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LOOP GROUP ACTIONS AND THE RIBAUCOUR
TRANSFORMATIONS FOR FLAT LAGRANGIAN
SUBMANIFOLDS***

XTA QIAOLING* SHEN YiBING™

Abstract

The Ribaucour transformations for flat Lagrangian submanifolds in C™ and CP"™
via loop group actions are given. As a consequence, the authors obtain a family of new
flat Lagrangian submanifolds from a given one via a purely algebraic algorithm. At
the same time, it is shown that such Ribaucour transformation always comes with a
permutability formula.
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8§1. Introduction

The theory of integrable system has been widely used to study some differential geometric
objects such as surfaces with some geometric property in R3, harmonic maps, and the
isometric immersions in space forms, etc. (see [1, 5, 10, 13]). In particular, the Lagrangian
surfaces in C? and flat Lagrangian submanifolds in complex space forms have been studied
in various papers (see [3, 7]). These geometric objects are often in correspondence with
the solutions of nonlinear partial differential equations, which admit Lax pairs, so one can
give the construction methods of solutions of these PDEs and these geometric objects by
using the integrable system theory and soliton theory. In particular, Backlund, Darboux
and Ribaucour transformations for these geometric objects can be constructed (see [1, 3, 6,
8, 12, 14]). The importance of these geometric transformations is twofold: geometrically,
as a tool for obtaining a family of new examples from a given one with the same geometric
property; analytically, as a method for generating new solutions of the associated PDEs
from a given one.

The main purpose of this paper is to give the explicit construction for flat Lagrangian
submanifolds in C™ and C'P™ by means of generalized Ribaucour transformations (resp.
Ribaucour transformations) via loop group actions. The contents of the paper are arranged
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as follows. We review the concrete constructions of the solutions of the %—sys’cem via
loop group action in §2. In §3, we explain the connection between Darboux transforma-
tion and the loop group action for the %—sys‘cem. In fact, they are consistent. In §4,
we give generalized Ribaucour transformations (resp. Ribaucour transformations) for flat
Lagrangian submanifolds of C™ and C'P™ by means of the results in §2. In §5, we show
the permutability formulas of these transformations for flat Lagrangian submanifolds in C™
(resp. C'P™). Finally, the examples to construct flat Lagrangian submanifolds in C™ (resp.

CP") via a purely algebraic algorithm are given in §6.

U(n)

8§ 2. Loop Group Dressing Action for o(n)

-System

Let G = U(n) be a real form with regard to a conjugate linear involution 7 of GL(n, C),
o a complex linear involution of GL(n,C), where 7(£) = (£*)71, o(¢) = (€1)7! for € €
GL(n,C). o and 7 induce involutions on Lie algebra gl(n,C) respectively, also denoted as
o and 7. Namely, 7(§) = —¢*, 0(§) = —¢* for € € gl(n,C). Let G = u(n) = K + P be the
Cartan decomposition of the symmetric space U(n)/O(n), where K = o(n) and

P ={iF | F=(fjr) € gl(n,R), fix = fijfor 1 <j k<n}  (i=V-1)
are the +1 and —1 eigenspaces of o, respectively. Moreover, the linear subspace
A =span{a; =ic; |1 < j <n}
is a maximal abelian linear subspace of P, and
ATNP ={iF | F = (fix) € gl(n, R), fir = frj, fij =0for 1 <j.k <n},

where ¢; is the diagonal matrix such that all entries are zero except the j* entry, which

is equal to 1, A+ = {y € G | tr(zy) = 0, = € A} is the orthogonal complement of A

with respect to the killing form on G. We say that g(\) satisfies %—reahty condition, if

7(g(N) = g(A),0(g(=A)) = g(N), ie,
gV g =1, g(N) = g(=N). (2.1)
It is evident that

Lemma 2.1. If g(\) satisfies the ggzg -reality condition (2.1), then

(1) g(=N)*g(\) =1 and g(A) = g(=A);
(2) If X\ is a pure imaginary, then g(A) = g(\).
Let O be an open neighborhood of co in $? = C U {co}. Define loop groups
g(X) is holomorphic, satisfies
G+:{g:C—>GL(n,C)‘ },

the reality condition (2.1)

A) is holomorphic, g(co) =0,
G—{g:OmﬁGL(n,C) g(N\) phic, g(c0) }

and satisfies the reality condition (2.1)
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We also define the corresponding Lie algebras in an analogous way

G, — {§ o \(n ‘ &(A) is holomorphic, }
. . FE) =0, €0 = &N
{§ On — glln ‘ &(A) is holomorphic, &(c0) = I,}
+EN) =0, E0) =£(=N)

It is well known (cf. [13]) that the group of rational maps g : S — GL(n, C) satisfying
g(N)*g()\) = I is generated by the simple element

A—z
z,m = —T, 2.2
hew (V) =7+ 32 (2.2)

where z € C, 7 is a Hermitian projection of C™ and 7’

= I — . Obviously, h, . satisfies the
reality condition (2.1) if and only if z = —2z,7 = 7.

Let z =is (s € R\ {0}) and L a k x n constant real matrix such that the columns of
L form a basis of a k-plane (also denoted by L) in C™. Then we have a real symmetric

projection of C™,
m=L'(LLY) 'L, (2.3)
ie., 7 =nt=m=mn2 Obviously, hisx € G_, hi,' = h_isn and h_ijsz () = his (=)

18,7

For any A € C* = C'\ {0}, we consider the linear system

d¥y =Ty Z(/\aj + [aj,v])dz;, (2.4)
j=1

where {a;} is a basis of A, v : R* — AL NP is a smooth function. Thus, 05 = > (Aa; +
J
[a;,v])dx; is a G -valued one form and ¥y (z) = ¥(z, ) € G4.

A direct computation shows that

Lemma 2.2. If ¥ is a solution of (2.4), then

(1) For any n x n complex matriz g(A), g(A\)¥x is a solution of (2.4) if and only if g(\)
satisfies the reality condition (2.1). In particular,

(2) goUx is a solution of (2.4) if and only if the constant matriz go € K, where K is the
Lie subgroup of G corresponding to the Lie algebra K.

(3) For any A € C* and a complex function f(X), f(N)Ux is a solution of (2.4) if and

only if f(A)f(A\) =1 and f(A) = f(=N).
Without loss of generality, we consider the normalized linear system

d¥, = Wy0,,
W,A(0) = I.

(2.5)

We take a; =ic; € A (1 <j<n)and v=—iF: R" — A- NP in (2.5). The integrability
condition of the system (2.4) or (2.5) is

(fir)e, + (Fim)er + > Fitfrr =0 for j # F,
I

(fir)e, = fifix for j, k, I which are distinct.

(2.6)
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System (2.6) is called %—sys‘cem (cf. [11]), which is also called the symmetric generalized
wave equation in [3].
From Lemma 2.1 and Theorem 4.3 in [12], we get the following

Theorem 2.1. Let ¥y : R®™ — G4 be a solution of (2.5) and L a k x n constant
real matriz such that det(LL') # 0. Denote m = L*(LL')"'L. For any s € R\ {0}, set
V = LW,,. Then

(1) det(VV?!) £ 0 and # = VE(VVE) IV is a real symmetric projection onto the k-plane
V oof C™.

(2) Let \Tl)\ = his,nWah_is 7. Then there is a neighborhood O of the origin in R™ such
that Uy : U — G4 is a new solution of (2.5), and F = F +2s% 41 is a new solution of (2.6),
where T 41 is a projection to At.

Remark 2.1. If we consider the system (2.4) without the initial condition ¥,(0) = I,

set @A = h_is,W{IV/ =V, h_;s7 and let L, V be as in Theorem 2.1, then \I/A is a new solution
of the system (2.4). But the solutions obtained in this way may have polar points.

8§ 3. Darboux Transformation for the U(n)-System
O(n)
In this section, we give Darboux transformation for the %—sys‘uem with the method in

6]. In fact, this transformation is consistent with the loop group action for the M—systern
O(n)

in §2.
Let Wy (z) be a solution of the linear system (2.4), that is,

(V2)z; = ¥a(Aa; + [a,v]). (3.1)

We will construct an n x n complex matrix S and a smooth function @ : R* — AL NP
such that Uy := ¥, (Al — 5) is also a solution of (3.1). From (3.1), we know that ¥} is a
solution of (3.1) if and only if S and ¥ satisfy

Sz, =[5, [aj,v]] — Sla;, S], (3.2)

[a;,0] = [a;,v] + [S, a]. (3-3)

Choose nonzero complex numbers Aq, -+, Ay, such that A\; # A\ forsome 1 < j#k <n

and constant row vectors £1, - - - , £, such that the nxn matrix H = [((1¥ ), -+, (£, ¥y,)]*
is non-degenerate. Then the matrix H = [((1¥x,)!, -+, (£, ¥, )!]" satisfies

Hy,, = AHaj + Hlaj, ], (3.4)

where A = diag(A1, -+, Ap).
Let S = H-'AH. From (3.4), we get that S is a solution of (3.2). This proves the

following lemma.

Lemma 3.1. Let h; = £;U();) be row vector solutions of (3.1) corresponding to A,
for 1 < j < n such that the n x n matric H = (h%{,--- ,h%)" is non-degenerate. Then
S = H 'AH is a solution of (3.2).
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Since ¥ obtained from (3.3) is generally not in AL NP, we choose A; and h; again as

follows:

(1) for any s € R\ {0}, Ay = - = A =4S, Agp1 = -+ = Ay = —i5;

(2) choose constant row vectors ¢; (1 < j < n) such that detLiL! # 0, detLoL5 # 0 and
LiL4 =0, where Ly = (¢},--- ,€}), Ly = (€, ,¢5)" are k x n, (n — k) x n matrices,
respectively.

Let Wy be a solution of (2.4). Then Hy = L1V;s, Hy = LoW_;, are matrices with rank
k, n — k, respectively. Moreover, by Lemma 2.1(2) and W(is)¥(—is)! = I, we get that
H = [H{, Hi]' is a real invertible matrix with detH; Hf # 0, detHoHY # 0 and H1H = 0.
From the definition of S, similarly to the proof of the theorem 1 in [6], we can prove S* = S.
Hence, iS5 is a real symmetric matrix. This implies that o = v — (5) 4. obtained from (3.3)
lies in AL N P. Especially, if we take a; = ic;, v = —iF, o = —iF, then F = F — (15) 41 is
a new solution of (2.6).

Furthermore, if we write
I, O
0 O

0 0

_ -1 _sory—1
S=H "AH =1isH { 0 I,

] H—isH™! [ ] H = is7 — is7, (3.5)
where 7 = H~'diag(l),0)H, then from (3.5) we have Dy = X — S = (A — is)h_;s 7.
If we consider the solution of (2.5), then Wy = Dx(0) "' W Dy = his »Urh_;s 7 is a new

solution of (2.5), where 7 = L~'diag(Ix,0)L. As §5 in [6], we can get
=Wl L (LW UL L) LWy
Let V = Hy = L1¥;,. Then 7 = V{(VV!)~1V is a real symmetric projection of C™.
Summing up, we have the following

Theorem 3.1. Let Ly,Ly be k x n, (n — k) x n matrices such that det(L1L}) # 0,
det(LoLb) # 0, LiLY = 0 and ¥y a solution of (2.5). For s € R\ {0}, set Hy = L1V,
Hy = LoV _;s and S = H-*AH, where H = [H}, H}], A = diag(isly, —isl,_x). Then

(1) det(H, HY) # 0, det(H2HS) # 0, HiHS = 0.

(2) The Darboux matriz Dy = A — S = (A —is)h_;s 7.

(3) Wy = Dx(0)"2W\Dy is a solution of (2.5), and F = F — (iS) 4o = F + 25(i%) 41 is
a solution of (2.6).

8§ 4. Ribaucour Transformations for Flat Lagrangian Submanifolds

Let X : M™ — R?" be an n-dimensional flat submanifold of R?" with the first funda-
mental form I = Zb?dx? Denote fj = % for1<j#k<n,F=/(fj). In[11], Terng

C. L. proved that jX is a flat Lagrangian submanifold if and only if F = F'* if and only if F
is a solution of (2.6).

Let X be a flat Lagrangian submanifold of R?*. Then there is a unitary frame field
O = (e, ,en,Jer, - ,Jey) : M — U(n) in R?" =2 O™ satisfying

-5 w

d@:@[” 5}7 (4.1)
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0
I
standard complex structure on C™. We regard u(n) as the subalgebra of o(2n), i.e.,

where w = (wjx) = [0, F], § = diag(dz1,--- ,dzy,) (cf. [11]). Let J = _OI} be the

A=A +i4s €uln) — |:—A1;2 ﬁﬂ € o(2n),

where A; € o(n), A € gl(n, R) is symmetric. Thus, we identify the position vector X € R*"
with X +4iJX € C" and e; € R*™ with e; +iJe; € C™ (1 < j < n). Moreover, u(n)-
valued real frame ® = (e1, - ,en,Jer, -+, Jey,) is identified with u(n)-valued complex

frame ® + iJ® = (e; + iJer,ex + iJeq, - en +iJey), 0 = ®7LdP = {_wé cﬂ with
0 =:i6 +w =16+ [§, F]. Then dX = Y w;e; € R?" is identified with
j=1
d(X +iJX) =Y wj(e; +iJe;) € C", (4.2)
j=1
and (4.1) with
d(® 4+ iJP) = (P + iJP)(id + [0, F]). (4.3)
Introduce a spectral parameter A in (4.1), that is,
w A
Ay = D) {_/\5 w]. (4.4)
This is equivalent to
d(Dy +iJPy) = (D) +iJPy)(INd + [4, F)). (4.5)

Evidently, 65 = iAd+[6, F] = > (iA¢cj+]cj, F])dz; is G1-valued one form and (4.5) is solvable

if and only if dfy + 0\ A Oy = 6 if and only if F satisfies (2.6).

Denote sym, = {F = (fx) € gl(n, R) | fjx = frj, fi; =0,1<j, k <n}. Let F € sym,
be a solution of (2.6). Then there is a solution ®+iJ Py = (e1+iJey, - ,en+iJey,) of (4.5)
corresponding to F. Suppose that the nonzero smooth functions b; satisfy (b;)s, = fixbk
for 1 < j # k <n. Then X identified with X 4 iJX, which is defined by

d(X +iJX) = bj(ej +iJe;)du;,
j=1
is a local flat Lagrangian submanifold of C™ with the first fundamental form I =5 b?dx?.

Combining the above argument with Theorem 2.1 and noting Remark 2.1, Lemma 2.2,

we have

Theorem 4.1. Let X : M™ — R?>" = C" be a flat Lagrangian submanifold with an
unitary frame ® = (e1, -+ ,epn, Jer, -+, Jey) and the first fundamental form I =3 b?dx?,

j
Oy + iJPy a solution of (4.5) with &1 + iJ®1 = @ + iJP. For any s € R\ {0}, let
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L be a k x n constant real matriz such that det(LL') # 0, V. = L(®;s + iJP;s), and
Dy +iJ By = (Pr + iJO\)h_is 7, where T = VI(VVI)IV. Then

(1) There is a neighborhood O of the origin such that (®x + iJ®y)(z) is a solution of
(4.5) for z € O and F = (fix) : O — sym, is a solution of (2.6), where Dy +iJDy =
(Or+iJDy)(T— /\2-53%)7 F = (fir) = F+25(F)ors, (-)ofs is a matriz all of whose diagonal
elements are zero.

(2) If by, - , by are nonzero smooth functions satisfying (l;k)xj = fkji)j for1<j#k<
n, then there exists a local flat Lagrangian submanifold X :0 — R* >~ (C" with a unitary

frame o, = (€1, -+ ,en,Je1,-++,J&,) and the first fundamental form I= Zi)?da:? , where
J

®y is identified with By + iJ®y = (® +iJO)(I — 2H2sF),

Furthermore, we can give the explicit expression of X and give the geometric interpreta-

tion of the action of h;s » on the solution space of (4.5). This needs the following definition.

Definition 4.1. (cf. [3]) An isometric immersion f : M™ — R™P is called a Ribaucour
transformation of an isometric immersion f : M™ — R" P if there ewists a vector bundle
isometry P : f*TR"™P — f*TR”‘”’ covering a diffeomorphism p : M™ — M”, a smooth
section w € T((f*TR™P)*) and a symmetric tensor D on M"™ such that ||f — f o p|| # 0
everywhere,

(4) P(Z)— Z = wlZ)(f - Fop). Z€D(FTR™), and
(b) Pof*oD:f*op*.

Below we restrict the above definition of the Ribaucour transformation to flat Lagrangian
submanifolds of C™, and show that the action of h;s » on solutions of (4.5) corresponds to a
Ribaucour transformation for flat Lagrangian submanifolds of C".

Theorem 4.2. Let X : M — R?™ = C™ be a flat Lagrangian submanifold with first
fundamental form I = b?da:?, where {e1, -+ ,en} is a tangent frame on M. ®, @5, L, V| s
as in Theorem 4.1. Thgn

(1) There ezists a vector valued function v : M — RF such that dy = V&b, where
b= (b, -+ ,bp)t.

(2) Let X +iJX = (X +iJX) — 2D + iJ@)V!Wr, where W = (VV)~1. Then
X identified with X +iJX is a local flat Lagrangian submanifold in R?™ = C™ with the first
Sfundamental form I= EB?dx?, where (€1, ,€pn,Jé1, -+, Jéy) is identified with d; +

j

iJ®1 = (@1 +iJP1)(I — ZEZEVIWY), and b= b+ 2sV'W.
(3) The solution F of (2.6) corresponding to X is F = F + 2s(VIWV )y ;.
(4) (X +iJX) = (D +iJO)W Wy = (X +iJX) — (D +iJO)VIWA.

Proof. (1) Denote V = L®;s = (v1,- - ,vy). It follows that dV = V5, i.e.,

(vr)j = fipv;  for j# &,
(Uk)k = — SV — Z fjk’l)j (46)

J#k
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from (4.4) and w = [0, F']. Noting (bj)e, = fijxbr (j # k), we have (b;v;)s, = (bx¥k)z,. So,
there is a function «, such that dy =" bjv;dz; = Vb.

J
(2) Since V = L®;,, dV =V, and F is symmetric. From (4.5), we get

d(®1 +iJ®1)V) = (i — 5)(®1 +iJ D)V, (4.7)
dW =d(VV) ™' = -Wd(VVHW = 2sWVVIW. (4.8)

From (4.2), we get
d(X +iJX) = (P1 + iJD1)D. (4.9)

It follows from (4.7)—(4.9) and (1) that

25(i + s)
1+ 82

252 + 2si
1+s

dX +iJX) =d(X +iJx) — d[(® 4 iJP)VIWA]

= (D) +iJ D) (I VtWV)é(b +25VHIW)

= (D) +iJB,)b, (4.10)

where b = b+ 2sV'W+. So, (2) follows.
(3) Tt follows from Theorem 4.1 directly.
(4) From (2), we get

(X +iJX) — (X +iJX) = %(@ +iJO)VIW(VVEH (VYT
= [(®+iJD) — (B +iJD)|VIWr, (4.11)
that is,
(X +iJX) = (D +iJO)W'Wry = (X +iJX) — (B +iJ®)V' Wr. (4.12)

Corollary 4.1. In Theorem 4.2, let L be a nonzero constant vector in R™ and V =
LY, = (vy, -+ ,vp). Then

(1) There exists a function ¢ : M — R such that d¢ = Eijjda:j.

(2) Let X +iJX = (X +iJX) — % Zvj (€ —|— iJej). Then X identified with
X +iJX is alocal flat Lagrangian submanifold in R2” & C™ with the first fundamental form

~ ~ 2 -
I= Zb?dx?, where é; is identified with é; +iJé; = ej +iJej — % (ex +iJeg)vg
J ‘ Tk

and b; = b; + 34 for 1< j <n,
(3) The solution F = (f;1) of (2.6) corresponding to X is (f;r) = (f;r) + (EQ—f}?vjvk)off.
(4) X +iJX — g(éj +iJé;) =X +iJX — vﬂ(ej +iJe;), and X is a Ribaucour trans-

J J
formation of X.

Proof. (1), (2), (3) are obvious.
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(4) By (2) and Theorem 4.1, we define avector bundle isometry P: X*TR2"— X *T R2",
Pley, - ,en,Jer, - ,Jen) = (€1, ,€n,JE1, -+ ,JE,) covering the map p : X(z) —
X(z). Then P satisfies the condition (b) in Definition 4.1 with p = id. On the other
hand,

252 + 2si
il 5 Z(ek—i-iJek)vkvj. (4.13)

(& +iJé;) — (e +idej) = ————0
J J J J (1+52)ZU] -

Hence
X +iJX . (25° 42
(Xj +iJX;) — (X; +iJX;) = 113 5i) 22 ex +iJer)
= g[(éj +iJ&;) — (ej +iJe;)]. (4.14)
J
That is,
X - = ﬂ,(x —€j),
Uj
X —Jé; = 2 x - Je;).
Uj

This means that the condition (a) in Definition 4.1 holds. So P is a Ribaucour transforma-
tion.

We call the transformation in Theorem 4.2(4) a generalized Ribaucour transformation
for the flat Lagrangian submanifold in C". Furthermore, from [2, Proposition 8], we get
that X (M™) C S?*~! if and only if }3b5 =1 . Hence, we have

J

Theorem 4.3. Let X : M — S§?"~1 be a flat submanifold of S~ that is Lagrangian
in R®"™ with the first fundamental form I =" b?da:?, where {e1,--- ,en} is a tangent frame
J

on M. ®, ®,,L,V,s are as in Theorem 4.1. Then

(1) Let X +iJX = (X +iJX) — 2@ 4+ iJO)VIWr, where W = (VV)~! and
v : M — RF is defined by (VB! (W) + (W) (VD) + 2s(W~)iy = 0. Then X identified
with X + iJX is a local flat submanifold of S>™~! that is Lagrangian in R?" with the

first fundamental form I= EB?dsz, where (€1, ,€n,JE1, -+, JEy) is identified with
J

(1 FiJér, - entiJen) = (ertider, - entiJen)(] — 2 U O b= b+ 25V W

(2) The solution F of (2.6) corresponding to X is F = F + 2s(VIWV )y ;7.
(3) (X +iJX) — (P +iJO)WV' Wy = (X +iJX)— (D +iJP)V WH.

Corollary 4.2. In Theorem 4.3, let L be a nonzero constant vector in R" and V =
L®;s = (v1, - ,v,). Then
- - 2(s+i) 3- v;b; ~ ~
(1) Let X +iJX = (X—i—zJX)—i—W Z vi(e;j+iJe;). Then X identified with X +

iJX is a local flat submanifold of S*"~1 that is Lagmngmn in R®"™ with the first fundamental
~ ~ 2500,
form I = ;b?dm?, where €; is identified with €; +iJé; = e; +iJej — % > (er +
2> vjb;

iJer)vy and by = bj — ﬁvj for1<j<n.
J
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(2) The solution F = (fjr) of (2.6) corresponding to X is fix = fir + (ZQ—i'jvjvk)off'
- ~ Z")ij E")ij -
(3) X +iJX + 2 (éj +iJé;) =X +iJX + 2 (ej +1iJe;) and X is a Ribaucour

SV SV

transformation of X .

If these submanifolds lie in S??~!, then they are invariant under the S'-action of the Hopf
fibration. Hence the projections of these submanifolds are flat Lagrangian submanifolds of
CP" ! via Hopf fibration (see [4]). Thus, from Theorem 4.3 and Corollary 4.2, we get
Ribaucour transformations for flat Lagrangian submanifolds of C'P™, which develop the
results in [3] obtained by geometric way and a family of new flat Lagrangian submanifolds
in CP™ from a given one via a purely algebraic algorithm.

8§ 5. The Permutability Formulas for Ribaucour Transformations

Terng and Uhlenbeck derived in [12] some relations among generators h, . of G_ defined
by (2.2) and proved the permutability theorem for Bécklund transformation for surfaces
in R?. Below we find relations among his,= and give the permutability formulas for flat
Lagrangian submanifolds in C™ and C'P™ similar to the proof in [12] or [1].

Proposition 5.1. Let L; be constant nonzero row vectors in R" and m the real sym-
metric projections onto the linear subspaces spanned by L;, respectively. Let s1,s2 € R\ {0}
be constants such that s? # s3. Denote Q; = Llhisjmj(—isl) for j # 1, and 7 the real
symmetric projections onto Q;, where [ = 1,2. Then T, T2 are unique projections satisfying

hiSzJ’z (A)hlsl ,T1 (A) = hiSl ,T1 (A)hiSzﬂfz (A) (51)

Proof. A direct computation gives the residue of hjs, r Risy 7y hi_si_m at A =181

. . ’
Ris, = 20811 Misy my (151)77.

Since Q1 = Lihisy ny(—is1) is real symmetric, and his, r, (451) Risy,my(—is1) = I from
Lemma 2.1,

<hi82,ﬂ'2 (isl)(Li)Lv Q§> = <(Lt1)l7 hi827ﬂ'2 (isl)thi827ﬂ2(_i51)[’§> = 07

where (L1)* is the orthogonal complement of L; with respect to standard inner prod-

uct in C". Hence R;s, = 0 and hisl,ﬁhm’mhi;}_m is holomorphic at A\ = is;. Since
Risy 1 Pisy s h;sim satisfies the reality condition (2.1), hisy r Pisy rs h;sim is holomorphic at

. 7 ) -1 -1 . . . ..
A = —isy. Thus, hy =: his, .y hwmmhisl,mhm,m is holomorphic at A = +is;. Use a similar

argument to prove he =: h’i5277'2h7;51771'1hi_s;ﬂ—th_si,Tl is holomorphic at A\ = =+ise. Because
hy = hy', and ho(A)~' = ha(N\)*, hy is holomorphic for all A € S2. But hi(c0) = I. So
hi = I. This proves (5.1).

Suppose that o; is a projection onto the planes @l (1 =1,2) and hisy 00 Risy w1 = Pisy,on
‘Risy me- Then hig, oy = hislmhmmh*l is holomorphic at A = is; and the residue of

181,T1
—1 t
hi3170'1 (/\)hi32,7rzh i

. LTen 4 N .
isy.m 18 zero at A = isy, i.e., 01his, r, (is1)m = 0. From this and hf,,

(is1) = h;.t _ (—isy), we get @1 is parallel to Q1. Similarly, @2 is parallel to Qs.

182,72
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Let @ be a solution of (2.5). By Theorem 2.1, there exist V; = L;®;5,, U; = qu’és,, and
m = ViVVH=WV, 7 = UL(UU) U, and
Risy m®x = @3 his, 7, Risy ms®x = @ Nisy 705
Risy i @) = EXhisy 71
such that <I>l)\, =4

Risy.rs @3 = EXhisy 7,
=, are holomorphic for A € C' and are also solutions of (2.5), where [ =1, 2.
Thus
Risy.ri Pisg.ma® = E\Risy 7, Pisy 7o Risy.rahisym ® = EXPisy 7, Risy 71 - (5.2)
By the uniqueness of the Birkhoff decomposition (cf. [13]) and Proposition 5.1, we get
=5 = 23, his, 7 Risy 70 = Pisy 7 Nisy 71 (5.3)
So we have the following permutability formulas.

Theorem 5.1. Let )Z'l

]\71 — R?™ = O™ be the Ribaucour transformations for flat
Lagrangian submanifolds X : M — R*" =2 C™ corresponding to s;,V; (V; are 1 x n matrices)

as in Corollary 4.1, respectively, where | = 1,2. If s1,52 € R\ {0} and s? # s3, then there
exists unique flat Lagrangian submanifold X :M;— R?", which is identified with
~ ~ 262 1+ 92644
X+ igX = X +iJo— = :[ S I N AR
51
252 + 25491 , _
— = (@) + iR UR (UL US) s
1+s3
252 + 2591
=X +iJz — 283 F 2891

1552 (®1 + i JP)VE(VaVy) Lo
_ 28% + 2511

7 (®2 +iJ O UL UL UL~ Yepy,
1

(5.4)

with the first fundamental form I = Z(EJ)Qin, and the solution F of (2.6) associated with
J
X is

ﬁ =F+ (281%1)off + (2527’:2)off

= F+ (25272)of + (25171)of
where ¢y, ¥y are solutions of d¢; = Vi0b, diy = U;db, respectively,

b=b+ 251V (ViV{) 1 + 250U3(UaU%) 'y

= b+ 25V5 (VaVy) " o + 25, UL (UL UY) My,
and (1, -+ ,épn, Jé1, - 7Jén) 1s identified with

(&1 + i1, én +idén)
) ) 253 + 2isq 253 + 2isg -
:(€1+ZJ617'..76n+ZJ€n)(I—W7T1)(I—TS%TQ)
252 + 2089 252 + 281
- Jer, - en ‘Jn(I—Qi )(1—17 ) 5.7
(e1 +iJeq en +iJey) 1452 o 1557 T (5.7)



358 XIA, Q. L. & SHEN, Y. B.

Similarly, we get the permutability formulas of the Ribaucour transformations for the flat

submanifolds of S?"~1, which are Lagrangian in R?", and CP". Since L;, Q; are vectors
2o vi5b; Z ug;bj
in R", it follows that ¢; = —JT, Y = —-~ p» from Corollary 4.2. All formulas in

Theorem 5.1 are computed by purely algebraic algorithm without solving any equations.

Remark 5.1. Let L; = (¢f;,--- ,£};,)" be kxn constant real matrices with £, £},, = 0 for

1 <71 # jo <k, £=1,2 and 7 the real symmetric projections onto the k-planes spanned
by all row vectors of L;. s;,Q;,7; are as in Proposition 5.1. Then the formula (5.1) still
holds. But the two different row vectors in (J; are not orthogonal. Hence we can not have
the permutability formulas continuously on the new solutions as Theorem 5.1.

§6. The Examples

We first take a trivial solution F = 0 of (2.6). Solve (4.4) to get a family of unitary

frames
Dy +iJDy = diag[e™1, .-, ], (6.1)
In particular, ® + iJ® = diag[e’®!, ™2, ...  e¥@n]. In a sense of equivalence,

_ . t
ej =10,---,0,cosx;, —sinz;,0,---,0]",

Jej =10,---,0,sinzj,cosx;,0, - ,0]".

Thus, we get a flat Lagrangian submanifold X : S*(ry) x - - - x S*(r,,) — C™ up to a constant
vector defined by

X = [rysinwy,ry cosxy, -+, 7y SN Ty, Ty, COS T, (6.2)

with the first fundamental form I = Zr?dm?, where 71, -+ , 1, are positive constant num-
J

bers. X is identified with
X +iJX = [ri(sinz; —icosxy), -+ ,rp(sinz, —icoswz,)]". (6.3)
For simplicity, let L1xn, = [¢1,- -+, £s] # 0. Then

V = L(@is —+ ZJ@,LS) = [816781’1’ e 7@”‘67573"]7

po, | BT Gl
%:Vt(VVt)_1V=Zeg2. : :
7 J elene_s(xl"rxn) - eie—stn
Denote
2( Do ljrjem  + C)
F = J A — 2s

1+ 52)<Z£?e—23%) 7 (1+ s2)(zg§6—zsx]‘) '
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By Corollary 4.1, we have
1 Csx
qs:—;(z:ejrje w4C),  CeR, (6.4)
J

X +iJX = [—ire™ 4 (s + i), Tel =71 oo _ip e 4 (s 4 i), Teli=*)7n]t (6.5)

with d(X +iJX) = Y b;(&; + iJ&;)dx;, where
J

B 2e (X twrves +€), (6.6)
k

J J 26?6—23%
J

&j+iJe;=10,---,0,e®5,0,--- 0] + [~ (s + )1 l;Ae 5@ FT)eimr .
— (s+i)5Ae™ ) o —(s + i)l A3t Ti) gitnt, (6.7)

The solution F of (2.6) corresponding to X is

~ 28£]£k —s(zj+ar)
ir = T B s, (6.8)
J
In a sense of equivalence, we get a new flat Lagrangian submanifold X = [Z1, T2, -,

Ton_1,T2,)t : R* — C™, where

Zoj_1 =rjsinz; + ¢;Te™ % (scosx; —sinx;), (6.9)
Zoj =r;jcosx; — sliTe *%i(ssinx; + cosx;) '
with U(n)-frame ;131 = (él, ce ,én, .]él, s ,.]én), where éj = [de, djg, s 7&j,2n—1; djgn]t,
jok—1 = LilpAe™ @it (sinxy, — scosxy), (6.10)
Qjok = éjﬁkAe_s(’”i"’”k)(cos x + ssinxy) for k # 7, .
ajoj—1 =1 + 3Ae™?i (sinz; — s cosx;), (6.11)
Gj.05 = (3Ae7?% (cos zj + ssiny). .

It is evident that X is always non-degenerate if L # 0. Assume now that the image of X
lies in S?"71, ie., Zr? = 1. On the other hand, the image of X lies in S?"~! if and only if
J

C = 0. Hence, when C' = 0, X projects onto a flat (n—1)-dimension Lagrangian submanifold
of CP™ 1. In this case, we can represent the corresponding formulas with C' = 0.
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