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ITERATIVE QUASI-LIKELIHOOD

FOR SEEMINGLY UNRELATED
REGRESSION SYSTEMS∗∗∗∗
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Abstract

In the seemingly unrelated regression systems, the existing quasi-likelihood is always
involved in the difficult problem of calculating inverse of a high order matrix specially for
large systems. To avoid this problem, the new quasi-likelihood proposed in this paper
is based mainly on a linearly iterative process of some unbiased estimating functions.
Some finite sample properties and asymptotic behaviours for this new quasi-likelihood
are investigated. These results show that the new quasi-likelihood for parameter of
interest is E-sufficient, iteratively efficient and approximately efficient. Some examples
are given to illustrate the theoretical results.
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§ 1 . Introduction

The seemingly unrelated regression (SUR) system is useful in many fields such as econo-
metrics, industry, biology and so on. The inference about SUR system has received much
attention. Serivastava and Dwivedi [16] presented a brief survey of the developments in the
parameter estimation of SUR system. The works on the topic proposed by Zellner [20], Re-
vankar [13], Wang [17] and so on focus mainly on the seemingly unrelated linear regression
systems and the methods seem not to be extended to the seemingly unrelated nonlinear
regression systems. Lin [10] introduced a Bayes quasi-likelihood to the seemingly unrelated
nonlinear regression systems, but the consistency of parameter estimation depends on the
prior distribution and then the properties will be bad when the chosen prior is wrong. So
the investigation for SUR system is still a challenge.

In this paper the main goal is to estimate the parameters of SUR systems through some
estimating functions. Generally, an unbiased estimating function g(θ, Y, x) is defined to be
a function of the data (Y, x) and parameter θ having zero mean for all θ. In other words,
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E{g(θ, Y, x)} = 0 for all θ. One purpose of an estimating function is to produce an estimate
θ̂ of the parameter from data (Y, x), the estimate being obtained as a root of the equation
g(θ, Y, x) = 0. Consequently, if the parameter θ is p-dimensional, it is necessary at least
that the range of g is p-dimensional with nonsingular derivative matrix.

Wedderburn [18], in his attempt to establish a method of inference based exclusively
on the first two moments of the sample, introduced the quasi-score function. Suppose that
the n× 1 random variable Y = (Y1, · · · , Yn)′ has mean μ(θ) and covariance matrix σ2V (θ).
Both are known functions of the p-dimensional parameter θ, and V (θ) is a positive definite
matrix. In this case, a special unbiased estimating function, called the quasi-score function
of θ, is defined as

q(θ) = σ−2μ̇′(θ)V −1(θ)e(θ, Y ), (1.1)

where μ̇ is an n×pmatrix with components ∂μi/∂θj and rank{μ̇(θ)} = p, e(θ, Y ) = Y −μ(θ).
The quasi-score function is a linear unbiased function based only on the first two moments of
the observations. It is well known that the quasi-score function is the optimum in the class
of linear unbiased estimating functions and, consequently, the quasi-likelihood estimator θ̂
obtained from the quasi-score function is the optimum in the class of the estimators obtained
from the linear unbiased estimating functions under some criterions (see [5, 8]).

In this paper we mainly consider the following SUR system⎧⎨
⎩
E(Yi) = μi(θi, xi), Var(Yi) = σ2

i Vi(θi, xi) for i = 1, · · · ,m,
Cov(Yi, Yj) = σijVij(θi, θj , xi, xj) for i �= j, i, j = 1, · · · ,m,

(1.2)

where response variables Yi = (Yi1, · · · , Yin)′ depend on non-random covariates xi = (xi1,

· · · , xin)′ through known regression functions μi(θi, xi) = (hi(θi, xi1), · · · , hi(θi, xin))′,
θi = (θi1, · · · , θipi)′ ∈ Θi are vectors of unknown parameters, Vi(θi, xi) are positive definite
matrices and their components are known functions of θi and xi, similarly, the components
of Vij(θi, θj , xi, xj) are known functions of θi, θj , xi and xj . This model covers commonly
used models such as seemingly unrelated nonlinear regression system, seemingly unrelated
linear regression system, seemingly unrelated generalized linear regression system and so
on. The character of Model (1.2) is that each regression equation has its own parameter
and variables, and any two of response variables are related to each other. Without loss of
generality, we assume, in this paper, the main goal is to introduce an estimating function for
parameter θ1 in the first regression equation and then the method for estimating the other
parameters follows.

According to the definition of the quasi-score function (1.1), the quasi-score function for
full parameter θ = (θ1, · · · , θm)′ in Model (1.2) has the form of

q(θ) =

⎡
⎢⎢⎢⎣

μ̇′
1 0 · · · 0
0 μ̇′

2 · · · 0
...

...
...

...
0 · · · 0 μ̇′

m

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

σ2
1V1 σ12V12 · · · σ1mV1m

σ21V21 σ2
2V2 · · · σ2mV2m

...
...

...
...

σm1Vm1 σm2Vm2 · · · σ2
mVm

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

e1
e2
...
em

⎤
⎥⎥⎥⎦ (1.3)

with ei = Yi − μi(θi, xi). This score function is always involved in the difficult situation
of calculating inverse of covariance matrix specially for the case with large m. Even if
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m = 2, the simplest SUR system, the calculating problem is also difficult because the
order of the covariance matrix is a large number 2n. At the same time, the profile quasi-
likelihood, designed for estimating the 1-dimensional parameter of interest, is also involved
in calculating the inverse of covariance matrix (see [9]). So the existing quasi-likelihood is
not applicable to the case of SUR systems and then a new design is desired.

To avoid the above problem, a new quasi-likelihood is proposed in this paper, which is
based mainly on a linearly iterative process. From this iterative process, the quasi-score
function for parameter θ1 is constructed as such an unbiased estimating function depending
mainly on the first regression equation and secondarily on the related information from the
other regression equations. The remainder of the article is organized as follows. In Section
2, we define a quasi-score function for parameter θ1 in SUR system with m = 2. This score
function is an optimum linear combination of the first two regression equations. In Section 3,
we study finite sample properties of this quasi-score function and the asymptotic behaviours
of the quasi-likelihood estimate obtained from this quasi-score function. These results show
that the new quasi-score function for parameter of interest is E-sufficient, iteratively efficient
and approximately efficient in a class of linear unbiased estimating functions. The purpose of
Section 4 is to develop the method of this quasi-score to multi-SUR systems and generalized
SUR systems. In Section 5, some examples are given to illustrate our results. The proofs of
the lemmas and the theorems are all presented in Section 6.

§ 2 . Quasi-score Function

For convenience, in this section, we first consider a particular situation in which there are
only two seemingly unrelated regression equations, i.e., m = 2 in Model (1.2). According to
the definition of quasi-score function presented as (1.1), a quasi-score function of θ1 based
only on the first regression equation should be defined as

q1(θ1) = σ−2
1 μ̇′

1(θ1)V
−1
1 (θ1)e1(θ1, Y1).

If we add the related information from the second equation to the score function above, a
class of estimating functions based on the first two equations can be constructed as

q12 = σ−2
1 μ̇′

1(θ1)V
−1
1 (θ1)e1(θ1, Y1) +Ae2(θ2, Y2), (2.1)

where A is an arbitrary non-random matrix. This is a simple linear iterative process from
q1(θ1) to an unbiased estimating function q12(θ1, θ2). According to the concept of optimum
estimating function in [2, 5, 9], an optimum choice of A should maximize E(q12q′12). It can
be verified immediately that the optimum choice of A is

A∗ = − σ12

σ2
1σ

2
2

μ̇′
1(θ1)V

−1
1 (θ1)V12(θ1, θ2)V −1

2 (θ2).

Therefore, in the class of estimating functions defined by (2.1) the optimum choice is

q∗12(θ1, θ2) =
1
σ2

1

μ̇′
1(θ1)V

−1
1 (θ1)e1(θ1, Y1)
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− σ12

σ2
1σ

2
2

μ̇′
1(θ1)V

−1
1 (θ1)V12(θ1, θ2)V −1

2 (θ2)e2(θ2, Y2).

On the other hand, the estimating function q∗12(θ1, θ2) depends also on parameter θ2. To
eliminate the influence from θ2, we need the quasi-score function related only to the second
regression equation

q2(θ2) = σ−2
2 μ̇′

2(θ2)V
−1
2 (θ2)e2(θ2, Y2).

By summing up the two estimating functions q∗12(θ1, θ2) and q2(θ2), if σ12 and σ2
2 are

known, a new quasi-score function for θ1 is defined as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q∗12(θ1, θ2) =
1
σ2

1

μ̇′
1(θ1)V

−1
1 (θ1)e1(θ1, Y1)

− σ12

σ2
1σ

2
2

μ̇′
1(θ1)V

−1
1 (θ1)V12(θ1, θ2)V −1

2 (θ2)e2(θ2, Y2),

q2(θ2) =
1
σ2

2

μ̇′
2(θ2)V

−1
2 (θ2)e2(θ2, Y2).

(2.2)

Note that the quasi-score function (2.2) is designed only for estimating parameter θ1.
Then the practical process to estimate θ1 has two steps. The first step is to get an estimator
θ̂2 of θ2 from the quasi-score function q2(θ2), and secondly, after θ2 being replaced by θ̂2 in
q∗12(θ1, θ2), we obtain the quasi-score function q∗12(θ1, θ̂2) for θ1. This iterative process shows
that the quasi-score function q∗12(θ1, θ̂2) depends mainly on the first regression equation and
secondarily on the second regression equation.

We call q∗12(θ1, θ̂2) the iterative quasi-score function for θ1. If θ̂12 satisfies

q∗12(θ1, θ̂2)|θ1=θ̂12
= 0,

then we call θ̂12 the iterative quasi-likelihood estimator (IQLE) of θ1.

§ 3 . Main Properties

As mentioned in the previous section, the two estimating functions q∗12(θ1, θ2) and q2(θ2)
play different roles in parameter estimation. According to the theory of estimating functions
in [5, 15], in order to estimate the parameter of interest θ1, it is necessary that the estimating
function for parameter θ1 is E-sufficient. For this purpose, we consider the class of linear
unbiased estimating functions

Ψ(2) = {A1(θ1, θ2)e1(θ1, Y1) +A2(θ1, θ2)e2(θ2, Y2) : A1, A2 are arbitrary p1 × n matrices}

and assume that the order of the differentiation and integration can be interchanged. Fol-
lowing the theory of estimating functions in [5, 15], an estimating function ψ(θ1, θ2) is said
to be E-ancillary for parameter θ1 if

E
(∂ψ(θ1, θ2)

∂θ1

)
= 0 for all θ1 ∈ Θ1, θ2 ∈ Θ2,

where Θi is the parameter space of θi.
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Lemma 3.1. Let A(2)
1 ⊂ Ψ(2) be the class of E-ancillary functions for parameter θ1

and ∂μ1(θ1)/∂θ11|θ1=θ∗
1
, · · · , ∂μ1(θ1)/∂θ1p1 |θ1=θ∗

1
be linearly independent for some θ∗1 ∈ Θ1.

Then

A(2)
1 = {A2(θ1, θ2)e2(θ2, Y2) : A2 is an arbitrary p1 × n matrix}.

From Lemma 3.1, we have the following theorem, which describes the small sample
property of q∗12(θ1, θ2).

Theorem 3.1. Under the conditions of Lemma 3.1, E(q∗12(θ1, θ2)ψ
′(θ1, θ2)) = 0 for all

ψ(θ1, θ2) ∈ A(2)
1 , θ1 ∈ Θ1 and θ2 ∈ Θ2.

Remark 3.1. Theorem 3.1 shows that q∗12(θ1, θ2) is orthogonal to A(2)
1 under the inner

product defined by 〈a, b〉θ = E(ab′). Thus q∗12(θ1, θ2) is E-sufficient for θ1 in Ψ(2) (see [5,
15]). Since q2(θ2) is unrelated to θ1, it is E-ancillary for θ1 and, consequently, q∗12(θ1, θ2) is
orthogonal to q2(θ2). This orthogonality plays a key role in the efficiency and normality for
estimating θ1 (for details, see the proof of Theorem 3.2).

Denote μ̇′
1V

−1
1 by (s(1)it ) and μ̇′

1V
−1
1 V12V

−1
2 by (s(2)it ), i = 1, · · · , p1, t = 1, · · · , n. Let

n× p1 × p1 array matrices W (k) = (W (k)
tij ) = (∂s(k)

it /∂θ1j), Q(2) = (Q(2)
tij ) = (∂s(2)it /∂θ2j) and

vectors W (k)
ij = (W (k)

1ij , · · · , W (k)
nij )′, Q(2)

ij = (Q(2)
1ij , · · · , Q(2)

nij)
′, k = 1, 2.

In order to obtain the consistency and asymptotic normality for IQLE θ̂12, we need the
following regularity conditions.

(A) The rank of ∂μ1(θ1)/∂θ1|θ1=θ0
1

is p1, where θ0i stands for the true value of θi in

Model (1.2). In a neighborhood of (θ01
′
, θ02

′)′, s(k)
it , W (k)

tij and ∂W (k)
tij /∂θ1r are continuous and

bounded.
(B) In a neighborhood of (θ01

′
, θ02

′)′,

lim
n→∞

1
n
μ̇′

kV
−1
k μ̇k = Δk, k = 1, 2,

lim
n→∞

1
n
μ̇′

1V
−1
1 V12V

−1
2 μ̇2 = Δ12, lim

n→∞
1
n
μ̇′

1V
−1
1 V12V

−1
2 V21V

−1
1 μ̇1 = Λ1,

lim
n→∞

1
n

(
W

(k)
ij

)′
VkW

(k)
ij = Fkij ,

lim
n→∞

1
n

(
Q

(2)
ij

)′
V2Q

(2)
ij = G2ij , k = 1, 2, i, j = 1, · · · , p1.

These conditions are standard in the theory of quasi-likelihood (see [9]). Under the
conditions above, we have the following lemma and theorem.

Lemma 3.2. If Conditions (A) and (B) hold, then IQLE of θ1 satisfies

θ̂12 − θ01 = OP (n−1/2) as n→ ∞.

From Lemma 3.1, we get the following theorem.

Theorem 3.2. If the conditions of Lemma 3.1, (A) and (B) hold, then IQLE of θ1

satisfies √
n(θ̂12 − θ01)

D−→ N(0,Υ12(θ01 , θ
0
2)) as n→ ∞,
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where

Υ12(θ01 , θ
0
2) = σ2

1Δ−1
1 (θ01) −

σ2
12

σ2
2

Δ−1
1 (θ01)(Λ1(θ01 , θ

0
2) − Λ2(θ01 , θ

0
2))Δ

−1
1 (θ01),

Λ2 = Δ12Δ−1
2 Δ21, Δ21 = Δ′

12, and Δk, Δ12 and Λ1 are presented as in Condition (B).

Remark 3.2. Let θ̂1 be the quasi-likelihood estimator of θ1 obtained only from quasi-
score function

q1(θ1) = σ−2
1 μ̇′

1(θ1)V
−1
1 (θ1)e1(θ1, Y1).

Then, under the above regularity conditions (see [11, 12]), we have

√
n(θ̂1 − θ01)

D−→ N(0, σ2
1Δ

−1
1 (θ01)).

Furthermore, we can verify that Λ1 ≥ Λ2 and then Υ12 ≤ σ2
1Δ−1

1 . It shows that IQLE
θ̂12 is asymptotically more efficient than the original quasi-likelihood estimator θ̂1, and the
contribution quantity from the related information of the second regression equation is

σ2
12

σ2
2

Δ−1
1 (θ01)(Λ1(θ01 , θ

0
2) − Λ2(θ01 , θ

0
2))Δ

−1
1 (θ01) ≥ 0.

On the other hand, if we use the quasi-score function (1.3) of full parameters to estimate θ1
and the estimator is denoted by θ̂∗1 , then we can prove that the asymptotic covariance of θ̂∗1
is Υ∗

12 satisfying

Υ∗−1
12 =

1
σ2

1

Δ1 +
σ2

12

σ4
1σ

2
2

Λ1 +
σ4

12

σ4
1σ

4
2

R∗,

and
R∗ ≤ Λ1 ≤ Δ1.

From Theorem 3.2 we get the similar result

Υ−1
12 =

1
σ2

1

Δ1 +
σ2

12

σ4
1σ

2
2

Λ1 +
σ4

12

σ4
1σ

4
2

R,

where R ≤ Λ1 ≤ Δ1. The results above show that Υ−1
12 and Υ∗−1

12 are equal in the two main
parts and as a result θ̂12 and θ̂∗1 , approximately, have the same efficiency.

From the assumption in which σ2
2 and σ12 are known, we get the definition and the

results above. When they are unknown, we can use their estimators, σ̂2
2 and σ̂12 say, to

replace them. The methods to estimate σ2
2 and σ12 are similar to those in [13] and [17].

Since these estimators are consistent, the results such as the asymptotic normality presented
in Theorem 3.2 all hold (see [1]). So, in what follows, we always assume that σ2

2 and σ12 or
σ2

i and σij in multi-SUR systems are known.

§ 4 . Extension

We now extend the method as proposed in the previous sections to general multi-SUR
systems with m regression equations. Assume that we have had an iterative quasi-score
function based on the first to k-th regressions equations denoted by q∗1···k. Adding the
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information from (k+1)-th regression equation to q∗1···k, we get q∗1···k(k+1) = q∗1···k+A∗ek+1 for
a suitable matrix A∗, by which q∗1···k(k+1) obtains its maximum covariance. Since q∗1···k(k+1)

is also dependent on θ2, · · · , θk+1, we need the ancillary quasi-score functions defined by qi =
σ−2

i μ̇′
iV

−1
i ei for i = 2, · · · , k+1 to eliminate the influence from the parameters θ2, · · · , θk+1.

Then the iterative quasi-score function for θ1 in Model (1.2) is defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q∗12···m =
1
σ2

1

μ̇′
1V

−1
1 e1 −

m∑
i=2

σ1i

σ2
1σ

2
i

μ̇′
1V

−1
1 V1iV

−1
i ei

+
∑

2≤i<j≤m

σ1iσij

σ2
1σ

2
i σ

2
j

μ̇′
1V

−1
1 V1iV

−1
i VijV

−1
j ej

+(−1)l
∑

2≤i1<···<il≤m

σ1i1 · · ·σil−1il

σ2
1σ

2
i1
· · ·σ2

il

μ̇′
1V

−1
1 V1i1V

−1
i1
Vi1i2V

−1
i2

· · ·V −1
il
eil

+ · · ·

+(−1)m
σ12 · · ·σ(m−1)m

σ2
1σ

2
2 · · ·σ2

m

μ̇′
1V

−1
1 V12V

−1
2 V23V

−1
3 · · ·V −1

m em,

qi =
1
σ2

i

μ̇′
iV

−1
i ei, i = 2, · · · ,m.

(4.1)

We can verify that the score functions defined above have orthogonality as

E(q∗12···(k+1)(θ1, θ2, · · · , θk, θk+1)(A(k+1)e(k+1))′) = 0 for A(k+1)e(k+1) ∈ A(k+1)
1 ,

where A(k+1)
1 = {A(k+1)e(k+1) : A(k+1)(θ1, θk+1) is an arbitrary matrix} ⊂ Ψ(k+1) is the

class of E-ancillary functions for θ1 and

Ψ(k+1) = {A1e1 +A(k+1)e(k+1) : A1(θ1, θk+1) : A(k+1)(θ1, θk+1) are arbitrary matrices}

is the class of linear unbiased estimating functions. At the same time, qi, i = 2, · · · ,m, are
independent of θ1. Thus these properties make the score functions qi, i = 2, · · · ,m to be
E-ancillary and q∗12···m to be E-sufficient for parameter θ1.

From the equations qi = 0 we get the estimators θ̂i of θi for i = 2, · · · ,m. And then by
putting them into q∗12···m, we obtain the iterative quasi-score function q∗12···m(θ1, θ̂2, · · · , θ̂m)
for θ1. The root of the equation q∗12···m(θ1, θ̂2, · · · , θ̂m) = 0 is denoted by θ̂1···m. We call it
IQLE of θ1. It can be verified that, under some regularity conditions similar to (A) and (B)
above, √

n(θ̂1···m − θ01)
D−→ N(0,Υ1···m(θ01 , · · · , θ0m)) as n→ ∞

and the asymptotic covariance satisfies that Υ1···(m−1) ≥ Υ1···m for any m. It shows that
θ̂1···m is iteratively efficient.

We now introduce some examples to illustrate our theoretical results.

Example 4.1. Consider the following seemingly unrelated linear regression system
⎧⎨
⎩
E(Yi) = Xiθi, Var(Yi) = σ2

i I, i = 1, 2,

Cov(Y1, Y2) = σ12I,
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where Xi = (xi1, · · · , xin)′ are n× pi design matrices. It follows from the formula (2.2) that
the IQLE of θ1 is

θ̂12 = θ̂1 − σ12

σ2
2

(X ′
1X1)−1X ′

1(I − PX2)Y2,

where θ̂1 = (X ′
1X1)−1X ′

1Y1 and PX2 = X2(X ′
2X2)−1X ′

2. We can verify that E(θ̂12) = θ1

and θ̂12 has minimum covariance in the class of linear unbiased estimations

{θ̂1 +Ae2(θ̂2, Y2) : A is an arbitrary p1 × n matrix},

where θ̂2 = (X ′
2X2)−1X ′

2Y2. Furthermore, θ̂12 is a linear function of Yi and

Var(θ̂12) = σ2
1(X

′
1X1)−1 − σ2

12

σ2
2

(X ′
1X1)−1(X ′

1X1 −X ′
1PX2X1)(X ′

1X1)−1.

Thus, it is clear from the central limit theorem that

√
n(θ̂12 − θ01)

D−→ N(0,Υ12),

where

Υ12 = σ2
1Δ−1

1 − σ2
12

σ2
2

Δ−1
1 (Δ1 − Λ2)Δ−1

1 ,

Δ1 = lim
n→∞

1
n
X ′

1X1, Λ2 = lim
n→∞

1
n
X ′

1PX2X1.

This just illustrates the results in Theorem 3.2 and Remark 3.2.
Generally, if i = 1, · · · ,m in the linear model above, then the IQLE of θ1 is

θ̂12···m = θ̂1 −
m∑

i=2

σ1i

σ2
i

(X ′
1X1)−1X ′

1NiYi

+
∑

2≤i<j≤m

σ1iσij

σ2
i σ

2
j

(X ′
1X1)−1X ′

1NiNjYj

+ (−1)l
∑

2≤i1<···<il≤m

σ1i1 · · ·σil−1il

σ2
i1
· · ·σ2

il

(X ′
1X1)−1X ′

1Ni1 · · ·Nil
Yil

+ · · ·

+ (−1)mσ12 · · ·σ(m−1)m

σ2
2 · · ·σ2

m

(X ′
1X1)−1X ′

1N2 · · ·NmYm,

where Ni = I − PXi . For all m, we have E(θ̂12···m) = θ1 and Var(θ̂12···m) ≤ Var(θ̂12···(m−1))
(see [17]). It illustrates the iterative efficiency.

Example 4.2. In this example, we assume that Yi1, · · · , Yin are independently (but not
necessary identically) distributed, the density function of Yij has the form of fij(|yij − θi|)
and function fij(y) has symmetic center y = θi, i = 1, 2. We first consider the following
unbiased estimating functions

g(yij , θi) = sign(yij − θi). (4.2)
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Let
Var(g(Yij , θi)) = σ2

i λj , Cov(g(Y1j , θ1), g(Y2j , θ2)) = σ12κj

and
Cov(g(Y1j1 , θ1), g(Y2j2 , θ2)) = 0, j1 �= j2.

According to common definition of derivative, however, ∂g/∂θi can not be defined on some
points. In this case, following Godambe and Thompson [3], we define

E
(∂g(Yij , θi)

∂θi

)
= lim

ε→0
E(g(Yij , θi + ε) − g(Yij , θi))/ε.

From this definition, it can be verified that

−1
2
E

(∂g(Yij , θi)
∂θi

)
= lim

ε→0
P (θi < Yij < θi + ε)/ε = fij(0),

where fij(0) is the density of Yij valued at yij = θi, i.e., fij(0) = fij(|yij − θi|)|yij=θi . Then
we get the quasi-score function for θ2:

q2(θ2) = σ−2
2

n∑
j=1

λ−1
j f2j(0)g(Y2j , θ2).

Denote the root of the equation q2(θ2) = 0 by θ̂2. We now assume that Y1k1 ≤ Y1k2 ≤ · · · ≤
Y1kn , Y2j1 ≤ Y2j2 ≤ · · · ≤ Y2jn , and m satisfies

−
m∑

s=1

λ−1
js
f2js(0) +

n∑
s=m+1

λ−1
js
f2js(0) ≥ 0 and −

m+1∑
s=1

λ−1
js
f2js(0) +

n∑
s=m+2

λ−1
js
f2js(0) ≤ 0.

We can verify that θ̂2
.= 1

2 (Y2jm +Y2j(m+1)), the m-th ordering statistic of Y21, · · · , Y2n. Thus
it follows that the iterative quasi-score function for θ1 is

q∗12(θ1, θ̂2) = σ−2
1

n∑
j=1

λ−1
j f1j(0)g(Y1j , θ1)

− σ12σ
−2
1 σ−2

2

(
−

m∑
s=1

λ−2
js
κjsf1js(0) +

n∑
s=m+1

λ−2
js
κjsf1js(0)

)
.

By the equation q∗12(θ1) = 0 we see that the IQLE of θ1 is θ̂12
.= 1

2 (Y1kl
+ Y1k(l+1)), where l

satisfies

−
l∑

s=1

λ−1
ks
f1ks(0) +

n∑
s=l+1

λ−1
ks
f1ks(0) ≥ σ12

σ2
2

(
−

m∑
s=1

λ−2
js
κjsf1js(0) +

n∑
s=m+1

λ−2
js
κjsf1js(0)

)
,

−
l+1∑
s=1

λ−1
ks
f1ks(0) +

n∑
s=l+2

λ−1
ks
f1ks(0) ≤ σ12

σ2
2

(
−

m∑
s=1

λ−2
js
κjsf1js(0) +

n∑
s=m+1

λ−2
js
κjsf1js(0)

)
.

Obviously, θ̂12 is the l-th ordering statistic of Y11, · · · , Y1n. In this case the asymptotic
variance of

√
n θ̂12 is

Υ12 = σ2
1Δ−1

1 − σ2
12

σ2
2

Δ−1
1 (Δ1 − Δ12Δ−1

1 Δ12)Δ−1
1 , (4.3)
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where

Δ1 = lim
n→∞

4
n

n∑
j=1

λ−1
j f2

1j(0), Δ12 = lim
n→∞

4
n

n∑
s=1

λ−2
j κjf1j(0)f2j(0).

On the other hand, if unbiased function is chosen as

g(yij , θi) = yij − θi, (4.4)

then, from Example 4.1, we can see that the IQLE of θ1 is θ̂∗12 = Y 1 = 1
n

n∑
j=1

Y1j , which is

unrelated to Y21, · · · , Y2n. Then the asymptotic covariance of
√
n θ̂∗12 is

Υ∗
12 = lim

n→∞
1
n

n∑
j=1

σ2
1λj .

It follows from (4.3) and the result above that, if the correlation between Y11, · · · , Y1n

and Y21, · · · , Y2n is large enough and Y21, · · · , Y2n are dispersive enough, i.e., |σ12|
(σ2

1σ2
2)

and σ2
2

are large enough, then Υ12 ≤ Υ∗
12. In this case we should choose (4.2) as unbiased estimating

function. Otherwise, we should choose (4.4) as unbiased estimating function.

§ 5 . Proofs

Proof of Lemma 3.1. By the definition of E-ancillary we can verify the lemma imme-
diately.

Proof of Theorem 3.1. By the definitions of q∗12(θ1, θ2) and Model (1.2) and Lemma
3.1 we can verify the theorem immediately.

Proof of Lemma 3.2. According to the theory of quasi-likelihood (see [12, 13]), we
have

θ̂2 − θ02 = OP (n−1/2). (5.1)

By the definition of IQLE of θ1, we have q∗12(θ1, θ̂2)|θ1=θ̂12
= 0. If it is expanded at (θ01 , θ

0
2)

′

by Taylor expansion, we get

0 = μ̇′
1(θ

0
1)V

−1
1 (θ01)e1(θ

0
1) −

σ12

σ2
2

μ̇′
1(θ

0
1)V

−1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ02)e2(θ

0
2)

+
{
− μ̇′

1(θ
0
1c)V

−1
1 (θ01c)μ̇1(θ01c) + [e′1(θ1c)][W (1)(θ1c, θ2c)]

− σ12

σ2
2

[e′2(θ2c)][W (2)(θ1c, θ2c)]
}

(θ̂12 − θ01)

− σ12

σ2
2

{−μ̇′
1(θ

0
1c)V

−1
1 (θ01c)V12(θ01c, θ

0
2c)V

−1
2 (θ02c)μ̇2

+ [e′2(θ2c)][Q(2)(θ1c, θ2c)]}(θ̂2 − θ02), (5.2)

where ‖θ1c − θ01‖ < ‖θ̂12 − θ01‖, ‖θ2c − θ01‖ < ‖θ̂2 − θ02‖ and [ · ][ · ] stands for multiplying a
matrix by an array matrix (see [19]). Now we calculate the orders of convergence of every
terms in Equation (5.2). From Condition (B), it is clear that

E(μ̇′
1(θ

0
1)V

−1
1 (θ01)e1(θ

0
1)) = 0, Var(μ̇′

1(θ
0
1)V

−1
1 (θ01)e1(θ

0
1)) = O(n).
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As a result,

μ̇′
1(θ

0
1)V

−1
1 (θ01)e1(θ

0
1) = OP (n

1
2 ), (5.3)

E(e′1(θ
0
1)W

(1)
ij ) = 0, Var(e′1(θ

0
1)W

(1)
ij ) = O(n),

and then

[e′1(θ1c)][W (1)(θ1c, θ2c)] = [e′1(θ
0
1)][W

(1)(θ01 , θ
0
2)] + Cn = OP (n

1
2 ), (5.4)

where Cn is uniformly bounded by a constant for n = 1, 2, · · · . Similarly,

μ̇′
1(θ

0
1)V

−1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ02)e2(θ

0
2) = OP (n

1
2 ) (5.5)

and

[e′2(θ2c)][W (2)(θ1c, θ2c)] = OP (n
1
2 ), [e′2(θ2c)][Q(2)(θ1c, θ2c)] = OP (n

1
2 ). (5.6)

From (5.1) and (5.3)–(5.6), by comparing with the orders of convergence of every terms in
Equation (5.2), we get θ̂12 − θ01 = OP (n−1/2). The proof is completed.

Proof of Theorem 3.2. It is clear from the equation q∗12(θ1, θ̂2)|θ1=θ̂12
= 0, Lemma 3.2

and Condition (A) that we have the following Taylor expression

0 = μ̇′
1(θ

0
1)V

−1
1 (θ01)e1(θ

0
1) −

σ12

σ2
2

μ̇′
1(θ

0
1)V

−1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ02)e2(θ

0
2)

+
{
− μ̇′

1(θ
0
1)V

−1
1 (θ01)μ̇1 + [e′1(θ

0
1)][W

(1)(θ01 , θ
0
2)] −

σ12

σ2
2

[e′2(θ
0
2)][W

(2)(θ01 , θ
0
2)]

}
(θ̂12 − θ01)

− σ12

σ2
2

{−μ̇′
1(θ

0
1)V

−1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ02)μ̇2 + [e′2(θ

0
2)][Q

(2)(θ01 , θ
0
2)]}(θ̂2 − θ02)

+ oP (|θ̂12 − θ01|) + oP (|θ̂2 − θ02|).

By Lemma 3.1, Condition (B), (5.3)–(5.6) and the expression above, we get

√
n(θ̂12 − θ01) =

{ 1
n
μ̇′

1(θ
0
1)V

−1
1 (θ01)μ̇1(θ01)

}−1

×
{ 1√

n
μ̇′

1(θ
0
1)V

−1
1 (θ01)e1(θ

0
1)

+
1√
n

([e′1(θ
0
1)][W

(1)(θ01 , θ
0
2)] −

σ12

σ2
2

[e′2(θ
0
2)][W

(2)(θ01 , θ
0
2)])(θ̂12 − θ01)

− σ12

σ2
2

1√
n
μ̇′

1(θ
0
1)V

−1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ01)e2(θ

0
2)

+
σ12

σ2
2

1
n
μ̇′

1(θ
0
1)V

−1
1 (θ01)V12(θ01, θ

0
2)V

−1
2 (θ01)μ̇2(θ02)

√
n(θ̂2 − θ02)

− σ12

σ2
2

1√
n

[e′2(θ
0
2)][Q

(2)(θ01, θ
0
2)](θ̂2 − θ02)

+
1√
n
oP (|θ̂12 − θ01|) +

1√
n
oP (|θ̂2 − θ02|)

}

=
{ 1
n
μ̇′

1(θ
0
1)V

−1
1 (θ01)μ̇1(θ01)

}−1{ σ2
1√
n
q∗12(θ

0
1 , θ

0
2) +

σ12

σ2
2

1
n
μ̇′

1(θ
0
1)

· V −1
1 (θ01)V12(θ01 , θ

0
2)V

−1
2 (θ02)μ̇2(θ02)

√
n(θ̂2 − θ02)

}
+ oP (1). (5.7)
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On the other hand, from the equation q2(θ̂2) = 0 and the method above, we get

√
n(θ̂2 − θ02) =

{ 1
n
μ̇′

2(θ
0
2)V

−1
2 (θ02)μ̇2(θ02)

}−1 σ2
2√
n
q2(θ02) + oP (1). (5.8)

Lemma 3.1, (5.7) and (5.8) imply that the conclusion in the theorem holds. The proof is
completed.
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