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LOCAL WELL-POSEDNESS AND ILL-POSEDNESS
ON THE EQUATION OF TYPE �u = uk(∂u)α∗∗∗

FANG Daoyuan∗ WANG Chengbo∗∗

Abstract

This paper undertakes a systematic treatment of the low regularity local well-
posedness and ill-posedness theory in Hs and Ḣs for semilinear wave equations with
polynomial nonlinearity in u and ∂u. This ill-posed result concerns the focusing type
equations with nonlinearity on u and ∂tu.
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§ 1 . Introduction

The goal of this paper is to study the low regularity local well-posedness and ill-posedness
of the Cauchy problem for semi-linear wave equation with polynomial nonlinearity in u and
∂u. More precisely, we are concerned with the question to determine the smallest s (denoted
by so) for which we have local well-posedness in Hs (or Ḣs) of the problem{

�u := (∂2
t − Δ)u = G(u, ∂u),

u(0, x) = f(x), ∂tu(0, x) = g(x),
(1.1)

where the nonlinearity G is polynomial with respect to its arguments and ∂ := (∂t,∇x).
We say that the problem (1.1) is local well-posed (LWP) with X in Hs if, for every

(f, g) ∈ Hs × Hs−1, there exists a unique weak solution u ∈ C([0, T ]; Hs) ∩ X to (1.1),
which depends continuously on the data for some T > 0, where X is some reasonable
additional Banach space. Moreover, if T depends only on the data’s size, we say the problem
is norm-LWP. When X = C1([0, T ]; Hs−1), we say it is classically LWP. Similarly, we say
the problem (1.1) is ill-posed (ILP) in Hs if the problem is in contrast to the meaning of
LWP. The corresponding notion for Ḣs is just the substitute of Hs by Ḣs. In this paper,
all LWP results will be norm-LWP and we have two senses of ILP. We say a problem is
strongly ILP (s-ILP) if there is a sequence of data (fj , gj), which are smooth and supported
in a ball BRj , for which the lifespan of the corresponding solutions uj, the data’s norm and

Manuscript received March 15, 2004. Revised October 14, 2004.
∗Department of Mathematics, Zhejiang University, Hangzhou 310027, China. E-mail: dyf@zju.edu.cn

∗∗Department of Mathematics, Zhejiang University, Hangzhou 310027, China.
E-mail: wangcbo@yahoo.com.cn

∗∗∗Project supported by the National Natural Science Foundation of China (No.10271108).



362 FANG, D. Y. & WANG, C. B.

Rj goes to 0, by a domain of dependence argument. The weaker ILP (w-ILP) means that
the lifespan goes to zero and the data’s norm stays uniformly bounded.

The question of determining the minimal regularity index s for which (1.1) is LWP in
Hs or Ḣs has been studied in many papers, including [1, 5, 6, 8–11, 13–16]. However, to
our knowledge, there is not a systematic treatment especially for ILP with G depends not
only on u yet, although these results have been heuristically believed to be true since [8–10]
appeared.

Now we state our main results and give several remarks, comparing them with previously
known results. For an equation of the form

�u = Cuk(∂u)β (1.2)

with |β| = l, k + l > 1 and k, l ∈ N, set α := l−2
k+l−1 and sc(k, l) := n

2 + α. Then we have the
following norm-LWP results given in Section 2.

Theorem 1.1. The equation (1.2) is norm-LWP with some X in Hs for

s >

⎧⎪⎨⎪⎩
s(l, n) =

n + 5
4

∨
sc(0, l), l ≥ 2 and n ≥ 2,

σ(k, n) =
n − 1

2

∨
sc(k, 1), l = 1 and n ≥ 3.

Remark 1.1. The result in Theorem 1.1 covers the one in [11], [1] in part. In [11],
Ponce and Sideris proved the special n = 3 case of (1.2). In [1], Beals and Bézard gave the
result in case of l = 2 and n ≥ 3, showing that (1.2) is LWP for s > 2 with n = 3 and
s ≥ n+1

2 for n ≥ 4. For any n ∈ N, the classically LWP results are well-known with s > n+2
2

for (1.1) and s > n
2 for (1.1) with G at most linear on ∂u, by classical energy arguments

(e.g. in [4]). Note that s(k, n) → n+2
2 and σ(k, n) → n

2 as k → ∞.

Remark 1.2. In fact, we only need to give the proof of Theorem 1.1 with s > s(l, n) =
n+5

4 ∨ n+1
2 ∨sc(0, l) for the l ≥ 2 case, since for l = 2, the problem (1.2) has been extensively

studied. In fact, in this case, it is LWP with some X in Hs with s > n+5
4 ∨ n

2 for any n ∈ N.
The n = 3 case was given in [11]. In contrast, by introducing some new Banach space,
Tataru got the LWP result for s > n

2 with n ≥ 5 in [15]. And for n = 4, it was claimed
there without proof. Recently Zhou have given the proof of n = 4 and n = 2 case in [16].
Combining these observations, one can exclude the n+1

2 term in s(l, n).

On the other hand, in Sections 3 and 4, we give some ILP results (mainly the s-ILP
results) for focusing type equation

�u = |u|k|∂tu|l−1∂tu (1.3)

with k + l > 1, k, l ≥ 0 and k, l ∈ R (for l = 0, this equation is interpreted as �u = |u|k−1u).
Set s̃ := n+1

4 + l−1
k+l−1 . Then we have the following

Theorem 1.2. Let n ≥ 1, α 	= 0 or α = 0 with k = 0. The model equation (1.3) is
s-ILP in Ḣs for

s ∈
(
1 − n

2
, sc

)
.
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And, if sc > 1, then it is s-ILP in Hs for the same s. Moreover, if α 	= 0, it is w-ILP in
Ḣsc ; it is also w-ILP in Hsc if sc ≥ 1. If α = 0 with k = 0, then it is w-ILP in Hs for
s ∈ (1 − n

2 , sc).

Theorem 1.3. Let n ≥ 3, α 	= 0 and s̃ > sc. Then we have s-ILP in Ḣs for (1.3) with
s lying in the following set (denoted by E) :

• if l > 2, (sc, s̃);

• if l < 2 and s̃ > 0, (−n
2 ∨ sc, s̃ ∧ n

2 );

• if l < 2 and s̃ ≤ 0, (−n
2 ∨ sc,

2n
n+1 s̃).

Furthermore, we have s-ILP in Hs for 0 < s ∈ E and also for s ∈ (−n
2 , 0] ∩ (sc, s̃) if there

exist m, m̃ ∈ Z ∩ [0, n
2 ) such that

s̃ >
(n − 1

2n
m

)∨(n − 1
2n

m̃ + 1
)

>
n + 1

4
+ α.

Remark 1.3. Note that if one asks for the meaning of LWP one more condition (per-
sistence of regularity), then we would get more than stated in Theorem 1.2. In principle,
one could get s-ILP in Hs with s < sc subject to sc > 1 under the condition that we have
the result of formation of singularity such as in [7] and [12].

Remark 1.4. Since we give s-ILP in the sense as described above, for any “reasonable”
X (here “reasonable” means that it contains all solutions with C∞

0 data), one could not
expect any result of LWP in Hs with domain of dependence. Note that for w-ILP, one could
not attempt to prove norm-LWP with domain of dependence (e.g. through contraction
argument), however one may show LWP with lifespan depending not only on the data’s
size, but also on its profile.

By applying the super-critical results in Theorem 1.2 and the sub-critical results in
Theorem 1.3 to some particular forms of (1.3), we have some corollaries as follows.

Corollary 1.1. Let n ≥ 3, 2 < l ∈ R and α = 1 − 1
l−1 . Set sc = n

2 + α and s̃ = n+5
4 .

Then the equation

�u = |∂tu|l−1∂tu (1.4)

is s-ILP in Ḣs for

s ∈

⎧⎪⎨⎪⎩
(
1 − n

2
, sc

)
, l ≥ n + 3

n − 1
and l > 2,(

1 − n

2
, sc

)
∪ (sc, s̃), 2 < l <

n + 3
n − 1

and n = 3, 4.

Moreover, for n ≥ 2, it is also s-ILP in Ḣs and Hs for s ∈ (1 − n
2 , sc), and w-ILP in Ḣsc

and Hsc .

Corollary 1.2. Let n ≥ 3, 1 < k ∈ R and α = − 1
k−1 . Set sc = n

2 + α and s̃ = n+1
4 .

Then the equation

�u = |u|k−1∂tu (1.5)
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is w-ILP in Ḣsc with k > n
n−1 and s-ILP in Ḣs for

s ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 − n

2
, sc

)
, if k ≥ n + 3

n − 1
,(

1 − n

2
, sc

)
∪ (sc, s̃), if k ∈

( n

n − 1
,
n + 3
n − 1

)
,(

− n

2
∨ sc, s̃

)
, if k <

n

n − 1
.

It is also w-ILP in Hsc with k ≥ n
n−2 and s-ILP in Hs for

s ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 − n

2
, sc

)
with k ≥ n + 3

n − 1
and n ≥ 3,(

1 − n

2
, sc

)
∪ (sc, s̃) with k ∈

( n

n − 2
,
n + 3
n − 1

)
and n ≥ 4,(

− n

2
∨ sc, s̃

)
with k <

n

n − 2
and n ≥ 4.

In particular, the problem is s-ILP in Hs with s ∈ ((sc ∨ s̃)− ε, sc ∨ s̃), subject to n = 3 with
k ≥ 3 or n ≥ 4.

Corollary 1.3. Let n ≥ 3, 1 < k ∈ R, α = − 2
k−1 , and set sc = n

2 + α, s̃ = n+1
4 + α

2 .
Then the equation

�u = |u|k−1u (1.6)

is w-ILP in Ḣsc with k > n+1
n−1 and s-ILP in Ḣs for

s ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − n

2
, sc

)
, if k ≥ n + 3

n − 1
,(

1 − n

2
, sc

)
∪ (sc, s̃), if k ∈

[n + 5
n + 1

,
n + 3
n − 1

)
,(

1 − n

2
, sc

)
∪

(
sc,

2n

n + 1
s̃
)
, if k ∈

(n + 1
n − 1

,
n + 5
n + 1

)
and n ≥ 4,(

− n

2
∨ sc,

2n

n + 1
s̃
)
, if k ∈

(n + 3
n + 1

,
n + 1
n − 1

)
.

It is also w-ILP in Hsc with k ≥ n+2
n−2 and s-ILP in Hs for s ∈ (1 − n

2 , sc) if k > n+2
n−2 .

Note that for equation

�u = (∂tu)2/2, (1.7)

if we set v = ∂tu, then v satisfies (1.5) with k = 2. So we can give the subcritical ill-posedness
for (1.7).

Theorem 1.4. The equation (1.7) is s-ILP in Ḣs and Hs for s ∈ (1− n
2 , sc) with n ≥ 3

and w-ILP in Ḣs and Hs for such s with n = 2. Moreover, for n = 3, 4, it is also s-ILP in
Ḣs for s ∈ (sc, s̃).

Remark 1.5. In [8] and [9], Lindblad gave the ILP in Ḣs with s = s̃ − ε and n = 3 for
some types of (1.2) with k + l = 2 and k = 0, 1, 2, with small ε ≥ 0. And, in [10], it was
shown that (1.3) is ILP in Ḣs with (sc ∨ s̃) − ε < s < sc ∨ s̃ for

k > k0 =
(n + 1)2

(n − 1)2 + 4
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with n ≥ 3. However note that

1 +
4

n + 1
≤ (n + 1)2

(n − 1)2 + 4
,

so Corollary 1.3 generalizes the result there.

Remark 1.6. The ILP results and LWP results above suggest that the optimal regularity
should be sc ∨ s̃ for (1.2) in general. In particular, for (1.4) with 2 ≤ l ∈ N, the optimal
regularity in Hs is sc when sc ≥ s̃ (i.e., n ≥ 5 or l ≥ 3 with n = 3, 4 or l ≥ 5 with n = 2).
For (1.5) with k ≥ 3 and n ≥ 4 or k ≥ 4 and n = 3, the optimal regularity in Hs is sc.

Remark 1.7. However, there are still some gaps, since we give ILP result mainly for
Ḣs. It is logically natural that there may be the case that a particular problem is ILP in
Ḣs but LWP in Hs.

Our main strategy for the proof is the following. Firstly, we use Strichartz-type estimate
and generalized Leibniz rule to get LWP result by usual contraction arguments. Secondly,
for super-critical ILP (s < sc), we are concerned with the model equation (1.3) with k+l > 1,
k, l ≥ 0 and k, l ∈ R. Taking ODE solution in t and cutting off the data outside a ball, we
get a sequence of data and show that the lifespan of solution and data’s norm goes to zero
simultaneously, which gives the s-ILP in Ḣs. Then we show it also works for Hs with the
same s once one can assure the data’s L2-norm goes to zero (or remains bounded for w-ILP)
during the limitation. Thirdly, for sub-critical s-ILP, our strategy for the proof originates
mainly in [8] and [10]. Roughly speaking, we apply scaling and Lorentz transformation on
ODE solution in t, then cut-off the solution appropriately so that its lifespan decreases as
the initial norm decreases.

In the sequel, we will use the following notations. As usual, S denotes the spaces of
Schwartz classes and S′ denotes its dual space (the tempered distribution space). We use
F to denote the usual Fourier transform,

F(f) = f̂ :=
∫

e−ix·ξf(x)dx for f ∈ S,

and for f ∈ S′ define it by duality. Set D = (−Δ)1/2, and use U(t) and U′(t) to denote the
operator sin(tD)/D and cos(tD). We use Hs,p(Rn) to denote the Sobolev space,

Hs,p := {f ∈ S′, (1 − Δ)s/2f ∈ Lp} ⊃ S

with norm ‖f‖Hs,p = ‖(1 − Δ)s/2f‖Lp for s ∈ R and 1 < p < ∞. Correspondingly,
the homogeneous Sobolev space Ḣs,p(Rn) is defined as the closure of S with the norm
‖f‖Ḣs,p := ‖Dsf‖Lp in S′ for sp + n > 0. For p = 2, we use Hs(Ḣs) to denote Hs,2(Ḣs,2),
and the corresponding norm for f is denoted by ‖f‖s(‖f‖ṡ). Moreover, we use ‖f(t, ·)‖(s) to
denote ‖f(t, ·)‖s + ‖∂tf(t, ·)‖s−1, similarly for homogeneous ‖f(t, ·)‖ ˙(s). The notation a � b

means that there exists a constant C > 0 such that a ≤ Cb, and a ≈ b means that there
exist constants C1 > C2 > 0 such that C2b ≤ a ≤ C1b. For x, y ∈ R, we use x± to denote
x ± ε, x ∨ y (or x ∧ y) to denote max{x, y} (or min{x, y}). [x] represents the integer part
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of x, i.e., [x] = max{d ∈ Z : d ≤ x}. Also H(x) denotes the usual Heaviside function (H(x)
equals 1 for x ≥ 0 and 0 for x < 0).

This paper is organized as follows. In Section 2, we give the proof of LWP result. In
Sections 3 and 4, we prove the super-critical ILP and sub-critical s-ILP separately.

§ 2 . Local Well-Posedness

In this section, we give the proof of LWP result. We shall need some usual technical
lemmas including generalized Leibniz rule and Strichartz type estimate.

Let us first recall the familiar Sobolev estimate.

Lemma 2.1. (Sobolev Inequality) For n
p − s = n

q with 1 < p ≤ q < ∞, we have

‖f‖Lq � ‖Dsf‖Lp .

In contrast, for sp > n, Hs,p ⊂ L∞.

The usual interpolation (cf. [2]) yields similar estimate for Hs,p, Hs,p ⊂ Lq with n
p −s ≤

n
q , q ≥ p and s > 0.

Lemma 2.2. (Generalized Leibniz Rule) If 1
2 = 1

pi
+ 1

qi
with i = 1, 2, 2 ≤ qi ≤ ∞ and

s > 0, then we have

‖Ds(fg)‖L2 � ‖Dsf‖Lp1‖g‖Lq1 + ‖Dsg‖Lp2‖f‖Lq2 . (2.1)

The inhomogeneous counterpart is also valid.

One may refer to [8] for it.

Lemma 2.3. (Strichartz-Type Estimate) Denote admissible pair set by

AD =
{
(r, q)

∣∣∣ 1
r
≤ n − 1

2

(1
2
− 1

q

)
, 2 ≤ r ≤ ∞, 2 ≤ q < ∞, n ≥ 2

}
.

Let s = n(1
2 − 1

q ) − 1
r , and (r, q), (r1, q1) ∈ AD. Then we have for all T > 0,

‖u‖Lr
t Lq

x
+ sup

t∈[0,T ]

‖u(t)‖ ˙(s) � ‖u(0)‖ ˙(s) + ‖�u‖
L

r′1
t L

q′1
x

. (2.2)

Moreover, if s ≥ 1, then

‖U(t)g(x)‖Lr
t Lq

x
� ‖g‖s−1. (2.3)

For the proof, see [3] and [6].
We shall also use the energy estimate

‖u(t)‖(s) � (1 + t)
(
‖u(0)‖(s) +

∫ t

0

‖(�u)(τ, ·)‖s−1dτ
)
. (2.4)

Now we are prepared to prove LWP result Theorem 1.1. We restate the result here more
precisely.
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Theorem 2.1. Let n ≥ 2, |β| = l ≥ 2, k ≥ 0 and n, k, l ∈ Z. Then the equation

�u = Cuk(∂u)β := G

is LWP in Hs for s > n+5
4 ∨ n+1

2 ∨ (n+2
2 − 1

l−1 ). Here the solution space is

V = {u ∈ C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1); ∂u ∈ Lr([0, T ]; Ḣγ−1,q)}

for some γ, r and q, and T > 0 depending only on n, s and ‖f‖s + ‖g‖s−1. Here the values
of γ, r and q may be chosen to be γ = s − 1

r − n(1
2 − 1

q ), 1/q = 0+,

1
r

=
1
2

∧ ( 1
l − 1

−
)∧ n − 1

2

(1
2
− 1

q

)
.

Furthermore, the solution map is uniformly continuous depending on the data.

Proof. As usual, we use contraction principle. Let V be as in Theorem 2.1,

‖u‖V := sup
[0,T ]

‖u(t)‖s + sup
[0,T ]

‖∂tu(t)‖s−1 + ‖∂u‖Lr([0,T ];Ḣγ−1,q)

and set

Λu(t, x) := (U′(t)f + U(t)g) +
∫ t

0

U(t − τ)G(τ, ·)dτ := u(0) + Au.

Then in view of (2.2) and (2.4), we have

‖u(0)‖V � (1 + T )(‖f‖s + ‖g‖s−1), (2.5)

‖Au‖V � (1 + T )
(∫ T

0

‖G(τ)‖s−1dτ
)
. (2.6)

To estimate ‖G(τ)‖s−1, since

s >
n

2
, (2.7)

we may choose p, p̃ > 2 such that Hs ⊂ Hs−1,p, Hs−1 ⊂ Lp̃ and 1
p + 1

p̃ = 1
2 . Then by (2.1),

‖G‖s−1 � ‖uk‖L∞‖(∂u)β‖s−1 + ‖uk‖Hs−1,p‖(∂u)β‖Lp̃

� ‖uk‖s‖∂u‖l−1
L∞‖∂u‖s−1 � ‖u‖k+1

(s) ‖∂u‖l−1
L∞.

However, if we assume

(γ − 1)q > n, (2.8)

then
‖∂u‖L∞ � ‖∂u‖Hγ−1,q � ‖∂u‖L2 + ‖Dγ−1∂u‖Lq ,

and hence

‖G‖s−1 � ‖u‖k+l
(s) + ‖u‖k+1

(s) ‖Dγ−1∂u‖l−1
Lq . (2.9)
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Combining (2.6) and (2.9), we may use Hölder inequality to get

‖Au‖V � T (1 + T ) sup
[0,T ]

‖u‖k+l
(s) + (1 + T ) sup

[0,T ]

‖u‖1+k
(s)

∫ T

0

‖Dγ−1∂u‖l−1
Lq dτ

� (T + T 2)‖u‖k+l
V + (1 + T )‖u‖1+k

V T 1−(l−1)/r‖Dγ−1∂u‖l−1
Lr

t Lq
x

� (T 1−(l−1)/r + T 2)‖u‖k+l
V ,

if

r > l − 1. (2.10)

In view of (2.5) we have

‖Λu‖V ≤ C{(1 + T )(‖f‖s + ‖g‖s−1) + (T 1−(l−1)/r + T 2)‖u‖k+l
V }. (2.11)

So, if we let R = 2C(‖f‖s +‖g‖s−1) and set B = {u ∈ V : ‖u‖V ≤ R}, we can choose T0 > 0
small, such that for any T < T0, Λ : B → B. Essentially in the same manner, we can show
that for T small enough, Λ is a contraction mapping in B and so there is a unique solution
in V with data (f, g). Furthermore, the solution map is uniformly continuous on the data.

Now the only remaining thing is to determine the maximal range of s satisfying (2.7),
(2.8), (2.10) and the conditions in Strichartz-Type estimate (i.e., γ = s + 1

r − n(1
2 − 1

q ),
2
r ≤ (n−1)(1

2 − 1
q ), with 1

r ∈ [0, 1
2 ] and 1

q ∈ (0, 1
2 ]). A direct computation yields the required

s > max
{n + 5

4
,
n + 1

2
,
n + 2

2
− 1

l − 1

}
,

and one may check that the values of γ, r and q stated in Theorem 2.1 satisfy these condi-
tions. So the result is proved.

Theorem 2.2. Let n ≥ 3, |β| = 1, k ≥ 2 and k, n ∈ N. Then the equation

�u = Cuk−1(∂u)β := F

is LWP in Hs for s > n−1
2 ∨ (n

2 − 1
k−1 ). Here the solution space is

W = {u ∈ C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1); u ∈ Lr([0, T ]; Hs−1,q)}

for some r, q and T > 0 depending only on n, s and ‖f‖s + ‖g‖s−1. Here the values of
r, q may be chosen to be 1

r = ( 1
k−1−) ∧ 1

2 and n
q = n

2 − 1 − 1
r . Furthermore, the solution is

uniformly continuous depending on the data.

Proof. Let ‖u‖W := sup
[0,T ]

‖u(t)‖s + sup
[0,T ]

‖∂tu(t)‖s−1 + ‖u‖Lr([0,T ];Hs−1,q) with T to be

determined later and set

Λu(t, x) = U′(t)f + U(t)g +
∫ t

0

U(t − τ)F (τ, ·)dτ := u(0) + Au.
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Then by (2.3) and (2.4), we have for 0 ≤ t ≤ T ,

‖u(0)‖W � (1 + T )(‖f‖s + ‖g‖s−1),

‖Au‖W � (1 + T )
∫ t

0

‖F (τ, ·)‖s−1dτ.

Since (s − 1)q > n, one may choose p such that Hs−1 ⊂ Lp and Hs−1,q ⊂ L∞ with
1
p = 1

2 − 1
q . Then by Lemma 2.2, we have

‖F‖s−1 � ‖uk−1‖L∞‖∂u‖s−1 + ‖uk−1‖Hs−1,q‖∂u‖Lp � ‖u‖k−1
Hs−1,q‖u‖(s).

So for r > k − 1,

‖Au‖W � (1 + T )
∫ T

0

‖F (τ, ·)‖s−1dτ � T 1−(k−1)/r(1 + T )‖u‖k
W. (2.12)

Therefore we have

‖Λu‖W ≤ C(1 + T )(‖f‖s + ‖g‖s−1) + CT 1−(k−1)/r(1 + T )‖u‖k
W

= C(‖f‖s + ‖g‖s−1) + CT 1−(k−1)/r{(1 + T )‖u‖k
W + T (k−1)/r(‖f‖s + ‖g‖s−1)}

≤ 2C(‖f‖s + ‖g‖s−1) := R

with ‖u‖W ≤ R and T < T0 with T0 small enough.
Hence for T small, Λ becomes a contraction map on some ball u ∈ W : ‖u‖W ≤ R. And

the proof is reduced to the algebraic computation of assumption on s, i.e., (s − 1)q > n,
r > k−1 and the constraint in Strichartz estimate. A simple computation yields the desired

s > σ(k, n) = max
{n − 1

2
,

n

2
− 1

k − 1

}
,

and the values of r, q stated in Theorem 2.2 can be checked to satisfy these conditions.

§ 3 . Super-critical Counterexample

In this section we are concerned with the super-critical (i.e., s < sc) ill-posedness in
Hs and Ḣs, i.e., the proof of Theorem 1.2. The method is classical. First we get some
ODE solutions in t which blow-up in finite time and cut off them outside a ball. Then by
estimating the data’s norm and the corresponding lifespan we show that the problem is ILP.
The results in this and next sections are both heuristically believed to be true; however to
our knowledge, there is no systematic proof of this fact yet.

In the sequel, we shall consider the model focusing problems

�u = |u|k|∂tu|l−1∂tu (3.1)

with k + l > 1, k, l ≥ 0 and k, l ∈ R (for l = 0, this equation is interpreted as �u = |u|k−1u).
A simple scaling argument shows that

sc =
n

2
+ α (3.2)
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with α := l−2
k+l−1 < 1. Note that (3.1) has a simple ODE solution in t (0 ≤ t < a < 1):

ua(x, t) =

⎧⎨⎩Ck,l(a − t)α, α 	= 0,

− log(a − t), l = 2 and k = 0
(3.3)

with Ck,l := {|α|1−l(1 − α)}1/(k+l−1).
It is shown that there are three cases to be proved: α < 0, α > 0 and α = 0, i.e., l < 2,

l > 2 and l = 2. We split this theorem into three propositions concerning the three cases
respectively. For the convenience of proof, we give a definition.

Definition 3.1. If for some given data (f, g), (3.1) has local unique distributional solu-
tion u in Ḣs with maximal time T0, we define the lifespan T s(f, g) to be

T s(f, g) = sup{t : 0 < t < T0, u ∈ C([0, t], Ḣs) ∩ C1([0, t], Ḣs−1)}.

Let φ ∈ C∞
0 (R) with φ(τ) = 1 for |τ | ≤ 1 + d with some d > 0 and set

fa = ua(x, 0)φ(|x|/a), ga = ∂tua(x, 0)φ(|x|/a). (3.4)

We shall need the following lemmas. Note that for s > −n
2 , C∞

0 (Rn) ⊂ Ḣs, i.e.,

‖φ‖ṡ < ∞. (3.5)

Lemma 3.1. For fa, ga as above, we have

‖Dsfa‖L2 + ‖Ds−1ga‖L2 � asc−ε−s (3.6)

with ⎧⎨⎩ε = 0, α 	= 0,

ε > 0, l = 2 and k = 0,

if s > 1 − n
2 and 0 < a < 1.

Proof. For α 	= 0, by homogeneity and (3.5), we have

‖Dsfa‖L2 + ‖Ds−1ga‖L2 � a−s+α+n/2(‖Dsφ‖L2 + ‖Ds−1φ‖L2) � asc−s

subject to s > 1 − n
2 . For the other case, noticing that |log a| � a−ε for any ε > 0, we also

have

‖Dsfa‖L2 + ‖Ds−1ga‖L2 � a−s+n/2−ε‖Dsφ‖L2 + a−s+n/2‖Ds−1φ‖L2 � asc−ε−s.

Let us first consider the case α < 0.

Proposition 3.1. Let n ≥ 2. Then the problem (3.1) with α < 0 is s-ILP in Ḣs for
s ∈ (1− n

2 , sc). And, if sc > 1, then it is s-ILP in Hs for the same s. Moreover, it is w-ILP
in Ḣsc and if sc ≥ 1, it is w-ILP in Hs for s ∈ (1 − n

2 , sc].
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Proof. We shall show that the above data (fa, ga) gives the required counterexample.
Without loss of generality, we assume that the solution is locally unique for Equation (3.1)
with such data (since if not, the result will follow without any further proof). Then solution
u of (3.1) with such data is just ua in |x| ≤ (1 + d)a − t for t < T s(fa, ga). Now we claim
that the lifespan T s(fa, ga) of u with |s| < n

2 satisfies

T s(fa, ga) ≤ a. (3.7)

We use Lemma 4.4 with h(a, x) = F ( |x|a ), where F (t) ∈ C∞
0 vanishes for |t| ≥ 1. Then

if T s(fa, ga) > a, we have (use Scaling, (3.5), supp(h(a, x))⊂{|x| ≤ a} and u = ua in
|x| ≤ (1 + d)a − t for t < a)

‖u(t)‖ṡ � ‖u(t)h((1 + d)a − t, x)‖ṡ � (a − t)α[(1 + d)a − t]n/2−s → +∞

as t → a from below, which yields contradiction. Combining (3.7) with Lemma 3.1, we have
proved ill-posedness in Ḣs by letting a → 0.

For the second part, one only needs to check that ‖fa‖s+‖ga‖s−1 goes to zero (or remains
bounded for w-ILP) as a → 0. It is true for sc > 1 (sc ≥ 1), since

‖fa‖s � ‖fa‖L2 + ‖Dsfa‖L2 � (asc + asc−s)‖φ‖s

and ⎧⎨⎩‖ga‖s−1 � ‖ga‖L2 + ‖Ds−1ga‖L2 � (asc−1 + asc−s)‖φ‖s−1, s ≥ 1,

‖ga‖s−1 � ‖ga‖L2 � asc−1‖φ‖L2 , s < 1.

Similarly, for the case α > 0, we have

Proposition 3.2. Let n ≥ 1. The problem (3.1) with α > 0 is s-ILP in Ḣs for
1 − n

2 < s < sc. If sc > 1, it is s-ILP in Hs with the same s. Moreover, it is also w-ILP in
Ḣs and Hs (for this case, one needs sc ≥ 1) for 1 − n

2 < s ≤ sc.

Proof. We also use the data (fa, ga) to give the counterexample. As in Proposition 3.1,
we show that T s(fa, ga) ≤ a with |s − 1| < n

2 by contradiction argument:

‖Ds−1∂tu(t, ·)‖L2 � ‖Ds−1(∂tuh((1 + d)a − t, x))‖L2

� (a − t)α−1[(1 + d)a − t]1+n/2−s → +∞

as t → a from below. Combining this with Lemma 3.1 we have proved ILP in Ḣs by letting
a → 0. The second part is just as in Proposition 3.1.

Proposition 3.3. Let n ≥ 2, l = 2 and k = 0. The model equation (3.1) is s-ILP in
Ḣs for s ∈ (1 − n

2 , sc). And, if sc > 1 (i.e., n ≥ 3), then it is s-ILP in Hs for the same s.
Moreover, it is w-ILP in Ḣs and Hs for s ∈ (1 − n

2 , sc).

Proof. Just as in the proof of Proposition 3.2, we have

T s(fa, ga) ≤ a for |s − 1| <
n

2
.
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For any given
1 − n

2
< s < sc =

n

2
,

set
ε =

sc − s

2
∧ sc

2
> 0.

By Lemma 3.1, we have

‖fa‖s � ‖fa‖L2 + ‖Dsfa‖L2 � (asc−ε + asc−s−ε)‖φ‖s

and (note here one may always choose ε = 0 for the ga part of Lemma 3.1)⎧⎨⎩‖ga‖s−1 � ‖ga‖L2 + ‖Ds−1ga‖L2 � (asc−1 + asc−s)‖φ‖s−1, s ≥ 1,

‖ga‖s−1 � ‖ga‖L2 � asc−1‖φ‖L2 , s < 1.

§ 4 . Sub-critical Counterexample

In this section we mainly prove Theorem 1.3 and Theorem 1.4. The method is the
following. Applying scaling and Lorentz transformations on the solution 3.3 we yields a
series of solutions which concentrate along the characteristic t − x1 = a asymptotically.
Then we get the ILP result by estimating the solutions’ lifespan and the initial data’s norm
in Ḣs and Hs.

Applying Lorentz transformation⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ =

t − βx1

δ
, δ = (1 − β2)1/2 and β ∈ (0, 1),

y1 =
x1 − βt

δ
, δ = (1 − β2)1/2 and β ∈ (0, 1),

yi = xi for 2 ≤ i ≤ n

and scaling to the ODE solution (3.3) of (3.1), we can get some special solutions to (3.1):

ua,β(t, x) =

⎧⎨⎩Ck,lδ
2α

l−2 (a − t + βx1)α, α = l−2
k+l−1 	= 0,

−δ2 log |a − t + βx1|, l = 2 and k = 0
(4.1)

for t − βx1 < a.
For the proof of this result, we need some technical lemmas (especially Lemma 4.1 and

Lemma 4.5). First let us give the initial data’s estimate in Ḣs.

Lemma 4.1. Let n ≥ 3, α 	= 0, β ∈ (ε, 1) and h(τ) be a C∞ function with

h(τ) =

⎧⎨⎩1, τ ≥ 0,

0, τ ≤ −ε

for some small 0 < ε � 1 and hβ(a, x) := h(1−|x|/a
1−β ). Set

fa,β := ua,β(0, x)hβ(a, x) = Ck,lδ
2α
l−2 (a + βx1)αhβ(a, x)
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and ga,β := −∂x1fa,β/β. Then

‖Dmfa,β‖Lp + ‖Dm−1ga,β‖Lp ≤ Ca
n
p +α−m(1 − β)

n+1
2p + l−1

l−2 α−m (4.2)

subject to n + 1 + 2p(α − m) < 0, m ∈ N, 1 < p < ∞.

Proof. By homogeneity, we may reduce a to 1. Since the Riesz transform D−1∂x1 : Lp

→ Lp for 1 < p < ∞, we only need to estimate the corresponding part on fa,β. However
(4.2) involving only fa,β is just reduced to the case we shall prove in Lemma 4.3.

Let us give a characterization of Ḣm,p in C∞
0 here.

Lemma 4.2. Let n ≥ 3, m ∈ N and 1 < p < ∞. Then

‖u‖Ḣm,p ≈

∑
|α|=m

‖∂αu‖Lp ,

where u goes over in C∞
0 .

Proof. The inequality ‖∂αu‖Lp � ‖u‖Ḣm,p with |α| = m is a direct consequence when
one applies the Mihlin Multiplier Theorem (cf. [2]) with the multiplier ξα

|ξ|m . On the other
hand, if we can show that the required inequality holds for any C∞

0 function u with support
lying in the unit ball, then we can claim that the same inequality holds for all C∞

0 functions
by scaling. If 1 < p < n and supp(u) ⊂ B1, we have

‖u‖Lp � ‖u‖Lpn/(n−p) �
n∑

i=1

‖∂iu‖Lp � · · · �
∑

|α|=m

‖∂αu‖Lp ,

‖u‖Ḣm,p � ‖u‖Hm,p ≈ ‖u‖Lp +
n∑

i=1

‖∂m
i u‖Lp �

∑
|α|=m

‖∂αu‖Lp .

Now for n ≤ p < ∞ with 1 < q = np
(n+p) < n,

‖u‖Lp � ‖u‖Ḣ1,q �
n∑

i=1

‖∂iu‖Lq �
n∑

i=1

‖∂iu‖Lp � · · · �
∑

|α|=m

‖∂αu‖Lp ,

and so is ‖u‖Ḣm,p �
∑

|α|=m

‖∂αu‖Lp for all 1 < p < ∞.

With this lemma in mind, we can give the technical lemma needed in Lemma 4.1 now.

Lemma 4.3. Let n ≥ 3, β ∈ (ε, 1), v(x) = (1 + βx1)−bh( 1−r
1−β ) with |x| = r, where h is

as in Lemma 4.1. Then

‖v(x)‖Ḣm,p ≤ C(1 − β)
n+1
2p −(b+m)

with m ∈ N, n + 1 − 2p(b + m) < 0, 1 < p < ∞.

Proof. We first prove it for m = 0. Introducing polar coordinates (x = rw) on the
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integral yields

‖f(x)‖p
Lp =

∫ ∞

0

∫
Sn−1

|f(r, w1)|prn−1dσ(w)dr

= 2
∫ ∞

0

∫
Bn−1(1)

|f(r, w1)|prn−1 dw′√
1 − |w′|2 dr

= C

∫ ∞

0

∫ 1

−1

|f(r, w1)|prn−1(1 − w2
1)

n−3
2 dw1dr,

where w′ = (w1, · · · , wn−1). So

‖v‖p
Lp = C

∫ ∞

0

∫ 1

−1

(1 + βrw1)−bp(1 − w2
1)

n−3
2 h

( 1 − r

1 − β

)p

rn−1dw1dr

�
∫ ∞

0

∫ 1

−1

(1 + βrw1)
n−3

2 −bpdw1h
( 1 − r

1 − β

)p

rn−1dr

�
∫ ∞

0

h
( 1 − r

1 − β

)p

rn−2(1 − βr)
n−1

2 −bpdr

� (1 − β)
n+1

2 −bp,

where we have used the assumption n + 1 < 2bp and the support properties of h.
Now we consider the case m ≥ 1. Substituting h( 1−r

1−β ) by (1−β)−lh(l)( 1−r
1−β ) in v (denoted

by ṽ), and noting that supp(h(l)( 1−r
1−β )) ⊂ {1 − ε(1 − β) ≤ r ≤ 1 + ε(1 − β)}, we have

‖ṽ‖p
Lp �

∫ ∞

0

h(l)
( 1 − r

1 − β

)p

rn−2(1 − β)−lp(1 − βr)
n−1

2 −bpdr

� (1 − β)
n+1

2 −(b+l)p.

Since

|v(m)| �
m∑
1

|(1 + βx1)−b−(m−l)∂l
xh| + |(1 + βx1)−b−mh|

�
m∑
1

|(1 + βx1)−b−(m−l)(1 − β)−lh(l)| + |(1 + βx1)−b−mh|,

by above arguments and Lemma 4.2 we have

‖v(x)‖p

Ḣm,p
� (1 − β)

n+1
2 −(b+m)p

with m ≥ 1, n + 1 < 2(b + m)p.

Next we consider the estimate of the lifespan of solutions.

Lemma 4.4. Let hβ(a, x) be as in Lemma 4.1 and assume that u ∈ C∞(Rn) on the
support of hβ(a, x). Then for |s| < n

2 ,

‖hβ(a, x)u(x)‖ṡ � ‖u‖ṡ. (4.3)
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Proof. We follow the argument in [8] in principle. By homogeneity, we may assume
a = 1. Set f = Dsu. We need only to show that for any g ∈ L2,∫

(DshβD−sf)ḡdx =
∫∫

K(ξ, η)f̂(ξ)¯̂g(η)dξdη � ‖f‖L2‖g‖L2,

where K(ξ, η) = C|η|s|ξ|−sĥβ(1, η − ξ). By symmetry or duality we may assume that
0 ≤ s < n

2 . It suffices to show that
∫∫

K(ξ, η)K(ξ, α)dαdξ is bounded with a constant
independent of η. Note that ĥβ is in Schwartz space, this is a standard estimate.

Lemma 4.5. For β ∈ (ε, 1), then ua,β in (4.1) satisfies (3.1) when t−βx1 < a. Moreover,
if we set data (fa,β , ga,β) as in Lemma 4.1, with h(τ) = 1 for τ ≥ 0, and assume that (3.1)
has local uniqueness solution, then we have T s(f, g) ≤ a for −n

2 ∨ sc < s < n
2 + H(α).

Proof. The first claim is valid by direct checking. Note that u = ua,β in |x| < a− t with
0 < t < a under the assumption of local uniqueness time T ≥ a (otherwise the claim would
be obviously valid). First for α < 0, if T s(f, g) > a, then applying Sobolev inequality yields

‖Dsu(t)‖p
L2 ≥ C‖u(t, ·)‖p

Lp(Rn) ≥ C‖ua,β(t, x)‖p
Lp(|x|≤a−t)

≥ Cδ2αp/(l−2)(a − t)n+αp‖(1 + βx1)α‖p
Lp(|x|≤1)

→ ∞
as t → a from below subject to the conditions αp+n < 0 (i.e., s > sc) and 0 ≤ s < n

2 , which
contradicts the assumption. For 0 > s > −n

2 , we use Lemma 4.4 (with another h such that
h(τ) = 0 when τ ≤ 0) and scaling to yield contradiction:

‖u(t)‖Ḣs � ‖u(t)hβ(a − t, x)‖Ḣs = ‖ua,β(t, x)hβ(a − t, x)‖Ḣs

≈ (a − t)sc−s → ∞
as t → a from below. Now for α > 0, noting that in this case we have n

2 < s < n
2 + 1, we

then obtain

‖Dsu(t)‖p
L2 ≥ C‖u(t, ·)‖p

Ḣ1,p(Rn)
≥ C‖∂1ua,β(t, x)‖p

Lp(|x|≤a−t)

≥ Cδ2αp/(l−2)(a − t)n+(α−1)p‖(1 + βx1)α‖p
Lp(|x|≤1)

→ ∞
as t → a from below subject to the condition (α − 1)p + n < 0 (i.e., s > sc).

Now we have prepared enough to prove the subcritical ILP of Theorem 1.3 for α 	= 0.
Since Lemma 4.5 gives the estimate of the solutions’ lifespan, by argument as in Section 3,
the only thing left is to estimate the initial data’s norm in Ḣs and Hs.

Proof of the Subcritical ILP of Theorem 1.3.
We use the data in Lemma 4.1 to give an ILP counterexample.
Firstly, we combine Sobolev estimate with the estimate in Lemma 4.1 to get the estimate

of data in Ḣs. For m ∈ N, we have

‖fa,β‖Ḣs � ‖fa,β‖Ḣm,p � a
n
p +α−m(1 − β)

n+1
2p + l−1

l−2 α−m � asc−s(1 − β)s̃−λ, (4.4)
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where n
2 − s = n

p − m, s ≤ m, p > 1, and λ := n+1
2n s + n−1

2n m. In view of Lemma 4.5, by
choosing a → 0 and β → 1 appropriately, we get the ill-posedness in Ḣs if

s <
(
s̃ +

n − 1
n + 1

(s̃ − m)
)
∧

(n

2
+ H(α)

)
,(

m − n

2

)
∨ sc < s ≤ m. (4.5)

In particular, if s̃ ∈ N, then we have the Ḣs ILP result for (s̃− n
2 )∨sc < s < s̃∧ (n

2 +H(α))
by setting m = s̃.

Secondly, we use interpolation inequality (cf. [2, Theorem 6.4.5]) and the estimates in
Lemma 4.1 to get some other estimates of data. Let d, b ∈ N, σ ∈ [0, 1] and d < b. Applying
Lemma 4.1 with m = d, b and p = p, q ∈ (1,∞) separately yields

‖f‖Ḣs � ‖f‖σ
Ḣd,p‖f‖1−σ

Ḣb,q
� asc−s(1 − β)s̃−s (4.6)

subject to

2p(d − α) > n + 1, 2q(b − α) > n + 1,

σ

p
+

1 − σ

q
=

1
2
, s = σd + (1 − σ)b. (4.7)

In view of Lemma 4.5, we want to get the maximal region of s such that s ∈ {t : sc < t <

s̃ ∧ (n
2 + H(α)) and t ≥ 0} for which there exist σ, d, b, p, q satisfying (4.7). For any fixed

d, b, one easily deduces that if α < d ≤ n+1
4 + α < b, the ILP set will be((n + 1

4
+ α

)∨(
b − (b − d)(n + 1)

2(n + 1) − 4(d − α)

)
, b

]⋂(
sc, s̃ ∧

(n

2
+ H(α)

))
, (4.8)

and if d > n+1
4 + α,

[d,∞) ∩
(
sc, s̃ ∧

(n

2
+ H(α)

))
. (4.9)

Make unions on (4.5), (4.8), and (4.9), set d̃ = min{d ∈ N : d > n+1
4 + α}, and note that

sc ≥ n+1
4 + α. We get a region of homogeneous ILP (denoted by E):

• if l > 2, (sc, s̃);

• if l < 2 and s̃ > 0, (−n
2 ∨ sc, s̃ ∧ n

2 );

• if l < 2 and s̃ ≤ 0, (−n
2 ∨ sc,

2n
n+1 s̃).

In particular, for more interesting case for us (i.e., one has ILP for s̃ − ε < s < s̃ with
sufficiently small ε), we only need to exclude the cases s̃ < 0 or s̃ > n

2 with l < 2.
For the inhomogeneous part, by applying Lemma 4.1, we have

‖ga,β‖L2 � ‖g‖Ḣ�m,2n/(n+2�m) � asc−1(1 − β)s̃−n−1
2n �m−1,

‖fa,β‖L2 � ‖f‖Ḣm,2n/(n+2m) � asc(1 − β)s̃−n−1
2n m
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with n ≥ 3, m, m̃ ∈ Z ∩ [0, n
2 ) and n+1

4 + α < (n−1
2n m) ∨ (n−1

2n m̃ + 1). To ensure the data’s
inhomogeneous norm’s uniformly converge to 0 in the limit procedure, we get a sufficient
condition that there exist m, m̃ ∈ Z ∩ [0, n

2 ) such that

s̃ >
(n − 1

2n
m

)∨(n − 1
2n

m̃ + 1
)

>
n + 1

4
+ α. (4.10)

Then if (4.10) is satisfied, it is ILP in Hs for 0 < s ∈ E and also for s ∈ (−n
2 , 0] ∩ (sc, s̃).

Once Theorem 1.3 is proved, one gets easily the three corollaries in Section 1. Note that
for equation

�u =
(∂tu)2

2
, (4.11)

if we set v = ∂tu, then v satisfies (1.5) with k = 2. So we can give the subcritical ill-posedness
for (4.11) as claimed in Theorem 1.4.

Lemma 4.6. Let n = 4, sc = 2, s̃ = 9
4 , and h be as in Lemma 4.1. Then for (4.11) with

data

(g, f) :=
(
D−2

( 1
β

∂x1f +
f2

2

)
, f

)
,

where

f = C
1 − β2

a + βx1
h
(1 − |x|/a

1 − β

)
with C 1−β2

a−t+βx1
solves the equation (1.5) with k = 2, we have

‖g‖Ḣs + ‖f‖Ḣs−1 � asc−s(1 − β)s̃−s

and T s(g, f) ≤ a with s ∈ (sc, s̃).

Proof. Here α = 0. Let w := ∂tu. Then w satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�w = w∂tw,

w(0, x) = f(x),

∂tw(0, x) = − 1
β

∂x1f.

Since the solution u in |x| ≤ a − t satisfies ∂tu(t, x) = C 1−β2

a−t+βx1
, we can show T s(g, f) ≤ a

just as in Lemma 4.5. For s ≥ 2, by Lemma 2.2 and Lemma 4.1,

‖f2‖Ḣs−2 � ‖f‖L4‖f‖Ḣs−2,4 � (1 − β)5/8‖f‖Ḣs−1 .

Note that g ∈ Ḣs for s > 0, so we have

‖g‖Ḣs + ‖f‖Ḣs−1 � ‖∂x1f‖Ḣs−2 + ‖f‖Ḣs−1 + ‖f2‖Ḣs−2

� ‖∂x1f‖Ḣs−2 + ‖f‖Ḣs−1

� asc−s(1 − β)s̃−s,

where the last inequality comes from interpolation of (4.2) with m = [s−1] = 1 and [s] = 2.

Combining this lemma with the known result for n = 3 in [8] (one can also get this result
by embedding argument and using Lemma 4.1), we get the result in Theorem 1.4.
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[ 1 ] Beals, M. & Bézard, M., Low regularity local solutions for field equations, Comm. Part. Diff. Eq.,
21(1996), 79–124.
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