# THE EXPONENTIAL STABILIZATION FOR A SEMILINEAR WAVE EQUATION WITH LOCALLY DISTRIBUTED FEEDBACK\*\*\*

JIA CHAOHUA\* FENG DEXING\*\*

#### Abstract

This paper considers the exponential decay of the solution to a damped semilinear wave equation with variable coefficients in the principal part by Riemannian multiplier method. A differential geometric condition that ensures the exponential decay is obtained.

**Keywords** Wave equations, Exponential decay, Distributed damping, Variable coefficients, Riemannian manifold

2000 MR Subject Classification 35A, 35L05, 35Q, 58J45, 93C20

#### § 1. Introduction

In this paper, we will consider the following semilinear damped wave equation with variable coefficients in the principal part:

$$\begin{cases} u_{tt} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left( a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + f(u) + a(x) u_t = 0 & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(0) = u^0, \quad u_t(0) = u^1 & \text{in } \Omega, \end{cases}$$
(1.1)

where  $a_{ij}(x) = a_{ji}(x)$  are  $C^{\infty}$  functions in  $\mathbb{R}^n$  satisfying

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \alpha \sum_{i=1}^{n} \xi_i^2, \qquad \forall x \in \Omega, \ \forall \xi = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n$$
 (1.2)

for some positive constant  $\alpha$ .  $\Omega$  is assumed to be a bounded domain in  $\mathbb{R}^n$   $(n \geq 1)$  with a smooth boundary  $\partial \Omega = \Gamma$ .  $f \in C^1(\mathbb{R})$  is such a function that

$$f(s)s \ge 0, \qquad \forall s \in \mathbb{R},$$
 (1.3)

Manuscript received May 8, 2004. Revised November 23, 2004.

<sup>\*</sup>Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China;

Graduate School of the Chinese Academy of Sciences, Beijing 100049, China.

E-mail: jiach@amss.ac.cn

<sup>\*\*</sup>Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China.

<sup>\*\*\*</sup>Project supported by the National Natural Science Foundation of China (No.60334040, No.60225003).

and satisfies the following growth condition

$$|f(s_1) - f(s_2)| \le C^* (1 + |s_1|^{p-1} + |s_2|^{p-1}) |s_1 - s_2|, \qquad \forall s_1, s_2 \in \mathbb{R}$$
(1.4)

for some constant  $C^* > 0$  and p > 1 with  $(n-2)p \le n$ . In addition, f is assumed to be superlinear in this paper, i.e.,

$$\exists \delta > 0: \quad f(s)s \ge (2+\delta) \int_0^s f(z)dz, \qquad \forall s \in \mathbb{R}. \tag{1.5}$$

Let  $\omega$  be a neighbourhood of the whole boundary  $\Gamma$  (here and in what follows by a neighbourhood of the boundary or of a portion  $\Gamma_0 \subset \Gamma$  we mean the intersection of  $\Omega$  with some neighbourhood of those sets in  $\mathbb{R}^n$ ).  $a(x) \in L^{\infty}(\Omega)$  is a nonnegative bounded function such that

$$a(x) \ge a_0 > 0$$
, a.e. in  $\omega$  (1.6)

for some constant  $a_0 > 0$ . The condition (1.6) implies that the damping is not effective in the whole  $\Omega$ , but only in the subset  $\omega \subset \Omega$ .

Under the above conditions, the system (1.1) is well posed in the space  $H_0^1(\Omega) \times L^2(\Omega)$ , i.e., for any initial data  $\{u^0, u^1\} \in H_0^1(\Omega) \times L^2(\Omega)$ , there exists a unique weak solution u of (1.1) such that

$$u \in C([0,\infty); H_0^1(\Omega)) \cap C^1([0,\infty); L^2(\Omega))$$

(see [1]). Then we define the energy of u at instant t by

$$E(t) = \frac{1}{2} \int_{\Omega} \left( |u_t|^2 + \sum_{i,j=1}^n a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \right) dx + \int_{\Omega} \Phi(u(x,t)) dx, \tag{1.7}$$

where

$$\Phi(s) = \int_0^s f(z)dz, \qquad \forall s \in \mathbb{R}, \tag{1.8}$$

and it is easy to check that  $\Phi(s)$  is non-negative for any  $s \in \mathbb{R}$ . Multiplying  $(1.1)_1$  ( the first equation of the system (1.1)) by  $u_t$  and integrating over  $\Omega \times (s, s+T)$  with  $s \geq 0, T > 0$ , we have

$$E(s+T) - E(s) = -\int_{s}^{s+T} \int_{\Omega} a(x)|u_t|^2 dx dt \le 0,$$
(1.9)

which signifies that the energy E(t) is a non-increasing function of the time variant t. In fact, it is just our purpose to show that E(t) decays exponentially to 0 as  $t \to \infty$  under certain differential geometric conditions which will be specified later on, i.e., to prove for every energy finite solution u of (1.1),

$$E(t) \le Ce^{-\lambda t}E(0), \qquad \forall t \ge 0$$
 (1.10)

with some positive constants C and  $\lambda$  under certain conditions.

On the exponential decay of the energy for semilinear damped wave equations, there have been a plenty of literatures. Here we cite [1] among others. In [1], Zuazua considered

the following semilinear damped wave equation with constant coefficients in the principal part:

$$\begin{cases} u_{tt} - \Delta u + f(u) + a(x)u_t = 0 & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(0) = u^0, \quad u_t(0) = u^1 & \text{in } \Omega. \end{cases}$$

$$(1.11)$$

The author in [1] investigated:

- (1)  $f \in C^1(\mathbb{R})$  satisfies (1.3) and (1.4), and is globally Lipschitz, i.e.,  $f' \in L^{\infty}(\mathbb{R})$ .
- (2)  $f \in C^1(\mathbb{R})$  satisfies the conditions (1.3)–(1.5).

For the second case, by multiplier methods, the author proved that the energy of (1.11) decays exponentially, i.e.,

$$E_1(t) \triangleq \frac{1}{2} \int_{\Omega} (|u_t|^2 + |\nabla u|^2) dx + \int_{\Omega} \Phi(u(x, t)) dx \le Ce^{-\lambda t} E_1(0)$$

for some positive constants C and  $\lambda$ . And in §3.2 of [1], Zuazua thought that for the system (1.1) with variable coefficients in the principal part, the exponential decay would hold under a restrictive condition:

$$\sum_{i,j=1}^{n} (2a_{ij} - (x - x_0) \cdot \nabla a_{ij}) \, \xi_i \xi_j \ge 2\beta |\xi|^2, \qquad \forall \, x \in \Omega, \, \, \forall \, \xi \in \mathbb{R}^n$$
 (1.12)

for some  $x_0 \in \mathbb{R}^n$  and  $\beta > 0$ , but the general case remained open.

In this paper, motivated by the Riemann multiplier method developed by Yao [2], we discuss the exponential decay for the system (1.1) by Riemannian geometry method. A general differential geometric condition which is sufficient for the exponential decay for the system (1.1) is obtained.

The paper is organized as follows: In Section 2, we first introduce some notations and geometry identities we work on, and then state the main result. Section 3 is devoted to the proof of the main result.

## § 2. Preliminaries and Main Result

We first introduce some notations in Riemann geometry and multiplier identities developed in [2] (see also [5, 6]) which are needed in the proof of our main result.

Let  $\mathbb{R}^n$  have the usual topology and  $x = (x_1, x_2, \dots, x_n)$  be the natural coordinate system. For each  $x \in \mathbb{R}^n$ , we denote by A(x) an  $n \times n$  matrix and G(x) its inverse, i.e.,

$$A(x) = (a_{ij}(x))_{n \times n}$$
 and  $G(x) = (g_{ij}(x))_{n \times n} \triangleq A(x)^{-1}$ .

We define the inner product  $\langle \cdot, \cdot \rangle_g$  and norm  $|\cdot|_g$  over the tangent space  $\mathbb{R}^n_x$  by

$$\langle X, Y \rangle_g = g(X, Y) \triangleq \sum_{i,j=1}^n g_{ij}(x)\alpha_i\beta_j,$$
 (2.1)

$$|X|_g = \langle X, X \rangle_g^{\frac{1}{2}}, \qquad \forall X = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial x_i}, \ Y = \sum_{i=1}^n \beta_i \frac{\partial}{\partial x_i} \in \mathbb{R}_x^n.$$
 (2.2)

It is easy to check that  $(\mathbb{R}^n, g)$  is a Riemann manifold with Riemann metric g defined by (2.1). Let D be the Levi-Civita connection in metric g. For a vector field H on  $(\mathbb{R}^n, g)$ , the covariant differential DH of H determines a bilinear form on  $\mathbb{R}^n_x \times \mathbb{R}^n_x$  for each  $x \in \mathbb{R}^n$  by

$$DH(X,Y) = \langle D_X H, Y \rangle_q, \qquad \forall X, Y \in \mathbb{R}_r^n,$$
 (2.3)

where  $D_XH$  is the covariant derivative of vector field H with respect to X.

At the same time, we denote the usual Euclidean inner product and norm by  $\langle \cdot, \cdot \rangle_0$  and  $|\cdot|_0$  respectively, i.e.,

$$\langle X, Y \rangle_0 = X \cdot Y = \sum_{i=1}^n \alpha_i \beta_i,$$
 (2.4)

$$|X|_0 = \left(\sum_{i=1}^n \alpha_i^2\right)^{\frac{1}{2}}, \qquad \forall X = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial x_i}, \ Y = \sum_{i=1}^n \beta_i \frac{\partial}{\partial x_i} \in \mathbb{R}_x^n.$$
 (2.5)

For a vector field  $X = \sum_{i=1}^{n} \alpha_i(x) \frac{\partial}{\partial x_i}$  on  $\mathbb{R}^n$ , we denote the divergence of X in the Euclidean metric by  $\operatorname{div}_0 X$ ,

$$\operatorname{div}_0 X = \sum_{i=1}^n \frac{\partial \alpha_i(x)}{\partial x_i}.$$

It is clear that

$$\operatorname{div}_0(\varphi X) = \varphi \operatorname{div}_0 X + X(\varphi) \quad \text{for any } \varphi \in C^1(\mathbb{R}^n), \tag{2.6}$$

$$\int_{\Omega} \operatorname{div}_{0} X dx = \int_{\partial \Omega} X \cdot \nu d\sigma, \tag{2.7}$$

where  $\nu = (\nu_1, \nu_2, \dots, \nu_n)$  is the unit normal vector of  $\partial\Omega$  pointing towards the exterior of  $\Omega$ , and  $d\sigma$  is the Euclidean surface element on  $\partial\Omega$ .

In the following Lemma 2.1, we introduce some elementary identities. For the proof, we refer the readers to [2] and omit it here.

**Lemma 2.1.** Let  $x = (x_1, x_2, \dots, x_n)$  be the natural coordinate system in  $\mathbb{R}^n$ ,  $\varphi, \psi \in C^1(\overline{\Omega})$  and H, X vector fields. We denote by  $\nabla_g$  and  $\nabla_0$  the gradient operators in the Riemannian metric and in the Euclidean metric respectively. Then for all  $x \in \overline{\Omega}$ ,

$$\langle H(x), A(x)X(x)\rangle_q = H(x) \cdot X(x), \tag{2.8}$$

$$\nabla_g \varphi(x) = \sum_{i=1}^n \left( \sum_{j=1}^n a_{ij}(x) \frac{\partial \varphi}{\partial x_j} \right) \frac{\partial}{\partial x_i}, \tag{2.9}$$

$$\langle \nabla_g \varphi, \nabla_g \psi \rangle_g = \nabla_g \varphi(\psi) = \nabla_0 \varphi \cdot A(x) \nabla_0 \psi, \tag{2.10}$$

$$|\nabla_g \varphi|_g^2 = \sum_{i,j=1}^n a_{ij}(x) \frac{\partial \varphi}{\partial x_i} \frac{\partial \varphi}{\partial x_j},\tag{2.11}$$

$$\langle \nabla_g \varphi, \nabla_g (H(\varphi)) \rangle_g(x) = DH(\nabla_g \varphi, \nabla_g \varphi)(x) + \frac{1}{2} \operatorname{div}_0(|\nabla_g \varphi|_g^2 H)(x) - \frac{1}{2} |\nabla_g \varphi|_g^2(x) \operatorname{div}_0 H(x).$$
(2.12)

For the sake of convenience, we set the differential operator

$$Au = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left( a_{ij}(x) \frac{\partial u}{\partial x_j} \right).$$

Now we list some multiplier identities needed later.

**Lemma 2.2.** Let u solve the equation

$$u_{tt} + Au + f(u) + a(x)u_t = 0 (2.13)$$

on  $\Omega \times (s, s+T)$  with  $s \geq 0, T > 0$ , and let H be a vector field on  $\overline{\Omega}$ . Then we have

$$\int_{s}^{s+T} \int_{\Omega} u_{tt} H(u) dx dt = \int_{\Omega} u_{t} H(u) dx \Big|_{s}^{s+T} + \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} u_{t}^{2} \operatorname{div}_{0} H dx dt 
- \frac{1}{2} \int_{s}^{s+T} \int_{\partial \Omega} u_{t}^{2} H \cdot \nu d\sigma dt$$
(2.14)

and

$$\int_{s}^{s+T} \int_{\Omega} \mathcal{A}(u)H(u)dxdt = \int_{s}^{s+T} \int_{\Omega} DH(\nabla_{g}u, \nabla_{g}u)dxdt + \frac{1}{2} \int_{s}^{s+T} \int_{\partial\Omega} |\nabla_{g}u|_{g}^{2} H \cdot \nu d\sigma dt 
- \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} |\nabla_{g}u|_{g}^{2} \operatorname{div}_{0} H dxdt - \int_{s}^{s+T} \int_{\partial\Omega} \frac{\partial u}{\partial \nu_{A}} H(u)d\sigma dt, \quad (2.15)$$

where

$$\frac{\partial u}{\partial \nu_{\mathcal{A}}} = \sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_{j}} \nu_{i}$$

is the conormal derivative. Moreover, if  $\psi \in C^2(\overline{\Omega})$  then

$$\int_{s}^{s+T} \int_{\Omega} \psi \left( u_{t}^{2} - \left| \nabla_{g} u \right|_{g}^{2} \right) dx dt = \int_{\Omega} \psi u u_{t} dx \Big|_{s}^{s+T} + \int_{s}^{s+T} \int_{\Omega} \psi u(f(u) + a(x)u_{t}) dx dt \\
+ \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} u^{2} \mathcal{A} \psi dx dt - \int_{s}^{s+T} \int_{\partial \Omega} \frac{\partial u}{\partial \nu_{\mathcal{A}}} \psi u d\sigma dt \\
+ \frac{1}{2} \int_{s}^{s+T} \int_{\partial \Omega} u^{2} \nabla_{g} \psi \cdot \nu d\sigma dt. \tag{2.16}$$

**Proof.** (2.14) and (2.15) can be obtained directly from Lemma 2.1 by integrating by parts. We now prove (2.16). It is obvious that

$$\mathcal{A}\psi = -\mathrm{div}_0(\nabla_q \psi)$$

by (2.9) of Lemma 2.1, and we have

$$\langle \nabla_g u, \nabla_g (\psi u) \rangle_g = \psi |\nabla_g u|_g^2 + u \langle \nabla_g u, \nabla_g \psi \rangle_g = \psi |\nabla_g u|_g^2 + \frac{1}{2} \nabla_g \psi (u^2)$$
$$= \psi |\nabla_g u|_g^2 + \frac{1}{2} \operatorname{div}_0(u^2 \nabla_g \psi) + \frac{1}{2} u^2 \mathcal{A} \psi.$$

Then by (2.7) and Green's formula we deduce that

$$-\int_{s}^{s+T} \int_{\Omega} \psi |\nabla_{g} u|_{g}^{2} dx dt = \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} \operatorname{div}_{0}(u^{2} \nabla_{g} \psi) dx dt + \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} u^{2} \mathcal{A} \psi dx dt$$
$$-\int_{s}^{s+T} \int_{\Omega} \langle \nabla_{g} u, \nabla_{g} (\psi u) \rangle_{g} dx dt$$
$$= \frac{1}{2} \int_{s}^{s+T} \int_{\partial \Omega} u^{2} \nabla_{g} \psi \cdot \nu dx dt + \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} u^{2} \mathcal{A} \psi dx dt$$
$$-\int_{s}^{s+T} \int_{\Omega} \psi u \mathcal{A} u dx dt - \int_{s}^{s+T} \int_{\partial \Omega} \psi u \frac{\partial u}{\partial \nu_{\mathcal{A}}} d\sigma dt.$$

Moreover, integrating by parts yields

$$\int_{s}^{s+T} \int_{\Omega} \psi u_{t}^{2} dx dt = \int_{\Omega} \psi u u_{t} dx \Big|_{s}^{s+T} - \int_{s}^{s+T} \int_{\Omega} \psi u u_{tt} dx dt.$$

Combining the above two identities, and noting (2.13) we then complete the proof.

Based on the above preparations, we now state our main result as follows.

**Theorem 2.1.** Let  $\omega$  be a neighbourhood of the whole boundary  $\Gamma$  and let f satisfy (1.3)–(1.5). Let  $H = (H^1, H^2, \dots, H^n)$  be a vector field on the Riemannian manifold  $(\mathbb{R}^n, g)$  such that

$$\inf\{ \operatorname{div}_0 H ; x \in \overline{\Omega} \} > 0, \tag{2.17}$$

$$DH(X,X) \ge \gamma |X|_q^2, \qquad \forall X \in \mathbb{R}_x^n, \ \forall x \in \Omega$$
 (2.18)

for some constant  $\gamma > 0$ , and set

$$\Gamma_0 = \{ x \in \partial \Omega \mid H \cdot \nu > 0 \}, \qquad \Gamma_1 = \{ x \in \partial \Omega \mid H \cdot \nu \le 0 \}.$$

Then for any given initial data  $\{u^0, u^1\} \in H^1_0(\Omega) \times L^2(\Omega)$ , the energy of the system (1.1) with variable coefficients decays exponentially to 0 as  $t \to \infty$ , i.e., there exist two constants C > 0 and  $\lambda > 0$ , such that

$$E(t) = \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla_g u|_g^2) dx + \int_{\Omega} \Phi(u) dx \le C e^{-\lambda t} E(0), \qquad \forall t \ge 0.$$
 (2.19)

**Remark 2.1.** The existence of the vector field H on the Riemannian manifold  $(\mathbb{R}^n, g)$  satisfying the geometric condition (2.18) can be guaranteed in some cases by curvature conditions on Riemannian manifold (see [2] where some examples are given).

Remark 2.2. The differential geometric condition (2.18) is more general than the condition (1.12) given by Zuazua [1]. In [5], the authors have shown that (2.18) is equivalent to the following condition

$$\exists \eta > 0, \quad \sum_{i,j=1}^{n} \Big( \sum_{k=1}^{n} a_{ik} \frac{\partial H^{j}}{\partial x_{k}} + \sum_{k=1}^{n} a_{jk} \frac{\partial H^{i}}{\partial x_{k}} - \nabla_{0} a_{ij} \cdot H \Big) \xi_{i} \xi_{j} \ge \eta |\xi|^{2},$$

$$\forall x \in \Omega, \ \forall \xi = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n.$$

Thus if we take  $H=(x_1-x_1^0,x_2-x_2^0,\cdots,x_n-x_n^0)$  for some  $x^0\in\mathbb{R}^n$ , then (1.12) can be deduced from (2.18).

## § 3. Proof of Theorem 2.1

In the present section, we adopt Riemannian multiplier method introduced by Yao in [2] to prove Theorem 2.1. Inspired by the work by J. Rauch and M. Taylor [4] we aim at to establish the energy estimate of type

$$E(s+T) \le C \int_{s}^{s+T} \int_{\Omega} a(x) |u_t(x,t)|^2 dx dt.$$

We first introduce the well-known Sobolev-Poincaré inequality which will be needed later (see for example [9]).

**Lemma 3.1.** (Sobolev-Poincaré Inequality) Let q be a number with  $2 \le q < +\infty$  (n = 1, 2) or  $2 \le q \le \frac{2n}{n-2}$   $(n \ge 3)$ . Then there is a constant  $c_* = c(\Omega, q)$  such that

$$||u||_q \le c_* ||\nabla u||_2$$
 for  $u \in H_0^1(\Omega)$ .

In addition, the following inequality is obvious,

$$\exists C > 0, \quad \int_{\Omega} u^2 dx \le C \int_{\Omega} |\nabla_g u|_g^2 dx, \qquad \forall u \in H_0^1(\Omega).$$

In fact, it is just the consequence of Poincaré inequality in  $H_0^1(\Omega)$  in the case of (1.2).

In the following, we will denote by C constant independent of s and T which may be varying at different places. Otherwise we will employ subscripts.

**Proof of Theorem 2.1.** Multiplying  $(1.1)_1$  by H(u) and integrating over  $\Omega \times (s, s+T)$  with arbitrary  $s \ge 0$  and T > 0, by (2.14) and (2.15) of Lemma 2.2, we obtain

$$\frac{1}{2} \int_{s}^{s+T} \int_{\Omega} \operatorname{div}_{0} H(u_{t}^{2} - |\nabla_{g}u|_{g}^{2}) dx dt + \int_{s}^{s+T} \int_{\Omega} DH(\nabla_{g}u, \nabla_{g}u) dx dt 
+ \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} H(u) dx dt + \int_{s}^{s+T} \int_{\Omega} f(u) H(u) dx dt + \int_{\Omega} u_{t} H(u) dx \Big|_{s}^{s+T} 
= \int_{s}^{s+T} \int_{\partial\Omega} \frac{\partial u}{\partial \nu_{A}} H(u) d\sigma dt - \frac{1}{2} \int_{s}^{s+T} \int_{\partial\Omega} |\nabla_{g}u|^{2} H \cdot \nu d\sigma dt.$$
(3.1)

Referring to the proof of Lemma 2.3 in [2], we know that on the boundary  $\partial\Omega$ ,

$$H(u) = \frac{1}{|\nu_{\mathcal{A}}|_g^2} \frac{\partial u}{\partial \nu_{\mathcal{A}}} H \cdot \nu, \quad |\nabla_g u|_g^2 = \frac{1}{|\nu_{\mathcal{A}}|_g^2} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^2, \qquad \forall \, x \in \partial \Omega.$$

Then (3.1) gives

$$\frac{1}{2} \int_{s}^{s+T} \int_{\Omega} \operatorname{div}_{0} H(u_{t}^{2} - |\nabla_{g} u|_{g}^{2}) dx dt + \int_{s}^{s+T} \int_{\Omega} DH(\nabla_{g} u, \nabla_{g} u) dx dt 
+ \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} H(u) dx dt - \int_{s}^{s+T} \int_{\Omega} \Phi(u) \operatorname{div}_{0} H dx dt + \int_{\Omega} u_{t} H(u) dx \Big|_{s}^{s+T}$$

$$= \frac{1}{2} \int_{s}^{s+T} \int_{\partial\Omega} \frac{1}{|\nu_{\mathcal{A}}|_{q}^{2}} \left| \frac{\partial u}{\partial\nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt. \tag{3.2}$$

Now we multiply  $(1.1)_1$  by  $\zeta u$  with some  $\zeta \in W^{1,\infty}(\Omega)$  and integrate by parts to achieve

$$\int_{\Omega} \zeta u \left( u_t + \frac{a}{2} u \right) dx \Big|_{s}^{s+T} - \int_{s}^{s+T} \int_{\Omega} \zeta (u_t^2 - |\nabla_g u|_g^2) dx dt 
+ \int_{s}^{s+T} \int_{\Omega} u \langle \nabla_g u, \nabla_g \zeta \rangle_g dx dt + \int_{s}^{s+T} \int_{\Omega} \zeta u f(u) dx dt = 0.$$
(3.3)

When we take  $\psi = \operatorname{div}_0 H$  in (2.16) of Lemma 2.2 and take into account that u = 0 on  $\partial\Omega \times (0, \infty)$ , the following identity holds:

$$\int_{s}^{s+T} \int_{\Omega} \operatorname{div}_{0} H(u_{t}^{2} - |\nabla_{g} u|_{g}^{2}) dx dt$$

$$= \int_{\Omega} u_{t} u \operatorname{div}_{0} H dx \Big|_{s}^{s+T} + \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} u^{2} \mathcal{A}(\operatorname{div}_{0} H) dx dt$$

$$+ \int_{s}^{s+T} \int_{\Omega} (f(u)u + a(x)u_{t}u) \operatorname{div}_{0} H dx dt. \tag{3.4}$$

It follows from (3.2)–(3.4) with  $\zeta \equiv 1$  that

$$\tau \int_{s}^{s+T} \int_{\Omega} (u_{t}^{2} - |\nabla_{g}u|_{g}^{2}) dx dt + \int_{s}^{s+T} \int_{\Omega} DH(\nabla_{g}u, \nabla_{g}u) dx dt$$

$$= \frac{1}{2} \int_{s}^{s+T} \int_{\partial\Omega} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt - \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} H(u) dx dt$$

$$- \frac{1}{2} \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} u \operatorname{div}_{0} H dx dt - \frac{1}{4} \int_{s}^{s+T} \int_{\Omega} u^{2} \mathcal{A}(\operatorname{div}_{0} H) dx dt$$

$$+ \int_{s}^{s+T} \int_{\Omega} \left( \left( \tau - \frac{1}{2} \operatorname{div}_{0} H \right) u f(u) + \Phi(u) \operatorname{div}_{0} H \right) dx dt$$

$$- \int_{\Omega} \left( u_{t} H(u) + \frac{1}{2} u_{t} u \operatorname{div}_{0} H - \tau \left( u_{t} u + \frac{a}{2} u^{2} \right) \right) dx \Big|_{s}^{s+T}$$

$$(3.5)$$

for any  $\tau \in \mathbb{R}$ . Now we take  $0 < \tau < \min\{\gamma, \frac{1}{2}\inf\{\operatorname{div}_0 H; x \in \overline{\Omega}\}\}$ . On one hand, we have

$$C \int_{s}^{s+T} \int_{\Omega} (u_t^2 + |\nabla_g u|_g^2) dx dt \le \tau \int_{s}^{s+T} \int_{\Omega} (u_t^2 - |\nabla_g u|_g^2) dx dt$$
$$+ \int_{s}^{s+T} \int_{\Omega} DH(\nabla_g u, \nabla_g u) dx dt. \tag{3.6}$$

On the other hand, there exists a  $\theta > 0$  such that

$$2 < \frac{\operatorname{div}_0 H}{\frac{1}{2} \operatorname{div}_0 H - \tau} + \theta \le 2 + \delta$$

for  $\tau$  small enough. Then by this choice of  $\tau$  and (2.17), we have

$$\int_{s}^{s+T} \int_{\Omega} \left( \left( \tau - \frac{1}{2} \operatorname{div}_{0} H \right) u f(u) + \Phi(u) \operatorname{div}_{0} H \right) dx dt \le 0.$$
 (3.7)

From (3.5)–(3.7) we deduce that

$$C \int_{s}^{s+T} \int_{\Omega} (u_{t}^{2} + |\nabla_{g}u|_{g}^{2}) dx dt$$

$$\leq \frac{1}{2} \int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt + \left| \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} H(u) dx dt \right|$$

$$+ \frac{1}{2} \left| \int_{s}^{s+T} \int_{\Omega} a(x) u_{t} u \operatorname{div}_{0} H dx dt \right| + \frac{1}{4} \int_{s}^{s+T} \int_{\Omega} u^{2} |\mathcal{A}(\operatorname{div}_{0} H)| dx dt + \mathcal{N}, \qquad (3.8)$$

where

$$\mathcal{N} = \left| \int_{\Omega} \left( u_t H(u) + \frac{1}{2} u_t u \operatorname{div}_0 H - \tau u \left( u_t + \frac{a}{2} u \right) \right) dx \right|_s^{s+T} \right|.$$

Noting that

$$0 \le f(s)s \le C^*(|s|^2 + |s|^{p+1}), \quad \forall s \in \mathbb{R}$$

by (1.3) and (1.4), and using Poincaré inequality, we have the following estimate

$$\int_{s}^{s+T} \int_{\Omega} \Phi(u) dx dt \le C \int_{s}^{s+T} \int_{\Omega} |\nabla_{g} u|_{g}^{2} dx dt \tag{3.9}$$

for some positive constant C dependent on  $u^0$  and  $u^1$  but independent of s and T. Thus it is easy to see from (3.8) and (3.9) that

$$C \int_{s}^{s+T} E(t)dt \leq \frac{1}{2} \int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt + \left| \int_{s}^{s+T} \int_{\Omega} a(x)u_{t}H(u)dxdt \right|$$

$$+ \frac{1}{2} \left| \int_{s}^{s+T} \int_{\Omega} a(x)u_{t}u \operatorname{div}_{0} H dxdt \right| + \mathcal{N} + \frac{1}{4} \int_{s}^{s+T} \int_{\Omega} u^{2} |\mathcal{A}(\operatorname{div}_{0} H)| dxdt.$$
 (3.10)

Now we estimate the right hand of (3.10) term by term. By Hölder inequality, we have

$$\left| \int_{s}^{s+T} \int_{\Omega} a(x)u_{t}H(u)dxdt \right| \leq \varepsilon \int_{s}^{s+T} \int_{\Omega} a(x)|H(u)|^{2}dxdt + \frac{1}{2\varepsilon} \int_{s}^{s+T} \int_{\Omega} a(x)|u_{t}|^{2}dxdt \quad (3.11)$$

for any  $\varepsilon > 0$ , and

$$\int_{s}^{s+T} \int_{\Omega} |a(x)u_{t}u \operatorname{div}_{0} H| dx dt \leq \frac{K}{2} \int_{s}^{s+T} \int_{\Omega} a(x)u_{t}^{2} dx dt + \frac{K}{2} ||a||_{\infty} \int_{s}^{s+T} \int_{\Omega} u^{2} dx dt, \quad (3.12)$$

where

$$K = \sup\{ |\operatorname{div}_0 H| ; x \in \overline{\Omega} \}.$$

Combining (3.10)–(3.12) for  $\varepsilon > 0$  small enough yields

$$C \int_{s}^{s+T} E(t)dt \leq \frac{1}{2} \int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt + \int_{s}^{s+T} \int_{\Omega} a(x) u_{t}^{2} dx dt + \int_{s}^{s+T} \int_{\Omega} u^{2} dx dt + \mathcal{N}.$$

$$(3.13)$$

Following the methods of Lions [3] and Zuazua [1] we now estimate the quantity

$$\int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{q}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt$$

in terms of

$$\int_{s}^{s+T} \int_{\Omega} a(x) |u_t|^2.$$

First we can construct a neighborhood  $\widehat{\omega}$  of  $\overline{\Gamma}_0$  such that

$$\overline{\widehat{\omega}} \cap \Omega \subset \omega$$
.

and  $Z = (z_1, z_2, \dots, z_n) \in (W^{1,\infty}(\Omega))^n$  such that

$$\begin{cases} Z = \nu & \text{on } \Gamma_0, \\ Z \cdot \nu > 0 & \text{a.e. in } \Gamma, \\ Z = 0 & \text{on } \Omega \setminus \widehat{\omega}. \end{cases}$$

Now we take vector field  $Z = \sum_{i=1}^{n} z_i \frac{\partial}{\partial x_i} \in \mathbb{R}^n$ , and replace H with Z in (3.2) to obtain

$$\int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} d\sigma dt \leq \int_{s}^{s+T} \int_{\partial \Omega} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} Z \cdot \nu d\sigma dt$$

$$\leq C \int_{s}^{s+T} \int_{\widehat{\omega}} (|u_{t}|^{2} + |\nabla_{g} u|_{g}^{2} + \Phi(u)) dx dt + 2 \int_{\Omega} u_{t} Z(u) dx \Big|_{s}^{s+T}. \tag{3.14}$$

We then construct a function  $\eta \in W^{1,\infty}(\Omega)$  satisfying

$$\begin{cases} 0 \leq \eta \leq 1 & \text{ a.e. in } \ \Omega, \\ \eta = 1 & \text{ a.e. in } \ \widehat{\omega}, \\ \eta = 0 & \text{ a.e. in } \ \Omega \setminus \omega. \end{cases}$$

Applying (3.3) with  $\zeta = \eta$ , we have

$$\int_{s}^{s+T} \int_{\Omega} \eta(|\nabla_{g}u|_{g}^{2} + uf(u)) dx dt$$

$$= \int_{s}^{s+T} \int_{\Omega} \eta u_{t}^{2} dx dt - \int_{s}^{s+T} \int_{\Omega} u \langle \nabla_{g}u, \nabla_{g}\eta \rangle_{g} dx dt - \int_{s}^{s+T} \eta u \left(u_{t} + \frac{a}{2}u\right) dx \Big|_{s}^{s+T}$$

$$\leq \int_{s}^{s+T} \int_{\omega} u_{t}^{2} dx dt + \left| \int_{s}^{s+T} \int_{\Omega} u \langle \nabla_{g}u, \nabla_{g}\eta \rangle_{g} dx dt \right| + \mathcal{P}$$
(3.15)

with

$$\mathcal{P} = \Big| \int_{\Omega} \eta u \Big( u_t + \frac{a}{2} u \Big) dx \Big|_s^{s+T} \Big|.$$

On the other hand, by Hölder inequality

$$\left| \int_{s}^{s+T} \int_{\Omega} u \langle \nabla_{g} u, \nabla_{g} \eta \rangle_{g} dx dt \right|$$

$$\leq \frac{1}{2\varepsilon} \int_{s}^{s+T} \int_{\Omega} u^{2} dx dt + \varepsilon \int_{s}^{s+T} \int_{\Omega} |\langle \nabla_{g} u, \nabla_{g} \eta \rangle_{g}|^{2} dx dt. \tag{3.16}$$

Then by (1.5), (1.8), (3.15) and (3.16) with  $\varepsilon > 0$  small enough we obtain

$$\int_{s}^{s+T} \int_{\widehat{\omega}} (|\nabla_{g} u|_{g}^{2} + \Phi(u)) dx dt \leq \int_{s}^{s+T} \int_{\Omega} \eta(|\nabla_{g} u|_{g}^{2} + \Phi(u)) dx dt 
\leq C \int_{s}^{s+T} \int_{\Omega} \eta(|\nabla_{g} u|_{g}^{2} + u f(u)) dx dt 
\leq C \left( \int_{s}^{s+T} \int_{\Omega} u_{t}^{2} dx dt + \int_{s}^{s+T} \int_{\Omega} u^{2} dx dt + \mathcal{P} \right).$$
(3.17)

From (3.14) and (3.17) we conclude that

$$\int_{s}^{s+T} \int_{\Gamma_{0}} \frac{1}{|\nu_{\mathcal{A}}|_{g}^{2}} \left| \frac{\partial u}{\partial \nu_{\mathcal{A}}} \right|^{2} H \cdot \nu d\sigma dt$$

$$\leq C \left( \int_{s}^{s+T} \int_{\Omega} a(x) u_{t}^{2} dx dt + \int_{s}^{s+T} \int_{\Omega} u^{2} dx dt \right) + C \left( \left| \int_{\Omega} u_{t} Z(u) dx \right|_{s}^{s+T} \right| + \mathcal{P} \right). \tag{3.18}$$

By (3.13) and (3.18) we then get

$$TE(s+T) \leq \int_{s}^{s+T} E(t)dt$$

$$\leq C\left(\int_{s}^{s+T} \int_{\Omega} a(x)u_{t}^{2}dxdt + \int_{s}^{s+T} \int_{\Omega} u^{2}dxdt\right) + C\left(\left|\int_{\Omega} u_{t}Z(u)dx\right|_{s}^{s+T} + \mathcal{N} + \mathcal{P}\right). \quad (3.19)$$

It is not difficult to obtain the estimation

$$\left| \int_{\Omega} u_t Z(u) dx \right|_s^{s+T} \left| + \mathcal{N} + \mathcal{P} \le C(E(s) + E(s+T)) \right|$$

$$= C \left( 2E(s+T) + \int_0^{s+T} \Omega a(x) u_t^2 dx dt \right). \tag{3.20}$$

(3.19) together with (3.20) yields

$$TE(s+T) \le C\left(\int_{s}^{s+T} \int_{\Omega} a(x)u_t^2 dx dt + \int_{s}^{s+T} \int_{\Omega} u^2 dx dt\right) + CE(s+T). \tag{3.21}$$

Then if we select some T large enough such that T > C, the following estimate

$$E(s+T) \le C_* \left( \int_s^{s+T} \int_{\Omega} a(x) u_t^2 dx dt + \int_s^{s+T} \int_{\Omega} u^2 dx dt \right)$$
 (3.22)

holds for some positive constant  $C_*$  dependent on T but independent of s. By the standard compactness-uniqueness argument we can absorb the lower term, i.e.,

$$\exists C > 0, \quad \int_{s}^{s+T} \int_{\Omega} u^2 dx dt \le C \int_{s}^{s+T} \int_{\Omega} a(x) u_t^2 dx dx t, \tag{3.23}$$

and we refer to [1] for the details. (3.22) combined with (3.23), (1.9) implies

$$E(s+T) \le \frac{C_T}{1+C_T}E(s), \qquad \forall s \ge 0, \tag{3.24}$$

where  $C_T$  is a positive constant dependent on T but independent of s. Therefore we deduce by iteration from (3.24) that

$$E(kT) \le \left(\frac{C_T}{1 + C_T}\right)^k E(0), \quad \forall k \in \mathbb{N},$$
 (3.25)

where N denotes the set of natural numbers. Thus we achieve (2.19) with  $C = 1 + \frac{1}{C_T}$  and  $\lambda = \frac{1}{T} \ln(1 + \frac{1}{C_T})$ . This completes the proof.

#### References

- Zuazua, E., Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15(1990), 205–235.
- [2] Yao, P. F., On the observability inequality for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim., 37(1999), 1568–1599.
- [3] Lions, J. L., Contrôlabilité Exacte, Perturbations et stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, RMA 8, Masson, 1988.
- [4] Rauch, J. & Taylor, M., Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24(1974), 79–86.
- [5] Feng, S. J. & Feng, D. X., A note on geometric conditions for boundary control of wave equations with variable coefficients, J. Math. Anal. Appl., 271(2002), 59–65.
- [6] Feng, S. J. & Feng, D. X., Nonlinear boundary stabilization of wave equations with variable coefficients, Chin. Ann. Math., 24B:2(2003), 239–248.
- [7] Wyler, A., Stability of wave equations with dissipative boundary conditions in a bounded domain, Differential Integral Equations, 7(1994), 345–366.
- [8] Wu, H., Shen, C. L. & Yu, Y. L., An Introduction to Riemannian Geometry (in Chinese), University of Beijing, 1989.
- [9] Taylor, M. E., Partial Differential Equations III, Nonlinear Equations, Springer-Verlag, New York, 1996