Chin. Ann. Math.
26B:3(2005),379-392.

ON THE ASYMPTOTIC BEHAVIOUR OF THE
STEADY SUPERSONIC FLOWS AT INFINITY**

ZHANG YONGQIAN*

Abstract

This paper studies the asymptotic behaviour of steady supersonic flow past a piece-
wise smooth corner or bend. Under the hypothese that both vertex angle and the total
variation of tangent along the boundary are small, it is shown that the solution can
be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the
solution is determined by the velocity of incoming flow and the limit of the tangent of
the boundary at infinity.
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8§1. Introduction

We are concerned with the asymptotic behaviour at infinity of steady planar potential
flow of gas past a corner or a bend with a piecewise smooth boundary. That is, we study
the asymptotic behaviour of the solution to the following problem

(pu)z + (pv)y =0, in Q,
Vg — Uy = 0, in €,
(u,v) - ﬁ‘aﬂ =0,

(u,0)], g = (dc:0),

where (u,v) and p are the velocity and the density, respectively, which satisfy the following
Bernoulli equation
v—1

TES A

- 102(P) =c (1.5)

with ¢?(p) = yAp ! for some constant A > 0 and the adiabatic exponent v > 1. The
velocity of incoming flow, Us = (¢, 0), satisfies the following

(A1) g0 is a constant and goo > Cs.
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The domain 2 is defined as follows

Q= {(z,y) |y <b(x)},

where the function y = b(x) satisfies the following

(A2) b is a piecewise C! function with b € C(R') and b, € BV(R'), b(z) =0 for z <0

where . A b

V() = tE(I)I-lFO M
Here and in the sequel we denote by BV (E) the set of the functions which have finite total
variation on the interval E of R, and denote by TV{f; E} the total variation of f on E
for f € BV(E). Moreover, ii denotes the outer normal to 9 outside the nondifferentiable
points, and the boundary condition (1.3) holds outside the nondifferentiable points of 9€2.

The problem of steady supersonic flow past a wedge, including the existence and asymp-
totic behaviour of the flow, had been extensively studied by many authors (for instance, see
[1-4, 7,9, 10, 13, 15, 17, 18] and references therein). This paper is a continuation of [17].
We will first establish a global weak solution to the problem (1.1)—(1.4) by using a modified
Glimm Scheme as in [17]. Then we will study the asymptotic behaviour of the solution.

In the remaining part we organize the paper as follows. In Section 2 we recall some basic
results on wave curves and present some estimates on the wave interactions. In Section 3
we point out that the global solution can be obtained by modifying the argument in [17]
slightly. There to get the prior bounds on the total variations of approximate solutions we
introduce a Glimm functional which is different from and is more simple than that used in
[17] and [18], and prove the decreasing of the functional. In Section 4 we first establish some
estimates on the global approximate solution, then determine the asymptotic behaviour of

the solution. Main result, Theorem 4, is present there.

8§ 2. Preliminaries

2.1. Wave curves

Let us recall some basic results about the system (see [4, 17, 18]). This system is genuinely
nonlinear and hyperbolic if z-direction is regarded as the time direction. It is obvious that

for (u,v) close to (g0, 0) the system has two distinct characteristics

wv — evu? +v2 — 2

A=
w2 — 2 ;
uv + evu? +v2 — 2
AQZ ) D) )
uZ —c

and the corresponding right eigenvectors
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with smooth function ey (u,v) > 0 and
re - Vg =1, k=1,2

for any (u,v) near (goo,0) (see [17]).
Let Ra(uo,vo) and Sz (ug, vo) (or Ry (ug,vo) and S (ug,vo), respectively) be, respectively,
the epicycloid and shock polar in the supersonic region with respect to A\s-characteristic field

(or Ai-characteristic field, respectively) passing through (ug,vg), and denote

R3 (uo, v0) = {(u,v) € Ra(uo, o) | ¢ < qo},

Sy (o, vo) = {(u,v) € Sa(uo,v0) | ¢ > qo},

R{ (uo,v0) = {(u,v) € Ri(uo,v0) | ¢ > qo},
(uo,vo) = {(u,v)

S1 (uo,v0) = {(u,v) € S1(uo,v0) | ¢ < qo},

and
Tj(uo,v0) = R (uo,v0) U S} (uo,vo), J=12,

where ¢ = vVu? +v2. As shown in [17], T)j(u;, v;) can be parameterized by
e — (e, Un)

in a neighbourhood of Us,, Oy, (Us), with ®; € C? and

7 (2.1)
00,
De; oo i (U1). (2.2)

Moreover, ¢; > 0 along R;’(Ul) N Os, (Uso) while €; < 0 along S; (U;) N Os, (Uso) (= 1,2).
Denote
@(Eg,el,Ul) = @2(62,@1(61,[]1)). (23)

Then for any pair of supersonic states U, and U; close to Us, the equations (1.1) and (1.2)
with initial condition

‘z:a

U, if x >0,
U, if 2 <0,

can be reduced to the following equation
U, =o(8,a,U,). (2.4)

As shown in [17] (see [8]), by (2.1) and (2.2), the equation (2.4) has a unique solution («, 3)
in a neighbourhood of 6 =a =0and U; = U, = Uy.

For simplicity, we will use the notation {U;,U,} = («,3) to denote the solution of the
equation (2.4) in the sequel, and call the parameters o and § the magnitude of the weak
l-wave and the magnitude of weak 2-wave respectively. It is obvious that a > 0 along R
and 3 > 0 along RJ while a < 0 along S; and 3 < 0 along S, .
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2.2. Estimates on the interactions and reflections

As in [17], to construct the approximate solutions to the problem (1.1)—(1.4), we need
to solve a class of initial boundary value problems. Let us recall some notations and results
from [17].

Let Ck(ag,br) (k= 1,2,3) be points in R? with ax41 > ax > 0 (k= 1,2) and

by — by b3 — by

wq = arctan , Wwg = arctan , W=ws— w1,
az — ay as — as
bi+1 — bk

O = {(@y) |ar <o oy < 2 @ — ) 1),
ap4+1 — Ak

br+1 — bi
2:{($,y)‘ak<$<ak+1,y:7+l (x_ak)"‘bk}v
Q41 — g

(=bkt1 + bi, g1 — ax)

nE = .
P (“brgr + bk)2 + (a1 — ar)?
y C3
x
Cy
C2 F/
r 2
U,
0l U,
Ql Um QQ €
/0‘ U,
U

Fig. 1. Boundary interaction

We also set
0, ifa>0andb>0,
Ala,b) = _ (2.5)
|al|b], otherwise .
Then, we consider the following problem
(pu)I + (pv)y = Oa in QQ?
Vgp — Uy = 0, in Qo,
v 2 (2.6)
U| _ =U,
r=az
U-ny =0, on 'y,

where U = (u,v). For this problem, we have obtained the estimates on the solutions in [17]

as follows.
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Lemma 2.1. There exist §; > 0 (i = 2,3) and 65 > 0 such that if Uj, Up,, Uy € Os,(Uso)
and wy,ws € (—d3,03) with {U;, Uy} = (0,a), {Un,Ur} = (7,0) and U, - i1 = 0, then there
exists a unique € € (—08%,0%) and a constant state Uy with {U;,Us} = (€,0) such that the
mized problem (2.6) in Qo with the initial data U|z:a2 = U; admits an admissible solution
U consisting of a weak 1-wave with magnitude € and satisfying U = Us in a neighborhood of

T, (see Fig. 1). Moreover,
e=v+ Kia+ Kow (2.7)

with
Kj:Kj(w,wl,a,'y,Ul)>0, j=0,1,
where the bounds of Ky and K1 depend only on the system and Uy.

Lemma 2.2. Let constant states Uy, Uy, U, and Us, and the magnitudes of waves, «,

v and €, be given by Lemma 2.1. Then
Ur = Uz = O(1)[|a] + |w]] (2.8)

where the bound of O(1) depends only on the system.

Proof. It follows from Lemma 2.1 that

@(O,V,W(Q,O,Ul)) - Ura (29)
0(0,¢,U1) = Us (2.10)

with
e=v+ Kia+ Kow. (2.11)

Then, by (2.9) and by Glimm interaction estimates (see [5, 6]) we have
Ur = @(a+0)|allyl, v+ 0)|ally], U), (2.12)
which, together with (2.9) and (2.10), implies that

Uz = Ur| = |[9(0,6,U1) — ¥(a+O)[ally],y + O)lally], Ui)]
= O0M)(la+O@)|ally]l +[e =y = OM)|a[¥]])- (2.13)

Therefore, the desired result follows from (2.11) and (2.13). The proof is complete.

8§ 3. Global Solution

We use the same scheme as given in [17] to define the global approximate solutions
(see [18]). For any Az > 0 and Ay > 0 such that Ay/Az < 1, let yr = b(kAz) and let
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{Ar = (kAz,y,)}72,. Denote

7‘%41_ Yo _ arctan Yk — Yk1 _Ayk_l , k>1,
x x
Y1 — Yo

Az

T ={(z,y) | kAz <z < (k+ 1)Az, y =b(z, k, Ax)};

w(Ay) = arctan

w(Ap) = arctan

and 77 denotes the outer normal to I'y; denote
Qagr = {(z,y) | kAz <z < (k+1)Az, y < bz, k, Ax)},

Y

A

Art1

Fig. 2. Approximate domain
where b(x, kAx) = yi, + %(x — kAx); and define the approximate domain as follows
Qaz = U Qaz ks
k>0

see Fig. 2.

Choose a set of mesh points
{Pin | Pen = (kAz,an), k>0, —00 <n < +oo}

in R? where
apn = (2n + 1+ 0p) Ay + yi

and 0, is randomly and independently chosen in (—1,1). Then, as in [17], we define the
global approximate solution Uaz ¢ in Qa, for any Az and § = (61,02, --) by carrying out
the following steps inductively.

For k = 0, Uag,p can be defined in {0 < z < Az} N Qa, with UAI,9|
shock polar.

2=0,y<0 Uso by

Inductively assume that the approximate solution Uaz ¢ has been constructed for {0 <
x < kAz}, then for small Ay/Ax we can define the Uaz in {kA < x < (k + 1)Az} by
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defining Uaz,p in Tg,, (n < 0). Here for n < —1, T}, is defined to be the rhombus whose
vertices are (kAz, (2n— 1)Ay+yk), (kAz, 2n+ 1)Ay+yi), (k+1)Az, (2n — 1) Ay+yr+1)
and ((k+1)Az, (2n 4+ 1)Ay + yg+1), while Ty o is defined to be the rhombus whose vertices
are ((k + DAz, yry1), (B + 1Az, —Ay + yiy1), (kAz,yi) and (kAx, —Ay + yi).

First, for n < —1, in each rhombus 7} ,, the approximate solution Uag,¢ is defined to be

the solution Uy = (uk,vx) to the Riemann problem

(pkuk)I + (pk’l)k)y =0, in Tk,nv

(’Uk)l' - (uk)y = 07 in Tk,ru (31)
7170

Uk|x:kAm - Uk’

where pr = p(ug, vg) and
U(y) = Unwo(kAz—, ay.n), y € (yr +2nAy, yr + (2n + 1)Ay).

Secondly, in rhombus T} o, the approximate solution Uag ¢ is defined to be the solution

U, = (ug, vi) to the following mixed problem

(Prur)z + (prvk)y =0, in T},
(vi)z — (ur)y =0, in T},

- (3.2)
Uk |x:kAx = Uk’

Uy - ik |p, =0,

where pr = p(uk, vg).

To show that Uaz,¢ can be defined globally by the above steps, we need to establish the
estimates on Ua,,g on a class of space-like curves. We connect the mesh point Py, by two
line segments to the two mesh points, Py_1,,—1 and Py_1 5, if ; <0, or connect the mesh

point Py, by two line segments to the two mesh points Py_1 , and Py_1 541 if 05 > 0.

Definition 3.1. A j-mesh curve is defined to be an unbounded space-like curves lying
in the strip {(j — 1)Az < z < (j + 1)Az} and consisting of the segments of the form
Py 1 N(Opy1,n), Prn—15(0k,n).

It is obvious that for any 0 < k < 400 each k-mesh curve I divides the R? into I part
and I~ part, the I~ being the one containing the set {x < 0}. As in [16] we also partially
order these mesh curves by saying J; > J if every point of the mesh curve Jj is either on Jo
or contained in J2+ , and call J an immediate successor to I if J > I and every mesh point
of J except one is on I.

For any k-mesh curve J, UA%9|  consists of various weak shock and rarefaction waves.

Definition 3.2. Define

Li(7) = Y {layl + ay crosses I}, j=1.2,

Lo(J) = ) {lw(A)]: A€ s},

Q;(J) = Z{A(aj,ﬁj) : o and B cross J, and o lies below 55 on J}, ji=1,2
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Q21 (J) = Z{|a2||ﬂ1| : ag and [y cross J, and ag lies below 31 on J}.

Here the summations in Lj, Q; (j =1,2) and Q21 are taken over the set J N Qag; and Q
is the set of boundary points Ay that lies in JT, that is,

Qs = {Ax | A, € TT N0, Ay, = (kAz, y1)}:

A(a,b) is defined by (2.5).
Choose a positive constant K > 0 such that
K — max{|K1|, |Ko|} > 1 (3.3)
for any U € Band w € Bj.
Then for any constant C' > 0, we define the following
Definition 3.3.
L(J) = KLo(J) + L1(J) + KLz(J),
Q(J) = Q2(J) + Q1(J) + Qa1(J),
F(J)=L(J)+ CQ(J).
Next, we will estimate the functional F'. To do this, let I and J be two k-mesh curves for

some k > 0 such that J is an immediate successor to I, and suppose that A is the diamond

between I and J. Due to the location of A, two cases are to be considered.

(1) If A C QAg, then let @ and 3 be the waves entering A, and as in [5, 11, 16] define

Q) = laillB)l,

where the sum is taken over all pairs for which the i-wave from a and j-wave from 3 are
approaching;

(2) I ANOQa, # 0, let Qy = Q\{Ar} with Ay = (kAz,yx) for some k& > 0, and let
I=1IyUl and J = Iy U J such that 9A = I’ U J’, and let v; and as be the 1-wave and
2-wave respectively crossing I’ with oo lying below 41 on I. In addition, by the construction
of approximate solution, let €; be the weak 1-wave crossing J' (see Fig. 3).

Define

|w| + |, if ANOQaL # 0,

Q(A), if A C Q.

EAx,G(A) =

Then, in the same way as in [17] and [18], we can prove the following

Proposition 3.1. If UAx,0|I € B, then there exist constants & > 0 and C > 0,
independent of Uny 0, k, Az, 0, I and J, such that if F(I) < §' then there hold the following

Unzp|, € B (3.4)
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Iy

Fig. 3. Case ANOQa, # 0

and

F(I) = F(J) > {Eazo(A) (3.5)

Proof. If A C Qay, then the standard argument as in [5] (see [16]) leads to the desired
result.
If ANOQa, # 0, then by Lemma 2.1,

L(J) = L(I) < (Ko — K)|w| + (K1 — K)|az| < =(Jw| + |az]),
which implies the desired result. Therefore, the proof is complete.

Using Proposition 3.1 and carrying out the same steps as in [5] and [11], we can deduce
the following
Proposition 3.2. If TV (b ) + |arctanb’(0)| is sufficiently small, then there is a null
+oo +oo
set N C [][—1,1] such that for each 6 € ] [—1,1]\N, there exist a sequence Ax; — 0 such

k=0 k=0
that

Ug= lim Uag,,e
Agc,',—>0

is a weak solution to the problem (1.1)—(1.4), where the limit is taken in L. (2). Moreover,
Uy € LOO(Q).

8§4. Asymptotic Behaviour

+oo
Let 6 € T[[-1,1]\N and be equidistributed. To determine the asymptotic behaviour
k=0

of the solution Ug, we need further estimates on Ua, . First, Proposition 3.1 implies the
following
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Lemma 4.1. There exists a constant My > 0, independent of Uaz,e, 0 and Ax, such
that

> Ense(A) < M. (4.1)

Here the summation is over all the diamonds.

Moreover, let Ty, = U A0, where Ay g is the diamond centered at A, and let Laz o(T'p)

be the summation of the strength of waves leaving I'y. Then by Lemma 2.1 and Lemma 4.1,

we have the following

Lemma 4.2. There exists a constant My independent of Ung e, Ax, 0 such that

Lazo(Ty) < Mo Z Enzo(A). (4.2)
A

Let La(a—) be the amount of all 2-waves in Uy crossing the line z = a for any a > 0;

and LQAE’G(a) denotes the amount of 2-waves in Ua, ¢ crossing the line z = a for any a > 0.
Lemma 4.3. Ly(z—) — 0 as z — +o0.

Proof. Asin [6], we denote by dEa, ¢ the measures assigning the quantity Eagz g(A) to
the center of A. Then by Lemma 4 we can select a subsequence which we still denote by
{Eaz,,0(A)}; so that

dEAg, 0 — dEy as Az — 0

with Ey(€2) < oo, therefore for any € > 0 we can choose a . > 0 independent of {Ua, ¢}
and {Az} such that

Z Eng0(Apn) <€ for sufficiently small Ax;. (4.3)
k>[ze/Ax]

Moreover, we can find a y., independent of {Az} and {Ua, ¢}, such that
UAa:,O(xev y) =Us for Y < Ye- (44)

Let xaz,0 be the minimum approximate 2-characteristics in Ua, g, issuing from the point

(e, ye). According to the construction of the approximate solutions, we have
IXa0(x +h) = xa,6(x)] < B(|h| + Az)

+oo

for some constant B independent of Az and 6. Then, for § € [] [-1,1]\N we can select a
k=0

subsequences {A(l)} of {Az;} such that

XA),0 — X6

uniformly on every bounded interval as A(l) — 0 for some x4 € Lip with xj bounded.
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Let the characteristic y = xp(z) intersect 0 at (te, xo(tc)) for some t.. Then, as in [6],
applying the approximate conservation law to the domain below the characteristic xa(),0,
we have

L3 (x) = 0(1)e  for x> 21,

when A(l) is close enough to zero. Here the bound of O(1) is independent of €, Ua, ¢ and
Ax;. This implies that
Lo(z) = O(1)e for z > 2t..

The proof is complete.

Next, we will study the asymptotic behaviour of the trace of Uy on boundary. To this

end, from Lemmas 2.2, 4.1 and 4.2 we can first deduce the following

Lemma 4.4. Let
Waz,o(x) = Uagz,o(x, baz(x)).

Then there exists a constant M > 0 depending only on the system such that
TV{Wag,0;[0,+00)} < M. (4.5)
Then, choose a subsequence {A;} of {Az;} so that
Wa,0 — Wo (4.6)

: 1
m Lloc

imate solutions, we have

([0,00)) as A; — 0 for some Wy € L*°([0,00)). From the construction of the approx-

Lemma 4.5. Let Wy be given by (4.6). Then
Wy € BV(]0,0))
and
Wo(xz—) - (=b(z—),1) = 0. (4.7)
And we can determine the asymptotic behaviour of the trace of Uy on 9f) as follows.
Lemma 4.6. There holds the following

sup  [Us(a—,y) — Wala—)| — 0 (48)

e <y<b(z) potes

for any X € (sup Ay, inf b').

Proof. For any € > 0, let z. be given as in the proof of Lemma 4.3. In the same way as
in the proof of Lemma 4.3, we can have a sequence of approximate maximal 1-characteristics
9A(1),0, issuing from (z, b(x)), such that gaqy,e — go uniformly on every bounded interval
as A(l) — 0 for some gy € Lip with bounded derivative gj.
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Let {y = go(x)} intersect the straight line {y = Az} at some point X2 = (2, Az’). Then,
when A(l) is close enough to zero, by the approximate conservation laws and by Lemmas

4.1-4.3, we can deduce in the same way as in [6] that

~osup |Uaye(a—y) = Uagye(a—bap ()| = O(1)e  for x> 2a,
Ar<y<baa(z)

where the bound of O(1) is independent of €, Uaz,¢ and Az. Therefore, passing to the limit,
we have

sup  |Ugp(z—,y) — Wo(z—))] = O(1)e for x > 2z..
Aa<y<b()

The proof is complete.
From Lemmas 4.3 and 4.6, we can deduce the following

Lemma 4.7. Let
Wy(+00) = lim Wy(z—)

z—Fo0
and let
b (+o0) = IEIEOO by (x+).
Then
lim sup [\ (Ug(z—,y) — M(We(+00))[ =0
PO Se<y<b(a)
and

Wo(400) - (—b'(+00),1) = 0.

Then, by Lemmas 4.3 and 4.7 and by Liu’s result (see [12]), we have the following
Lemma 4.8. (1) If \y(Wy(400)) > A (Ux), then

W0(+OO) € Sl_(Uoo)'
(2) If M (Wo(+00)) < M1 (Uso), then
Wy (+00) € R (Uso).

Therefore, the equation
®(0, oo, Uso) = Wy (+00)
has a unique solution .
Taking into account the geometry of the boundary, we can deduce the following
Lemma 4.9. Suppose that | arctan(b’(+00))| < 2. Then
(1) if b/ (+00) > 0 then A\ (Uso) < A1 (Wo(4+00));
(ii) if b'(+00) = 0 then A\ (Us) = M1 (Wy(+00));
(ili) if b’ (+00) < 0 then A1 (Uso) > A1 (Wy(+00)).
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Proof. By Lemma 2.1 and Lemmas 4.7 and 4.8, we have
Qoo = Koweo,

where ws, = arctand’(4+o00) and Ky > 0. Then, noticing that

d
“ (T - =1,
SN (V0,6 V)|

we have

M (Wp(+00)) — M (Uso) = Kowoo + O(1)|wool?,
which implies the desired result.

Then, by carrying out same argument as in [12] (see also [14]) and by making use of
Lemmas 4.6, and 4.9, we have

Theorem 4.1. Suppose that TV{l/,;[0,400)} + |arctand’(0)| is small. Then

(1) if V' (+00) > 0, then the amount of shock waves approaches zero as © — oo and
Up(z,y) approaches the rarefaction (0o, 0);

(ii) if b'(+00) < 0, then there exists a 1-shock which approaches the shock (s, 0) both
in strength and speed as x — —4o00; moreover, the total variation of Uy outside this shock
wave approaches zero as ¥ — +00;

(iii) if b'(+o0) = 0, then sup |U(z,y) — Uso| — 0 as © — 4o00. Here (oo, 0) is given

y<b(z)
in Lemma 4.8.

Acknowledgements. Part of this work was done during the author’s stay in Osaka
University for a program sponsored by the Monbusho of Japanese Government. The author
is deeply indebted to Professor Chen Shuxing for his leading to the problems of this category.
The author’s thanks also go to Professor Akitaka Matsumura and his seminar group for their

hospitality.

References

[1] Chen, S., Supersonic flow past a concave wedge, Science in China, Series A, 10:27(1997), 903-910.

[2] Chen, S., Asymptotic behaviour of supersonic flow past a convex combined wedge, Chin. Ann. Math.,
19B:3(1998), 255-264.

[3] Chen, S., Global existence of supersonic flow past a curved convex wedge, J. Partial Diff. Egs., 11(1998),
73-82.

[4] Courant, R. & Friderich, K. O., Supersonic Flow and Shock Waves, Wiley Interscience, New York,
1948.

[5] Glimm, J., Solution in the large for nonlinear systems of conservation laws, Comm. Pure Appl. Math.,
18(1965), 695—715.

[6] Glimm, J., & Lax, P. D., Decay of Solution of Systhems of Hyperbolic Conservation Laws, Mem. Amer.
Math. Soc. 101, 1970.

[7] Gu, C., A method for solving the supersonic flow past a curved wedge, Fudan J. (Natur. Sci.), 7(1962),
11-14.



392 ZHANG, Y. Q.

[8] Lax, P. D., Hyperbolic systems of conservation laws II, Commun. Pure Appl. Math., 10(1957), 537-566.
[9] Li, T., On a free boundary problem, Chin. Ann. Math., 1(1980), 351-358.

[10] Lien, W. & Liu, T. P., Nonlinear stability of a self-similar 3-dimensional gas flow, Commun. Math.
Phys., 204(1999), 525-549.

[11] Liu, T. P., The deterministic version of the Glimm scheme, Commun. Math. Phys., 57(1977), 135-148.

8
9

[12] Liu, T. P., Large-time behaviour of initial and initial-boundary value problems of a general system of
hyperbolic conservation laws, Commun. Math. Phys., 55(1977), 163-177.

[13] Morawetz, C. S., On a weak solution for transonic flow problem, Comm. Pure Appl. Math., 38(1985),
797-818.

[14] Sablé-Tougeron, M., Le N-ondes de Lax pour le probleme mixte, Commun. in Partial Differential
Equations, 19:9-10(1994), 1449-1479.

[15] Schaffer, D. G., Supersonic flow past a nearly straight wedge, Duke Math. J., 43(1976), 637-670.
[16] Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

[17] Zhang, Y., Global existence of steady supersonic potential flow past a curved wedge with piecewise
smooth boundary, STAM J. Math. Anal., 31:1(1999), 166—183.

[18] Zhang, Y., Steady supersonic flow past an almost straight wedge with large vertex angle, Journal Differ.
Eqs., 192:1(2003), 1-46.



