we estimate the right hand of (3.10) term by term. By Holder inequality, we have

‘/ /Qa H(u) dmdt‘ <5/:+T/Q ()| H (u)] dfﬂdt+—/ / o)|ueddt (3.11)

for any € > 0, and

s+T s+T s+T
/ /| (z)upudivo H |dadt < —/ / T)u dxdt+—||a||oo/ /quxdt, (3.12)
s Q s Q

where
K =sup{ [divoH| ; x € Q }.

Combining (3.10)—(3.12) for € > 0 small enough yields

5+T s+T s+T
C/ t)dt < = / / ‘ H- l/dadt—i—/ /a(x)ufdmdt
s To |V«A| 8V~A s Q

s+T
+ / / u?dzdt + N (3.13)
s Q




332 JIA, C. H. & FENG, D. X.

Following the methods of Lions [3] and Zuazua [1] we now estimate the quantity

s+T 1
/ / — ‘ H - vdodt
S Fo |I/.A| aV.A

/ +T/ ().

First we can construct a neighborhood & of T'y such that

in terms of

oNQCuw,
and Z = (21,22, -+ ,2n) € (WH(Q))" such that
Z=v on Iy,
Z-v>0 a.e.in T,
Z=0 on O\ @.

Now we take vector field Z = Z Zig— d;c € R", and replace H with Z in (3.2) to obtain

s+T s+T 1
/ / — ‘ddt</ / ‘Zudadt
1o [val2lova o0 [val2 3144

s+T s+T
< C/ (Jue]?® + |Vgu|£27 + @ (u))dzdt + 2/ ut Z (u)dx (3.14)

Q

s
We then construct a function n € W1°°(Q) satisfying

0<n<1 a.e.in €,

n=1 a.e.in o,

n=0 a.e.in Q\ w.
Applying (3.3) with ¢ =7, we have

/G—‘,-T

s+T s+T s+T a s+T
/ muddzdt — / w(V g, V1) gdadt — / nu(ut+ 5u)dgc
Q

s S

s+T s+T
/ /uzdxdt+’/ / (V g, Vgn) dxdt‘—i—P (3.15)
_‘/nu Ug + u)dx SJFT‘

On the other hand, by Holder inequality

s+T
}/ / w(V g, Vgn) dxdt‘

s+T
< — / 2dmdt+6/ /|<Vgu,vg77>g|2dxdt. (3.16)
2e s Q s Q

::\

n |Vgu|§ + uf(u))dxdt

with
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Then by (1.5), (1.8), (3.15) and (3.16) with € > 0 small enough we obtain

/HT/W (IVgul? + ®(u ))dxdt</5+T/ (IVgul? + ®(u))dadt

s+T
<c / / NIV gul? + uf (u))dadt

+T +T
/ / 2dxdt+/ /qudeP). (3.17)
w s Q

From (3.14) and (3.17) we conclude that

s+T
/ / ‘H vdodt
T'o |VA|g 8VA
s+T
‘+P). (3.18)

s+T s+T s+
< C(/ /a(x)ufdxdt—i—/ /quxdt) +C<‘/utZ(u)dx
s Q s Q Q S

By (3.13) and (3.18) we then get

TE(s+T) < /G+T E(t)dt

s+T s+T s+T
< C(/ /a(x)ufdxdt—i—/ /quxdt) +C(‘/utZ(u)dx
s Q s Q Q s

It is not difficult to obtain the estimation

‘/utZuda:
Q

[+N+P). (319)

s+T
s \ +N +P < C(BE(s) + E(s + 1))

s+T
= C(zE(s+T) +/ / a(x)ufdxdt). (3.20)
s Q
(3.19) together with (3.20) yields

E(s+T)< C(/+T/Q a(x)ufdxdt+/ss+T/Q quxdt) +CE(s+T). (3.21)

Then if we select some T large enough such that 7' > C, the following estimate

s+T s+T
E(s+T)<C, (/ / a(z)u?drdt —|—/ / quxdt) (3.22)
s Q s Q

holds for some positive constant C, dependent on T but independent of s. By the standard
compactness-uniqueness argument we can absorb the lower term, i.e.,

s+T
3C >0, / / 2dmdt<(]/ / (z)u2dzdat, (3.23)

and we refer to [1] for the details. (3.22) combined with (3.23), (1.9) implies

E(s+T)< E(s), Vs >0, (3.24)
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where C is a positive constant dependent on T' but independent of s. Therefore we deduce
by iteration from (3.24) that

Cr

k
— | F VkeN 2
) EO). €N, (3.25)

E(kT) < (

where N denotes the set of natural numbers. Thus we achieve (2.19) with C =1+ CLT and
A= +In(l+ C—lT) This completes the proof.
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