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TRANSFORMATIONS FOR FLAT LAGRANGIAN
SUBMANIFOLDS∗∗∗
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Abstract

The Ribaucour transformations for flat Lagrangian submanifolds in Cn and CP n

via loop group actions are given. As a consequence, the authors obtain a family of new
flat Lagrangian submanifolds from a given one via a purely algebraic algorithm. At
the same time, it is shown that such Ribaucour transformation always comes with a
permutability formula.
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§ 1 . Introduction

The theory of integrable system has been widely used to study some differential geometric
objects such as surfaces with some geometric property in R3, harmonic maps, and the
isometric immersions in space forms, etc. (see [1, 5, 10, 13]). In particular, the Lagrangian
surfaces in C2 and flat Lagrangian submanifolds in complex space forms have been studied
in various papers (see [3, 7]). These geometric objects are often in correspondence with
the solutions of nonlinear partial differential equations, which admit Lax pairs, so one can
give the construction methods of solutions of these PDEs and these geometric objects by
using the integrable system theory and soliton theory. In particular, Bäcklund, Darboux
and Ribaucour transformations for these geometric objects can be constructed (see [1, 3, 6,
8, 12, 14]). The importance of these geometric transformations is twofold: geometrically,
as a tool for obtaining a family of new examples from a given one with the same geometric
property; analytically, as a method for generating new solutions of the associated PDEs
from a given one.

The main purpose of this paper is to give the explicit construction for flat Lagrangian
submanifolds in Cn and CPn by means of generalized Ribaucour transformations (resp.
Ribaucour transformations) via loop group actions. The contents of the paper are arranged
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as follows. We review the concrete constructions of the solutions of the U(n)
O(n) -system via

loop group action in §2. In §3, we explain the connection between Darboux transforma-
tion and the loop group action for the U(n)

O(n) -system. In fact, they are consistent. In §4,
we give generalized Ribaucour transformations (resp. Ribaucour transformations) for flat
Lagrangian submanifolds of Cn and CPn by means of the results in §2. In §5, we show
the permutability formulas of these transformations for flat Lagrangian submanifolds in Cn

(resp. CPn). Finally, the examples to construct flat Lagrangian submanifolds in Cn (resp.
CPn) via a purely algebraic algorithm are given in §6.

§ 2 . Loop Group Dressing Action for U(n)

O(n)
-System

Let G = U(n) be a real form with regard to a conjugate linear involution τ of GL(n,C),
σ a complex linear involution of GL(n,C), where τ(ξ) = (ξ∗)−1, σ(ξ) = (ξt)−1 for ξ ∈
GL(n,C). σ and τ induce involutions on Lie algebra gl(n,C) respectively, also denoted as
σ and τ . Namely, τ(ξ) = −ξ∗, σ(ξ) = −ξt for ξ ∈ gl(n,C). Let G = u(n) = K + P be the
Cartan decomposition of the symmetric space U(n)/O(n), where K = o(n) and

P = {iF | F = (fjk) ∈ gl(n,R), fjk = fkj for 1 ≤ j, k ≤ n} (i =
√−1)

are the +1 and −1 eigenspaces of σ, respectively. Moreover, the linear subspace

A = span{aj = icj | 1 ≤ j ≤ n}

is a maximal abelian linear subspace of P , and

A⊥ ∩ P = {iF | F = (fjk) ∈ gl(n,R), fjk = fkj , fjj = 0 for 1 ≤ j, k ≤ n},

where cj is the diagonal matrix such that all entries are zero except the jth entry, which
is equal to 1, A⊥ = {y ∈ G | tr(xy) = 0, x ∈ A} is the orthogonal complement of A
with respect to the killing form on G. We say that g(λ) satisfies U(n)

O(n) -reality condition, if
τ(g(λ̄)) = g(λ), σ(g(−λ)) = g(λ), i.e.,

g(λ̄)∗g(λ) = I, g(λ̄) = g(−λ). (2.1)

It is evident that

Lemma 2.1. If g(λ) satisfies the U(n)
O(n) -reality condition (2.1), then

(1) g(−λ)tg(λ) = I and g(λ) = g(−λ̄);

(2) If λ is a pure imaginary, then g(λ) = g(λ).

Let O∞ be an open neighborhood of ∞ in S2 = C ∪ {∞}. Define loop groups

G+ =
{
g : C → GL(n,C)

∣∣∣∣ g(λ) is holomorphic, satisfies

the reality condition (2.1)

}
,

G− =
{
g : O∞ → GL(n,C)

∣∣∣∣ g(λ) is holomorphic, g(∞) = 0,

and satisfies the reality condition (2.1)

}
.
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We also define the corresponding Lie algebras in an analogous way

G+ =
{
ξ : C → gl(n,C)

∣∣∣∣ ξ(λ) is holomorphic,

ξ(λ̄)∗ + ξ(λ) = 0, ξ(λ̄) = ξ(−λ)

}
,

G− =
{
ξ : O∞ → gl(n,C)

∣∣∣∣ ξ(λ) is holomorphic, ξ(∞) = I,

ξ(λ̄)∗ + ξ(λ) = 0, ξ(λ̄) = ξ(−λ)

}
.

It is well known (cf. [13]) that the group of rational maps g : S2 → GL(n,C) satisfying
g(λ̄)∗g(λ) = I is generated by the simple element

hz,π(λ) = π +
λ− z

λ− z̄
π′, (2.2)

where z ∈ C, π is a Hermitian projection of Cn and π′ = I −π. Obviously, hz,π satisfies the
reality condition (2.1) if and only if z̄ = −z, π̄ = π.

Let z = is (s ∈ R \ {0}) and L a k × n constant real matrix such that the columns of
L form a basis of a k-plane (also denoted by L) in Cn. Then we have a real symmetric
projection of Cn,

π = Lt(LLt)−1L, (2.3)

i.e., π̄ = πt = π = π2. Obviously, his,π ∈ G−, h−1
is,π = h−is,π and h−is,π(λ) = his,π(−λ).

For any λ ∈ C∗ = C \ {0}, we consider the linear system

dΨλ = Ψλ

n∑
j=1

(λaj + [aj , v])dxj , (2.4)

where {aj} is a basis of A, v : Rn → A⊥ ∩ P is a smooth function. Thus, θλ =
∑
j

(λaj +

[aj , v])dxj is a G+-valued one form and Ψλ(x) = Ψ(x, λ) ∈ G+.

A direct computation shows that

Lemma 2.2. If Ψλ is a solution of (2.4), then
(1) For any n× n complex matrix g(λ), g(λ)Ψλ is a solution of (2.4) if and only if g(λ)

satisfies the reality condition (2.1). In particular,
(2) g0Ψλ is a solution of (2.4) if and only if the constant matrix g0 ∈ K, where K is the

Lie subgroup of G corresponding to the Lie algebra K.
(3) For any λ ∈ C∗ and a complex function f(λ), f(λ)Ψλ is a solution of (2.4) if and

only if f(λ̄)f(λ) = 1 and f(λ̄) = f(−λ).

Without loss of generality, we consider the normalized linear system{
dΨλ = Ψλθλ,

Ψλ(0) = I.
(2.5)

We take aj = icj ∈ A (1 ≤ j ≤ n) and v = −iF : Rn → A⊥ ∩ P in (2.5). The integrability
condition of the system (2.4) or (2.5) is⎧⎨⎩(fjk)xj + (fjk)xk

+
∑

l

fjlfkl = 0 for j 	= k,

(fjk)xl
= fjlflk for j, k, l which are distinct.

(2.6)
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System (2.6) is called U(n)
O(n) -system (cf. [11]), which is also called the symmetric generalized

wave equation in [3].
From Lemma 2.1 and Theorem 4.3 in [12], we get the following

Theorem 2.1. Let Ψλ : Rn → G+ be a solution of (2.5) and L a k × n constant
real matrix such that det(LLt) 	= 0. Denote π = Lt(LLt)−1L. For any s ∈ R \ {0}, set
V = LΨis. Then

(1) det(V V t) 	= 0 and π̃ = V t(V V t)−1V is a real symmetric projection onto the k-plane
V of Cn.

(2) Let Ψ̃λ = his,πΨλh−is,�π. Then there is a neighborhood O of the origin in Rn such
that Ψ̃λ : U → G+ is a new solution of (2.5), and F̃ = F +2sπ̃A⊥ is a new solution of (2.6),
where π̃A⊥ is a projection to A⊥.

Remark 2.1. If we consider the system (2.4) without the initial condition Ψλ(0) = I,

set ˜̃Ψλ = h−is,πΨ̃ = Ψλh−is,�π and let L, V be as in Theorem 2.1, then ˜̃Ψλ is a new solution
of the system (2.4). But the solutions obtained in this way may have polar points.

§ 3 . Darboux Transformation for the U(n)

O(n)
-System

In this section, we give Darboux transformation for the U(n)
O(n) -system with the method in

[6]. In fact, this transformation is consistent with the loop group action for the U(n)
O(n) -system

in §2.
Let Ψλ(x) be a solution of the linear system (2.4), that is,

(Ψλ)xj = Ψλ(λaj + [aj , v]). (3.1)

We will construct an n × n complex matrix S and a smooth function ṽ : Rn → A⊥ ∩ P
such that Ψ̃λ := Ψλ(λI − S) is also a solution of (3.1). From (3.1), we know that Ψ̃λ is a
solution of (3.1) if and only if S and ṽ satisfy

Sxj = [S, [aj , v]] − S[aj , S], (3.2)

[aj , ṽ] = [aj , v] + [S, aj ]. (3.3)

Choose nonzero complex numbers λ1, · · · , λn, such that λj 	= λk for some 1 ≤ j 	= k ≤ n

and constant row vectors �1, · · · , �n such that the n×nmatrixH = [(�1Ψλ1)t, · · · , (�nΨλn)t]t

is non-degenerate. Then the matrix H = [(�1Ψλ1)
t, · · · , (�nΨλn)t]t satisfies

Hxj = ΛHaj +H [aj, v], (3.4)

where Λ = diag(λ1, · · · , λn).
Let S = H−1ΛH . From (3.4), we get that S is a solution of (3.2). This proves the

following lemma.

Lemma 3.1. Let hj = �jΨ(λj) be row vector solutions of (3.1) corresponding to λj

for 1 ≤ j ≤ n such that the n × n matrix H = (ht
1, · · · , ht

n)t is non-degenerate. Then
S = H−1ΛH is a solution of (3.2).
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Since ṽ obtained from (3.3) is generally not in A⊥ ∩ P , we choose λj and hj again as
follows:

(1) for any s ∈ R \ {0}, λ1 = · · · = λk = is, λk+1 = · · · = λn = −is;
(2) choose constant row vectors �j (1 ≤ j ≤ n) such that detL1L

t
1 	= 0, detL2L

t
2 	= 0 and

L1L
t
2 = 0, where L1 = (�t1, · · · , �tk)t, L2 = (�tk+1, · · · , �tn)t are k × n, (n − k) × n matrices,

respectively.
Let Ψλ be a solution of (2.4). Then H1 = L1Ψis, H2 = L2Ψ−is are matrices with rank

k, n − k, respectively. Moreover, by Lemma 2.1(2) and Ψ(is)Ψ(−is)t = I, we get that
H = [Ht

1, H
t
2]t is a real invertible matrix with detH1H

t
1 	= 0, detH2H

t
2 	= 0 and H1H

t
2 = 0.

From the definition of S, similarly to the proof of the theorem 1 in [6], we can prove St = S.
Hence, iS is a real symmetric matrix. This implies that ṽ = v − (S)A⊥ obtained from (3.3)
lies in A⊥ ∩ P . Especially, if we take aj = icj, v = −iF , ṽ = −iF̃ , then F̃ = F − (iS)A⊥ is
a new solution of (2.6).

Furthermore, if we write

S = H−1ΛH = isH−1

[
Ik 0
0 0

]
H − isH−1

[
0 0
0 In−k

]
H = isπ̃ − isπ̃′, (3.5)

where π̃ = H−1diag(Ik, 0)H , then from (3.5) we have Dλ = λI − S = (λ − is)h−is,�π.
If we consider the solution of (2.5), then Ψ̃λ = Dλ(0)−1ΨλDλ = his,πΨλh−is,�π is a new

solution of (2.5), where π = L−1diag(Ik, 0)L. As §5 in [6], we can get

π̃ = Ψt
isL

t
1(L1ΨisΨt

isL
t
1)

−1L1Ψis.

Let V = H1 = L1Ψis. Then π̃ = V t(V V t)−1V is a real symmetric projection of Cn.

Summing up, we have the following

Theorem 3.1. Let L1, L2 be k × n, (n − k) × n matrices such that det(L1L
t
1) 	= 0,

det(L2L
t
2) 	= 0, L1L

t
2 = 0 and Ψλ a solution of (2.5). For s ∈ R \ {0}, set H1 = L1Ψis,

H2 = L2Ψ−is and S = H−1ΛH, where H = [Ht
1, H

t
2], Λ = diag(isIk,−isIn−k). Then

(1) det(H1H
t
1) 	= 0, det(H2H

t
2) 	= 0, H1H

t
2 = 0.

(2) The Darboux matrix Dλ = λI − S = (λ− is)h−is,�π.
(3) Ψ̃λ = Dλ(0)−1ΨλDλ is a solution of (2.5), and F̃ = F − (iS)A⊥ = F + 2s(iπ̃)A⊥ is

a solution of (2.6).

§ 4 . Ribaucour Transformations for Flat Lagrangian Submanifolds

Let X : Mn → R2n be an n-dimensional flat submanifold of R2n with the first funda-
mental form I =

∑
j

b2jdx
2
j . Denote fjk = (bj)xk

bk
for 1 ≤ j 	= k ≤ n, F = (fjk). In [11], Terng

C. L. proved that X is a flat Lagrangian submanifold if and only if F = F t if and only if F
is a solution of (2.6).

Let X be a flat Lagrangian submanifold of R2n. Then there is a unitary frame field
Φ = (e1, · · · , en, Je1, · · · , Jen) : M → U(n) in R2n ∼= Cn satisfying

dΦ = Φ
[
ω δ
−δ ω

]
, (4.1)
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where ω = (ωjk) = [δ, F ], δ = diag(dx1, · · · , dxn) (cf. [11]). Let J =
[
0 −I
I 0

]
be the

standard complex structure on Cn. We regard u(n) as the subalgebra of o(2n), i.e.,

A = A1 + iA2 ∈ u(n) →
[
A1 A2

−A2 A1

]
∈ o(2n),

where A1 ∈ o(n), A2 ∈ gl(n,R) is symmetric. Thus, we identify the position vector X ∈ R2n

with X + iJX ∈ Cn and ej ∈ R2n with ej + iJej ∈ Cn (1 ≤ j ≤ n). Moreover, u(n)-
valued real frame Φ = (e1, · · · , en, Je1, · · · , Jen) is identified with u(n)-valued complex

frame Φ + iJΦ := (e1 + iJe1, e2 + iJe2, · · · , en + iJen), θ = Φ−1dΦ =
[
ω δ
−δ ω

]
with

θ =: iδ + ω = iδ + [δ, F ]. Then dX =
n∑

j=1

ωjej ∈ R2n is identified with

d(X + iJX) =
n∑

j=1

ωj(ej + iJej) ∈ Cn, (4.2)

and (4.1) with

d(Φ + iJΦ) = (Φ + iJΦ)(iδ + [δ, F ]). (4.3)

Introduce a spectral parameter λ in (4.1), that is,

dΦλ = Φλ

[
ω λδ

−λδ ω

]
. (4.4)

This is equivalent to

d(Φλ + iJΦλ) = (Φλ + iJΦλ)(iλδ + [δ, F ]). (4.5)

Evidently, θλ = iλδ+[δ, F ] =
∑
j

(iλcj +[cj, F ])dxj is G+-valued one form and (4.5) is solvable

if and only if dθλ + θλ ∧ θλ = 0 if and only if F satisfies (2.6).
Denote sym∗ = {F = (fjk) ∈ gl(n,R) | fjk = fkj , fjj = 0, 1 ≤ j, k ≤ n}. Let F ∈ sym∗

be a solution of (2.6). Then there is a solution Φλ+iJΦλ = (e1+iJe1, · · · , en+iJen) of (4.5)
corresponding to F . Suppose that the nonzero smooth functions bj satisfy (bj)xk

= fjkbk

for 1 ≤ j 	= k ≤ n. Then X identified with X + iJX , which is defined by

d(X + iJX) =
n∑

j=1

bj(ej + iJej)dxj ,

is a local flat Lagrangian submanifold of Cn with the first fundamental form I =
∑
j

b2jdx
2
j .

Combining the above argument with Theorem 2.1 and noting Remark 2.1, Lemma 2.2,
we have

Theorem 4.1. Let X : Mn → R2n ∼= Cn be a flat Lagrangian submanifold with an
unitary frame Φ = (e1, · · · , en, Je1, · · · , Jen) and the first fundamental form I =

∑
j

b2jdx
2
j ,

Φλ + iJΦλ a solution of (4.5) with Φ1 + iJΦ1 = Φ + iJΦ. For any s ∈ R \ {0}, let
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L be a k × n constant real matrix such that det(LLt) 	= 0, V = L(Φis + iJΦis), and
Φ̃λ + iJΦ̃λ = (Φλ + iJΦλ)h−is,�π, where π̃ = V t(V V t)−1V . Then

(1) There is a neighborhood O of the origin such that (Φ̃λ + iJΦ̃λ)(x) is a solution of
(4.5) for x ∈ O and F̃ = (f̃jk) : O → sym∗ is a solution of (2.6), where Φ̃λ + iJΦ̃λ =
(Φλ + iJΦλ)(I− 2is

λ+is π̃), F̃ = (f̃jk) = F +2s(π̃)off , ( · )off is a matrix all of whose diagonal
elements are zero.

(2) If b̃1, · · · , b̃n are nonzero smooth functions satisfying (b̃k)xj = f̃kj b̃j for 1 ≤ j 	= k ≤
n, then there exists a local flat Lagrangian submanifold X̃ : O → R2n ∼= Cn with a unitary
frame Φ̃1 = (ẽ1, · · · , ẽn, Jẽ1, · · · , Jẽn) and the first fundamental form Ĩ =

∑
j

b̃2jdx
2
j , where

Φ̃1 is identified with Φ̃1 + iJΦ̃1 = (Φ + iJΦ)(I − 2s2+2is
1+s2 π̃).

Furthermore, we can give the explicit expression of X̃ and give the geometric interpreta-
tion of the action of his,π on the solution space of (4.5). This needs the following definition.

Definition 4.1. (cf. [3]) An isometric immersion f̃ : M̃n → Rn+p is called a Ribaucour
transformation of an isometric immersion f : Mn → Rn+p if there exists a vector bundle
isometry P : f∗TRn+p → f̃∗TRn+p covering a diffeomorphism p : Mn → M̃n, a smooth
section ω ∈ Γ((f∗TRn+p)∗) and a symmetric tensor D on Mn such that ‖f − f̃ ◦ p‖ 	= 0
everywhere,

(a) P (Z) − Z = ω(Z)(f − f̃ ◦ p), Z ∈ Γ(f∗TRn+p), and

(b) P ◦ f∗ ◦D = f̃∗ ◦ p∗.
Below we restrict the above definition of the Ribaucour transformation to flat Lagrangian

submanifolds of Cn, and show that the action of his,π on solutions of (4.5) corresponds to a
Ribaucour transformation for flat Lagrangian submanifolds of Cn.

Theorem 4.2. Let X : M → R2n ∼= Cn be a flat Lagrangian submanifold with first
fundamental form I =

∑
j

b2jdx
2
j , where {e1, · · · , en} is a tangent frame on M . Φ, Φλ, L, V, s

as in Theorem 4.1. Then

(1) There exists a vector valued function γ : M → Rk such that dγ = V δb, where
b = (b1, · · · , bn)t.

(2) Let X̃ + iJX̃ = (X + iJX) − 2s(s+i)
1+s2 (Φ + iJΦ)V tWγ, where W = (V V t)−1. Then

X̃ identified with X̃ + iJX̃ is a local flat Lagrangian submanifold in R2n ∼= Cn with the first
fundamental form Ĩ =

∑
j

b̃2jdx
2
j , where (ẽ1, · · · , ẽn, Jẽ1, · · · , Jẽn) is identified with Φ̃1 +

iJΦ̃1 = (Φ1 + iJΦ1)(I − 2s2+2is
1+s2 V tWV ), and b̃ = b + 2sV tWγ.

(3) The solution F̃ of (2.6) corresponding to X̃ is F̃ = F + 2s(V tWV )off .

(4) (X̃ + iJX̃) − (Φ̃ + iJΦ̃)V tWγ = (X + iJX) − (Φ + iJΦ)V tWγ.

Proof. (1) Denote V = LΦis = (v1, · · · , vn). It follows that dV = V θis, i.e.,⎧⎪⎨⎪⎩
(vk)j = fjkvj for j 	= k,

(vk)k = −svk −
∑
j �=k

fjkvj
(4.6)
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from (4.4) and ω = [δ, F ]. Noting (bj)xk
= fjkbk (j 	= k), we have (bjvj)xk

= (bkvk)xj . So,
there is a function γ, such that dγ =

∑
j

bjvjdxj = V δb.

(2) Since V = LΦis, dV = V θis and F is symmetric. From (4.5), we get

d((Φ1 + iJΦ1)V t) = (i− s)(Φ1 + iJΦ1)δV t, (4.7)

dW = d(V V t)−1 = −Wd(V V t)W = 2sWV δV tW. (4.8)

From (4.2), we get

d(X + iJX) = (Φ1 + iJΦ1)δb. (4.9)

It follows from (4.7)–(4.9) and (1) that

d(X̃ + iJX̃) = d(X + iJx) − 2s(i+ s)
1 + s2

d[(Φ + iJΦ)V tWγ]

= (Φ1 + iJΦ1)
(
I − 2s2 + 2si

1 + s2
V tWV

)
δ(b+ 2sV tWγ)

= (Φ̃1 + iJΦ̃1)δb̃, (4.10)

where b̃ = b+ 2sV tWγ. So, (2) follows.
(3) It follows from Theorem 4.1 directly.
(4) From (2), we get

(X̃ + iJX̃) − (X + iJX) = −2s2 + 2si
1 + s2

(Φ + iJΦ)V tW (V V t)(V V t)−1γ

= [(Φ̃ + iJΦ̃) − (Φ + iJΦ)]V tWγ, (4.11)

that is,

(X̃ + iJX̃) − (Φ̃ + iJΦ̃)V tWγ = (X + iJX) − (Φ + iJΦ)V tWγ. (4.12)

Corollary 4.1. In Theorem 4.2, let L be a nonzero constant vector in Rn and V =
LΦis = (v1, · · · , vn). Then

(1) There exists a function φ : M → R such that dφ =
∑
j

bjvjdxj .

(2) Let X̃ + iJX̃ = (X + iJX) − 2s(s+i)φ
(1+s2)

�
v2

j

∑
j

vj(ej + iJej). Then X̃ identified with

X̃+ iJX̃ is a local flat Lagrangian submanifold in R2n ∼= Cn with the first fundamental form
Ĩ =

∑
j

b̃2jdx
2
j , where ẽj is identified with ẽj + iJẽj = ej + iJej − (2s2+2is)vj

(1+s2)
�

v2
j

∑
k

(ek + iJek)vk

and b̃j = bj + 2sφvj�
v2

j
for 1 ≤ j ≤ n.

(3) The solution F̃ = (f̃jk) of (2.6) corresponding to X̃ is (f̃jk) = (fjk)+
(

2s�
v2

j
vjvk

)
off

.

(4) X̃ + iJX̃ − φ

vj
(ẽj + iJẽj) = X + iJX − φ

vj
(ej + iJej), and X̃ is a Ribaucour trans-

formation of X.

Proof. (1), (2), (3) are obvious.
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(4) By (2) and Theorem 4.1, we define avector bundle isometry P : X∗TR2n→X̃∗TR2n,
P (e1, · · · , en, Je1, · · · , Jen) = (ẽ1, · · · , ẽn, Jẽ1, · · · , Jẽn) covering the map p : X(x) →
X̃(x). Then P satisfies the condition (b) in Definition 4.1 with p = id. On the other
hand,

(ẽj + iJẽj) − (ej + iJej) = − 2s2 + 2si
(1 + s2)

∑
v2

j

∑
k

(ek + iJek)vkvj . (4.13)

Hence

(X̃j + iJX̃j) − (Xj + iJXj) = − (2s2 + 2si)φ
(1 + s2)

∑
v2

j

∑
k

(ek + iJek)vk

=
φ

vj
[(ẽj + iJẽj) − (ej + iJej)]. (4.14)

That is,

X̃ − ẽj =
φ

vj
(X − ej),

X̃ − Jẽj =
φ

vj
(X − Jej).

This means that the condition (a) in Definition 4.1 holds. So P is a Ribaucour transforma-
tion.

We call the transformation in Theorem 4.2(4) a generalized Ribaucour transformation
for the flat Lagrangian submanifold in Cn. Furthermore, from [2, Proposition 8], we get
that X(Mn) ⊂ S2n−1 if and only if

∑
j

b2j = 1 . Hence, we have

Theorem 4.3. Let X : M → S2n−1 be a flat submanifold of S2n−1 that is Lagrangian
in R2n with the first fundamental form I =

∑
j

b2jdx
2
j , where {e1, · · · , en} is a tangent frame

on M . Φ, Φλ, L, V, s are as in Theorem 4.1. Then
(1) Let X̃ + iJX̃ = (X + iJX) − 2s(s+i)

1+s2 (Φ + iJΦ)V tWγ, where W = (V V t)−1 and
γ : M → Rk is defined by (V b)t(Wγ) + (Wγ)t(V b) + 2s(Wγ)tγ = 0. Then X̃ identified
with X̃ + iJX̃ is a local flat submanifold of S2n−1 that is Lagrangian in R2n with the
first fundamental form Ĩ =

∑
j

b̃2jdxj
2, where (ẽ1, · · · , ẽn, Jẽ1, · · · , Jẽn) is identified with

(ẽ1 + iJẽ1, · · · , ẽn + iJẽn) = (e1 + iJe1, · · · , en + iJen)
(
I− 2s2+2is

1+s2 V tWV
)
, b̃ = b+2sV tWγ.

(2) The solution F̃ of (2.6) corresponding to X̃ is F̃ = F + 2s(V tWV )off .

(3) (X̃ + iJX̃) − (Φ̃ + iJΦ̃)V tWγ = (X + iJX) − (Φ + iJΦ)V tWγ.

Corollary 4.2. In Theorem 4.3, let L be a nonzero constant vector in Rn and V =
LΦis = (v1, · · · , vn). Then

(1) Let X̃+iJX̃ = (X+iJX)+
2(s+i)

�
j

vjbj

(1+s2)
�

v2
j

∑
j

vj(ej +iJej). Then X̃ identified with X̃+

iJX̃ is a local flat submanifold of S2n−1 that is Lagrangian in R2n with the first fundamental
form Ĩ =

∑
j

b̃2jdx
2
j , where ẽj is identified with ẽj + iJẽj = ej + iJej − (2s2+2is)vj

(1+s2)
�

v2
j

∑
k

(ek +

iJek)vk and b̃j = bj −
2
�
j

vjbj

�
v2

j
vj for 1 ≤ j ≤ n.
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(2) The solution F̃ = (f̃jk) of (2.6) corresponding to X̃ is f̃jk = fjk +
(

2s�
v2

j
vjvk

)
off

.

(3) X̃ + iJX̃ +

�
j

vjbj

svj
(ẽj + iJẽj) = X + iJX +

�
j

vjbj

svj
(ej + iJej) and X̃ is a Ribaucour

transformation of X.

If these submanifolds lie in S2n−1, then they are invariant under the S1-action of the Hopf
fibration. Hence the projections of these submanifolds are flat Lagrangian submanifolds of
CPn−1 via Hopf fibration (see [4]). Thus, from Theorem 4.3 and Corollary 4.2, we get
Ribaucour transformations for flat Lagrangian submanifolds of CPn, which develop the
results in [3] obtained by geometric way and a family of new flat Lagrangian submanifolds
in CPn from a given one via a purely algebraic algorithm.

§ 5 . The Permutability Formulas for Ribaucour Transformations

Terng and Uhlenbeck derived in [12] some relations among generators hz,π of G− defined
by (2.2) and proved the permutability theorem for Bäcklund transformation for surfaces
in R3. Below we find relations among his,π and give the permutability formulas for flat
Lagrangian submanifolds in Cn and CPn similar to the proof in [12] or [1].

Proposition 5.1. Let Ll be constant nonzero row vectors in Rn and πl the real sym-
metric projections onto the linear subspaces spanned by Ll, respectively. Let s1, s2 ∈ R \ {0}
be constants such that s21 	= s22. Denote Ql = Llhisj ,πj(−isl) for j 	= l, and τl the real
symmetric projections onto Ql, where l = 1, 2. Then τ1, τ2 are unique projections satisfying

his2,τ2(λ)his1,π1(λ) = his1,τ1(λ)his2,π2(λ). (5.1)

Proof. A direct computation gives the residue of his1,τ1his2,π2h
−1
is1,π1

at λ = is1

Ris1 = 2is1τ1his2,π2(is1)π
′
1.

Since Q1 = L1his2,π2(−is1) is real symmetric, and his2,π2(is1)
this2,π2(−is1) = I from

Lemma 2.1,

〈his2,π2(is1)(L
t
1)

⊥, Qt
1〉 = 〈(Lt

1)
⊥, his2,π2(is1)

this2,π2(−is1)Lt
1〉 = 0,

where (L1)⊥ is the orthogonal complement of L1 with respect to standard inner prod-
uct in Cn. Hence Ris1 = 0 and his1,τ1his2,π2h

−1
is1,π1

is holomorphic at λ = is1. Since
his1,τ1his2,π2h

−1
is1,π1

satisfies the reality condition (2.1), his1,τ1his2,π2h
−1
is1,π1

is holomorphic at
λ = −is1. Thus, h1 =: his1,τ1his2,π2h

−1
is1,π1

h−1
is2,τ2

is holomorphic at λ = ±is1. Use a similar
argument to prove h2 =: his2,τ2his1,π1h

−1
is2,π2

h−1
is1,τ1

is holomorphic at λ = ±is2. Because
h1 = h−1

2 , and h2(λ)−1 = h2(λ̄)∗, h1 is holomorphic for all λ ∈ S2. But h1(∞) = I. So
h1 = I. This proves (5.1).

Suppose that σl is a projection onto the planes Q̃l (l = 1, 2) and his2,σ2his1,π1 = his1,σ1

·his2,π2 . Then his2,σ2 = his1,σ1his2,π2h
−1
is1,π1

is holomorphic at λ = is1 and the residue of
his1,σ1(λ)his2,π2h

−1
is1,π1

is zero at λ = is1, i.e., σ1his2,π2(is1)π′
1 = 0. From this and ht

is2,π2

(is1) = h−1
is2,π2

(−is1), we get Q̃1 is parallel to Q1. Similarly, Q̃2 is parallel to Q2.
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Let Φλ be a solution of (2.5). By Theorem 2.1, there exist Vl = LlΦisl
, Ul = QlΦl

isl
and

π̃l = V t
l (VlV

t
l )−1Vl, τ̃l = U t

l (UlU
t
l )

−1Ul and

his1,π1Φλ = Φ1
λhis1,�π1 , his2,π2Φλ = Φ2

λhis2,�π2 ;

his1,τ1Φ
1
λ = Ξ1

λhis1,�τ1 , his2,τ2Φ
2
λ = Ξ2

λhis2,�τ2 ,

such that Φl
λ, Ξl

λ are holomorphic for λ ∈ C and are also solutions of (2.5), where l = 1, 2.
Thus

his1,τ1his2,π2Φ = Ξ1
λhis1,�τ1his2,�π2 , his2,τ2his1,π1Φ = Ξ2

λhis2,�τ2his1,�π1 . (5.2)

By the uniqueness of the Birkhoff decomposition (cf. [13]) and Proposition 5.1, we get

Ξ1
λ = Ξ2

λ, his1,�τ1his2,�π2 = his2,�τ2his1,�π1 . (5.3)

So we have the following permutability formulas.

Theorem 5.1. Let X̃l : M̃l → R2n ∼= Cn be the Ribaucour transformations for flat
Lagrangian submanifolds X : M → R2n ∼= Cn corresponding to sl, Vl (Vl are 1×n matrices)
as in Corollary 4.1, respectively, where l = 1, 2. If s1, s2 ∈ R \ {0} and s21 	= s22, then there

exists unique flat Lagrangian submanifold ˜̃
X : M3 → R2n, which is identified with˜̃

X + iJ
˜̃
X = X + iJx− 2s21 + 2s1i

1 + s21
(Φ1 + iJΦ1)V t

1 (V1V
t
1 )−1φ1

− 2s22 + 2s2i
1 + s22

(Φ1
1 + iJΦ1

1)U
t
2(U1U

t
2)

−1ψ2

= X + iJx− 2s22 + 2s2i
1 + s22

(Φ1 + iJΦ1)V t
2 (V2V

t
2 )−1φ2 (5.4)

− 2s21 + 2s1i
1 + s21

(Φ2
1 + iJΦ2

1)U
t
1(U1U

t
1)

−1ψ1,

with the first fundamental form I =
∑
j

(˜̃bj)2d̃x2
j , and the solution ˜̃

F of (2.6) associated with

˜̃
X is ˜̃

F = F + (2s1π̃1)off + (2s2τ̃2)off

= F + (2s2π̃2)off + (2s1τ̃1)off , (5.5)

where φl, ψl are solutions of dφl = Vlδb, dψl = Ulδb, respectively,
˜̃
b = b + 2s1V t

1 (V1V
t
1 )−1φ1 + 2s2U t

2(U2U
t
2)

−1ψ2

= b + 2s2V t
2 (V2V

t
2 )−1φ2 + 2s1U t

1(U1U
t
1)

−1ψ1, (5.6)

and (˜̃e1, · · · , ˜̃en, J ˜̃e1, · · · , J ˜̃en) is identified with

(˜̃e1 + iJ ˜̃e1, · · · , ˜̃en + iJ ˜̃en)

= (e1 + iJe1, · · · , en + iJen)
(
I − 2s21 + 2is1

1 + s21
π̃1

)(
I − 2s22 + 2is2

1 + s22
τ̃2

)
= (e1 + iJe1, · · · , en + iJen)

(
I − 2s22 + 2is2

1 + s22
π̃2

)(
I − 2s21 + 2is1

1 + s21
τ̃1

)
. (5.7)
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Similarly, we get the permutability formulas of the Ribaucour transformations for the flat
submanifolds of S2n−1, which are Lagrangian in R2n, and CPn. Since Ll, Ql are vectors

in Rn, it follows that φl = −
�
j

vljbj

sl
, ψl = −

�
j

uljbj

sl
from Corollary 4.2. All formulas in

Theorem 5.1 are computed by purely algebraic algorithm without solving any equations.

Remark 5.1. Let Ll = (�tl1, · · · , �tlk)t be k×n constant real matrices with �lj1�tlj2 = 0 for
1 ≤ j1 	= j2 ≤ k, � = 1, 2 and πl the real symmetric projections onto the k-planes spanned
by all row vectors of Ll. sl, Ql, τl are as in Proposition 5.1. Then the formula (5.1) still
holds. But the two different row vectors in Ql are not orthogonal. Hence we can not have
the permutability formulas continuously on the new solutions as Theorem 5.1.

§ 6 . The Examples

We first take a trivial solution F = 0 of (2.6). Solve (4.4) to get a family of unitary
frames

Φλ + iJΦλ = diag[eiλx1 , · · · , eiλxn ]. (6.1)

In particular, Φ + iJΦ = diag[eix1 , eix2 , · · · , eixn ]. In a sense of equivalence,

ej = [0, · · · , 0, cosxj ,− sinxj , 0, · · · , 0]t,

Jej = [0, · · · , 0, sinxj , cosxj , 0, · · · , 0]t.

Thus, we get a flat Lagrangian submanifold X : S1(r1)×· · ·×S1(rn) → Cn up to a constant
vector defined by

X = [r1 sinx1, r1 cosx1, · · · , rn sinxn, rn cosxn]t, (6.2)

with the first fundamental form I =
∑
j

r2jdx
2
j , where r1, · · · , rn are positive constant num-

bers. X is identified with

X + iJX = [r1(sinx1 − i cosx1), · · · , rn(sinxn − i cosxn)]t. (6.3)

For simplicity, let L1×n = [�1, · · · , �n] 	= 0. Then

V = L(Φis + iJΦis) = [�1e−sx1 , · · · , �ne−sxn ],

π̃ = V t(V V t)−1V =
∑

j

e2sxj

�2j

⎡⎢⎣ �21e
−2sx1 · · · �1�ne

−s(x1+xn)

...
...

�1�ne
−s(x1+xn) · · · �2ne

−2sxn

⎤⎥⎦ .
Denote

Γ =
2
(∑

j

�jrje
−sxj + C

)
(1 + s2)

( ∑
j

�2je
−2sxj

) , Δ =
2s

(1 + s2)
( ∑

j

�2je
−2sxj

) .
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By Corollary 4.1, we have

φ = −1
s

( ∑
j

�jrje
−sxj + C

)
, C ∈ R, (6.4)

X̃ + iJX̃ = [−ir1eix1 + (s+ i)�1Γe(i−s)x1 , · · · ,−irneixn + (s+ i)�nΓe(i−s)xn ]t (6.5)

with d(X̃ + iJX̃) =
∑
j

b̃j(ẽj + iJẽj)dxj , where

b̃j = rj − 2�je−sxj∑
j

�2je
−2sxj

( ∑
k

�krke
−sxk + C

)
, (6.6)

ẽj + iJẽj = [0, · · · , 0, eixj , 0, · · · , 0]t + [−(s+ i)�1�jΔe−s(x1+xj)eix1 , · · · ,
− (s+ i)�2jΔe

−2sxj )eixj , · · · ,−(s+ i)�n�jΔe−s(xn+xj)eixn ]t. (6.7)

The solution F̃ of (2.6) corresponding to X̃ is

f̃jk =
2s�j�k∑

j

�2je
−2sxj

e−s(xj+xk). (6.8)

In a sense of equivalence, we get a new flat Lagrangian submanifold X̃ = [x̃1, x̃2, · · · ,
x̃2n−1, x̃2n]t : Rn → Cn, where{

x̃2j−1 = rj sinxj + �jΓe−sxj(s cosxj − sinxj),

x̃2j = rj cosxj − s�jΓe−sxj(s sinxj + cosxj)
(6.9)

with U(n)-frame Φ̃1 = (ẽ1, · · · , ẽn, Jẽ1, · · · , Jẽn), where ẽj = [ãj,1, ãj,2, · · · , ãj,2n−1, ãj,2n]t,{
ãj,2k−1 = �j�kΔe−s(xj+xk)(sinxk − s cosxk),

ãj,2k = �j�kΔe−s(xj+xk)(cos xk + s sinxk) for k 	= j,
(6.10)

{
ãj,2j−1 = rj + �2jΔe

−2sxj (sinxj − s cosxj),

ãj,2j = �2jΔe
−2sxj (cosxj + s sinxj).

(6.11)

It is evident that X̃ is always non-degenerate if L 	= 0. Assume now that the image of X
lies in S2n−1, i.e.,

∑
j

r2j = 1. On the other hand, the image of X̃ lies in S2n−1 if and only if

C = 0. Hence, when C = 0, X̃ projects onto a flat (n−1)-dimension Lagrangian submanifold
of CPn−1. In this case, we can represent the corresponding formulas with C = 0.
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