
Chin. Ann. Math.
26B:3(2005),379–392.

ON THE ASYMPTOTIC BEHAVIOUR OF THE
STEADY SUPERSONIC FLOWS AT INFINITY∗∗

ZHANG Yongqian∗

Abstract

This paper studies the asymptotic behaviour of steady supersonic flow past a piece-
wise smooth corner or bend. Under the hypothese that both vertex angle and the total
variation of tangent along the boundary are small, it is shown that the solution can
be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the
solution is determined by the velocity of incoming flow and the limit of the tangent of
the boundary at infinity.
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§ 1 . Introduction

We are concerned with the asymptotic behaviour at infinity of steady planar potential
flow of gas past a corner or a bend with a piecewise smooth boundary. That is, we study
the asymptotic behaviour of the solution to the following problem

(ρu)x + (ρv)y = 0, in Ω, (1.1)

vx − uy = 0, in Ω, (1.2)

(u, v) · �n∣∣
∂Ω

= 0, (1.3)

(u, v)
∣∣
x<0

= (q∞, 0), (1.4)

where (u, v) and ρ are the velocity and the density, respectively, which satisfy the following
Bernoulli equation

γ − 1
γ + 1

(u2 + v2) +
2

γ + 1
c2(ρ) = c2

∗ (1.5)

with c2(ρ) = γAργ−1 for some constant A > 0 and the adiabatic exponent γ > 1. The
velocity of incoming flow, U∞ = (q∞, 0), satisfies the following

(A1) q∞ is a constant and q∞ > c∗.
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The domain Ω is defined as follows

Ω = {(x, y) | y < b(x)},

where the function y = b(x) satisfies the following
(A2) b is a piecewise C1 function with b ∈ C(R1) and b′+ ∈ BV (R1), b(x) = 0 for x ≤ 0

where

b′+(x) = lim
t→0+0

b(x + t) − b(x)
t

.

Here and in the sequel we denote by BV (E) the set of the functions which have finite total
variation on the interval E of R, and denote by TV {f ; E} the total variation of f on E

for f ∈ BV (E). Moreover, �n denotes the outer normal to ∂Ω outside the nondifferentiable
points, and the boundary condition (1.3) holds outside the nondifferentiable points of ∂Ω.

The problem of steady supersonic flow past a wedge, including the existence and asymp-
totic behaviour of the flow, had been extensively studied by many authors (for instance, see
[1–4, 7, 9, 10, 13, 15, 17, 18] and references therein). This paper is a continuation of [17].
We will first establish a global weak solution to the problem (1.1)–(1.4) by using a modified
Glimm Scheme as in [17]. Then we will study the asymptotic behaviour of the solution.

In the remaining part we organize the paper as follows. In Section 2 we recall some basic
results on wave curves and present some estimates on the wave interactions. In Section 3
we point out that the global solution can be obtained by modifying the argument in [17]
slightly. There to get the prior bounds on the total variations of approximate solutions we
introduce a Glimm functional which is different from and is more simple than that used in
[17] and [18], and prove the decreasing of the functional. In Section 4 we first establish some
estimates on the global approximate solution, then determine the asymptotic behaviour of
the solution. Main result, Theorem 4, is present there.

§ 2 . Preliminaries

2.1. Wave curves

Let us recall some basic results about the system (see [4, 17, 18]). This system is genuinely
nonlinear and hyperbolic if x-direction is regarded as the time direction. It is obvious that
for (u, v) close to (q∞, 0) the system has two distinct characteristics

λ1 =
uv − c

√
u2 + v2 − c2

u2 − c2
,

λ2 =
uv + c

√
u2 + v2 − c2

u2 − c2
,

and the corresponding right eigenvectors

rk(u, v) = ek

(
−λk

1

)
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with smooth function ek(u, v) > 0 and

rk · ∇λk = 1, k = 1, 2

for any (u, v) near (q∞, 0) (see [17]).
Let R2(u0, v0) and S2(u0, v0) (or R1(u0, v0) and S1(u0, v0), respectively) be, respectively,

the epicycloid and shock polar in the supersonic region with respect to λ2-characteristic field
(or λ1-characteristic field, respectively) passing through (u0, v0), and denote

R+
2 (u0, v0) = {(u, v) ∈ R2(u0, v0) | q ≤ q0},

S−
2 (u0, v0) = {(u, v) ∈ S2(u0, v0) | q ≥ q0},

R+
1 (u0, v0) = {(u, v) ∈ R1(u0, v0) | q ≥ q0},

S−
1 (u0, v0) = {(u, v) ∈ S1(u0, v0) | q ≤ q0},

and
Tj(u0, v0) = R+

j (u0, v0) ∪ S−
j (u0, v0), j = 1, 2,

where q =
√

u2 + v2. As shown in [17], Tj(ul, vl) can be parameterized by

εj �→ Φj(εj , Ul)

in a neighbourhood of U∞, Oδ1(U∞), with Φj ∈ C2 and

Φj

∣∣
εj=0

= Ul, (2.1)

∂Φj

∂εj

∣∣∣
εj=0

= rj(Ul). (2.2)

Moreover, εj > 0 along R+
j (Ul) ∩ Oδ1(U∞) while εj < 0 along S−

j (Ul) ∩ Oδ1(U∞) (j = 1, 2).
Denote

Φ(ε2, ε1, Ul) = Φ2(ε2, Φ1(ε1, Ul)). (2.3)

Then for any pair of supersonic states Ur and Ul close to U∞, the equations (1.1) and (1.2)
with initial condition

U
∣∣
x=a

=

{
Ur, if x > 0,

Ul, if x < 0,

can be reduced to the following equation

Ur = Φ(β, α, Ul). (2.4)

As shown in [17] (see [8]), by (2.1) and (2.2), the equation (2.4) has a unique solution (α, β)
in a neighbourhood of β = α = 0 and Ul = Ur = U∞.

For simplicity, we will use the notation {Ul, Ur} = (α, β) to denote the solution of the
equation (2.4) in the sequel, and call the parameters α and β the magnitude of the weak
1-wave and the magnitude of weak 2-wave respectively. It is obvious that α > 0 along R+

1

and β > 0 along R+
2 while α < 0 along S−

1 and β < 0 along S−
2 .
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2.2. Estimates on the interactions and reflections

As in [17], to construct the approximate solutions to the problem (1.1)–(1.4), we need
to solve a class of initial boundary value problems. Let us recall some notations and results
from [17].

Let Ck(ak, bk) (k = 1, 2, 3) be points in R2 with ak+1 > ak > 0 (k = 1, 2) and

ω1 = arctan
b2 − b1

a2 − a1
, ω2 = arctan

b3 − b2

a3 − a2
, ω = ω2 − ω1,

Ωk =
{
(x, y)

∣∣∣ ak ≤ x ≤ ak+1, y <
bk+1 − bk

ak+1 − ak
(x − ak) + bk

}
,

Γ′
k =

{
(x, y)

∣∣∣ ak < x < ak+1, y =
bk+1 − bk

ak+1 − ak
(x − ak) + bk

}
,

�nk =
(−bk+1 + bk, ak+1 − ak)

(−bk+1 + bk)2 + (ak+1 − ak)2
.

�
y

� x

�
�

�
�

�
�

ε

���������

���������C1 �
�

�
�

��
γ

������ α

Ω1 Ω2

C2

C3

Γ′
1

Γ′
2

U2

Ul

Um

Ul

Ur

Fig. 1. Boundary interaction

We also set

Δ(a, b) =

{
0, if a ≥ 0 and b ≥ 0,

|a||b|, otherwise .
(2.5)

Then, we consider the following problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ρu)x + (ρv)y = 0, in Ω2,

vx − uy = 0, in Ω2,

U
∣∣
x=a2

= Ul,

U · �n2 = 0, on Γ′
2,

(2.6)

where U = (u, v). For this problem, we have obtained the estimates on the solutions in [17]
as follows.



ON THE ASYMPTOTIC BEHAVIOUR 383

Lemma 2.1. There exist δi > 0 (i = 2, 3) and δ′2 > 0 such that if Ul, Um, Ur ∈ Oδ2(U∞)
and ω1, ω2 ∈ (−δ3, δ3) with {Ul, Um} = (0, α), {Um, Ur} = (γ, 0) and Ur · �n1 = 0, then there
exists a unique ε ∈ (−δ′2, δ′2) and a constant state U2 with {Ul, U2} = (ε, 0) such that the
mixed problem (2.6) in Ω2 with the initial data U

∣∣
x=a2

= Ul admits an admissible solution
U consisting of a weak 1-wave with magnitude ε and satisfying U = U2 in a neighborhood of
Γ′

2 (see Fig. 1). Moreover,

ε = γ + K1α + K0ω (2.7)

with

Kj = Kj(ω, ω1, α, γ, Ul) > 0, j = 0, 1,

where the bounds of K0 and K1 depend only on the system and U∞.

Lemma 2.2. Let constant states Ul, Um, Ur and U2, and the magnitudes of waves, α,
γ and ε, be given by Lemma 2.1. Then

∣∣Ur − U2

∣∣ = O(1)[|α| + |ω|] (2.8)

where the bound of O(1) depends only on the system.

Proof. It follows from Lemma 2.1 that

Φ(0, γ, Ψ(α, 0, Ul)) = Ur, (2.9)

Φ(0, ε, Ul) = U2 (2.10)

with

ε = γ + K1α + K0ω. (2.11)

Then, by (2.9) and by Glimm interaction estimates (see [5, 6]) we have

Ur = Φ
(
α + O(1)|α||γ|, γ + O(1)|α||γ|, Ul

)
, (2.12)

which, together with (2.9) and (2.10), implies that

|U2 − Ur| = |Ψ(0, ε, Ul) − Ψ(α + O(1)|α||γ|, γ + O(1)|α||γ|, Ul)|
= O(1)(|α + O(1)|α||γ|| + |ε − γ − O(1)|α||γ||). (2.13)

Therefore, the desired result follows from (2.11) and (2.13). The proof is complete.

§ 3 . Global Solution

We use the same scheme as given in [17] to define the global approximate solutions
(see [18]). For any Δx > 0 and Δy > 0 such that Δy/Δx < 1, let yk = b(kΔx) and let
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{Ak = (kΔx, yk)}∞k=0. Denote

ω(Ak) = arctan
yk+1 − yk

Δx
− arctan

yk − yk−1

Δx
, k ≥ 1,

ω(A0) = arctan
y1 − y0

Δx
,

Γk = {(x, y) | kΔx < x < (k + 1)Δx, y = b(x, k, Δx)};

and �n denotes the outer normal to Γk; denote

ΩΔx,k = {(x, y) | kΔx ≤ x < (k + 1)Δx, y < b(x, k, Δx)},

�
y

� x
����������

Ak+1

ΩΔx,k

Ak Γk

Fig. 2. Approximate domain

where b(x, kΔx) = yk + yk+1−yk

Δx (x − kΔx); and define the approximate domain as follows

ΩΔx =
⋃
k≥0

ΩΔx,k,

see Fig. 2.
Choose a set of mesh points

{Pk,n | Pk,n = (kΔx, ak,n), k ≥ 0, −∞ < n < +∞}

in R2 where
ak,n = (2n + 1 + θk)Δy + yk

and θk is randomly and independently chosen in (−1, 1). Then, as in [17], we define the
global approximate solution UΔx,θ in ΩΔx for any Δx and θ = (θ1, θ2, · · · ) by carrying out
the following steps inductively.

For k = 0, UΔx,θ can be defined in {0 ≤ x < Δx} ∩ ΩΔx with UΔx,θ

∣∣
x=0,y<0

= U∞ by
shock polar.

Inductively assume that the approximate solution UΔx,θ has been constructed for {0 ≤
x < kΔx}, then for small Δy/Δx we can define the UΔx,θ in {kΔ ≤ x < (k + 1)Δx} by
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defining UΔx,θ in Tk,n (n ≤ 0). Here for n ≤ −1, Tk,n is defined to be the rhombus whose
vertices are (kΔx, (2n−1)Δy + yk), (kΔx, (2n+1)Δy + yk), ((k +1)Δx, (2n−1)Δy+ yk+1)
and ((k + 1)Δx, (2n + 1)Δy + yk+1), while Tk,0 is defined to be the rhombus whose vertices
are ((k + 1)Δx, yk+1), ((k + 1)Δx,−Δy + yk+1), (kΔx, yk) and (kΔx,−Δy + yk).

First, for n ≤ −1, in each rhombus Tk,n the approximate solution UΔx,θ is defined to be
the solution Uk = (uk, vk) to the Riemann problem⎧⎪⎪⎨

⎪⎪⎩
(ρkuk)x + (ρkvk)y = 0, in Tk,n,

(vk)x − (uk)y = 0, in Tk,n,

Uk

∣∣
x=kΔx

= U0
k ,

(3.1)

where ρk = ρ(uk, vk) and

U0
k (y) = UΔx,θ(kΔx−, ak,n), y ∈ (yk + 2nΔy, yk + (2n + 1)Δy).

Secondly, in rhombus Tk,0, the approximate solution UΔx,θ is defined to be the solution
Uk = (uk, vk) to the following mixed problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ρkuk)x + (ρkvk)y = 0, in Tk,0,

(vk)x − (uk)y = 0, in Tk,0,

Uk

∣∣
x=kΔx

= U0
k ,

Uk · �nk

∣∣
Γk

= 0,

(3.2)

where ρk = ρ(uk, vk).
To show that UΔx,θ can be defined globally by the above steps, we need to establish the

estimates on UΔx,θ on a class of space-like curves. We connect the mesh point Pk,n by two
line segments to the two mesh points, Pk−1,n−1 and Pk−1,n if θk ≤ 0, or connect the mesh
point Pk,n by two line segments to the two mesh points Pk−1,n and Pk−1,n+1 if θk > 0.

Definition 3.1. A j-mesh curve is defined to be an unbounded space-like curves lying
in the strip {(j − 1)Δx ≤ x ≤ (j + 1)Δx} and consisting of the segments of the form
Pk,n−1N(θk+1, n), Pk,n−1S(θk, n).

It is obvious that for any 0 < k < +∞ each k-mesh curve I divides the R2 into I+ part
and I− part, the I− being the one containing the set {x < 0}. As in [16] we also partially
order these mesh curves by saying J1 > J2 if every point of the mesh curve J1 is either on J2

or contained in J+
2 , and call J an immediate successor to I if J > I and every mesh point

of J except one is on I.
For any k-mesh curve J , UΔx,θ

∣∣
J

consists of various weak shock and rarefaction waves.

Definition 3.2. Define

Lj(J) =
∑

{|αj| : αj crosses J}, j = 1, 2,

L0(J) =
∑

{|ω(A)| : A ∈ ΩJ},

Qj(J) =
∑

{Δ(αj , βj) : αj and βj cross J , and αj lies below βj on J}, j = 1, 2,
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Q21(J) =
∑

{|α2||β1| : α2 and β1 cross J , and α2 lies below β1 on J}.

Here the summations in Lj, Qj (j = 1, 2) and Q21 are taken over the set J ∩ ΩΔx; and ΩJ

is the set of boundary points Ak that lies in J+, that is,

ΩJ = {Ak | Ak ∈ J+ ∩ ∂ΩΔ, Ak = (kΔx, yk)};

Δ(a, b) is defined by (2.5).

Choose a positive constant K > 0 such that

K − max{|K1|, |K0|} > 1 (3.3)

for any U ∈ B and ω ∈ B1.
Then for any constant C > 0, we define the following

Definition 3.3.

L(J) = KL0(J) + L1(J) + KL2(J),

Q(J) = Q2(J) + Q1(J) + Q21(J),

F (J) = L(J) + CQ(J).

Next, we will estimate the functional F . To do this, let I and J be two k-mesh curves for
some k > 0 such that J is an immediate successor to I, and suppose that Λ is the diamond
between I and J . Due to the location of Λ, two cases are to be considered.

(1) If Λ ⊂ ΩΔx, then let α and β be the waves entering Λ, and as in [5, 11, 16] define

Q(Λ) =
∑

|αi||βj |,

where the sum is taken over all pairs for which the i-wave from α and j-wave from β are
approaching;

(2) If Λ ∩ ∂ΩΔx 
= ∅, let ΩJ = ΩI\{Ak} with Ak = (kΔx, yk) for some k ≥ 0, and let
I = I0 ∪ I ′ and J = I0 ∪ J ′ such that ∂Λ = I ′ ∪ J ′, and let γ1 and α2 be the 1-wave and
2-wave respectively crossing I ′ with α2 lying below γ1 on I. In addition, by the construction
of approximate solution, let ε1 be the weak 1-wave crossing J ′ (see Fig. 3).

Define

EΔx,θ(Λ) =

⎧⎨
⎩
|ω| + |α2|, if Λ ∩ ∂ΩΔx 
= ∅,
Q(Λ), if Λ ⊂ ΩΔx.

Then, in the same way as in [17] and [18], we can prove the following

Proposition 3.1. If UΔx,θ

∣∣
I

∈ B, then there exist constants δ′ > 0 and C > 0,
independent of UΔx,θ, k, Δx, θ, I and J , such that if F (I) ≤ δ′ then there hold the following

UΔx,θ

∣∣
J
∈ B (3.4)
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Fig. 3. Case Λ ∩ ∂ΩΔx 
= ∅

and

F (I) − F (J) ≥ 1
4
EΔx,θ(Λ). (3.5)

Proof. If Λ ⊂ ΩΔx, then the standard argument as in [5] (see [16]) leads to the desired
result.

If Λ ∩ ∂ΩΔx 
= ∅, then by Lemma 2.1,

L(J) − L(I) ≤ (K0 − K)|ω| + (K1 − K)|α2| ≤ −(|ω| + |α2|),

which implies the desired result. Therefore, the proof is complete.

Using Proposition 3.1 and carrying out the same steps as in [5] and [11], we can deduce
the following

Proposition 3.2. If TV (b′+) + | arctan b′(0)| is sufficiently small, then there is a null

set N ⊂
+∞∏
k=0

[−1, 1] such that for each θ ∈
+∞∏
k=0

[−1, 1]\N , there exist a sequence Δxi → 0 such

that
Uθ = lim

Δxi→0
UΔxi,θ

is a weak solution to the problem (1.1)–(1.4), where the limit is taken in L1
loc(Ω). Moreover,

Uθ ∈ L∞(Ω).

§ 4 . Asymptotic Behaviour

Let θ ∈
+∞∏
k=0

[−1, 1]\N and be equidistributed. To determine the asymptotic behaviour

of the solution Uθ, we need further estimates on UΔx,θ. First, Proposition 3.1 implies the
following
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Lemma 4.1. There exists a constant M1 > 0, independent of UΔx,θ, θ and Δx, such
that

∑
Λ

EΔx,θ(Λ) ≤ M1. (4.1)

Here the summation is over all the diamonds.

Moreover, let Γb =
+∞⋃
k=0

Λk,0, where Λk,0 is the diamond centered at Ak, and let LΔx,θ(Γb)

be the summation of the strength of waves leaving Γb. Then by Lemma 2.1 and Lemma 4.1,
we have the following

Lemma 4.2. There exists a constant M2 independent of UΔx,θ, Δx, θ such that

LΔx,θ(Γb) ≤ M2

∑
Λ

EΔx,θ(Λ). (4.2)

Let L2(a−) be the amount of all 2-waves in Uθ crossing the line x = a for any a > 0;
and LΔx,θ

2 (a) denotes the amount of 2-waves in UΔx,θ crossing the line x = a for any a > 0.

Lemma 4.3. L2(x−) → 0 as x → +∞.

Proof. As in [6], we denote by dEΔx,θ the measures assigning the quantity EΔx,θ(Λ) to
the center of Λ. Then by Lemma 4 we can select a subsequence which we still denote by
{EΔxl,θ(Λ)}l so that

dEΔxl,θ → dEθ as Δxl → 0

with Eθ(Ω) < ∞, therefore for any ε > 0 we can choose a xε > 0 independent of {UΔl,θ}
and {Δx} such that

∑
k≥[xε/Δx]

EΔxl,θ(Λk,n) < ε for sufficiently small Δxl. (4.3)

Moreover, we can find a yε, independent of {Δx} and {UΔl,θ}, such that

UΔx,θ(xε, y) = U∞ for y < yε. (4.4)

Let χΔx,θ be the minimum approximate 2-characteristics in UΔx,θ, issuing from the point
(xε, yε). According to the construction of the approximate solutions, we have

|χΔ,θ(x + h) − χΔ,θ(x)| ≤ B(|h| + Δx)

for some constant B independent of Δx and θ. Then, for θ ∈
+∞∏
k=0

[−1, 1]\N we can select a

subsequences {Δ(l)} of {Δxi} such that

χΔ(l),θ → χθ

uniformly on every bounded interval as Δ(l) → 0 for some χθ ∈ Lip with χ′
θ bounded.
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Let the characteristic y = χθ(x) intersect ∂Ω at (tε, χθ(tε)) for some tε. Then, as in [6],
applying the approximate conservation law to the domain below the characteristic χΔ(l),θ,
we have

LΔx,θ
2 (x) = O(1)ε for x > 2tε

when Δ(l) is close enough to zero. Here the bound of O(1) is independent of ε, UΔl,θ and
Δxl. This implies that

L2(x) = O(1)ε for x > 2tε.

The proof is complete.

Next, we will study the asymptotic behaviour of the trace of Uθ on boundary. To this
end, from Lemmas 2.2, 4.1 and 4.2 we can first deduce the following

Lemma 4.4. Let
WΔx,θ(x) = UΔx,θ(x, bΔx(x)).

Then there exists a constant M > 0 depending only on the system such that

TV{WΔx,θ; [0, +∞)} < M. (4.5)

Then, choose a subsequence {Δl} of {Δxi} so that

WΔl,θ → Wθ (4.6)

in L1
loc([0,∞)) as Δl → 0 for some Wθ ∈ L∞([0,∞)). From the construction of the approx-

imate solutions, we have

Lemma 4.5. Let Wθ be given by (4.6). Then

Wθ ∈ BV([0,∞))

and

Wθ(x−) · (−b(x−), 1) = 0. (4.7)

And we can determine the asymptotic behaviour of the trace of Uθ on ∂Ω as follows.

Lemma 4.6. There holds the following

sup
λ̂x≤y≤b(x)

|Uθ(x−, y) − Wθ(x−)| −→
x→+∞ 0 (4.8)

for any λ̂ ∈ (sup λ1, inf b′).

Proof. For any ε > 0, let xε be given as in the proof of Lemma 4.3. In the same way as
in the proof of Lemma 4.3, we can have a sequence of approximate maximal 1-characteristics
gΔ(l),θ, issuing from (xε, b(xε)), such that gΔ(l),θ → gθ uniformly on every bounded interval
as Δ(l) → 0 for some gθ ∈ Lip with bounded derivative g′θ.
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Let {y = gθ(x)} intersect the straight line {y = λ̂x} at some point X2
ε = (x′

ε, λ̂x′
ε). Then,

when Δ(l) is close enough to zero, by the approximate conservation laws and by Lemmas
4.1–4.3, we can deduce in the same way as in [6] that

sup
λ̂x≤y≤bΔx(x)

|UΔ(l),θ(x−, y) − UΔ(l),θ(x−, bΔ(l)(x))| = O(1)ε for x > 2x′
ε,

where the bound of O(1) is independent of ε, UΔx,θ and Δx. Therefore, passing to the limit,
we have

sup
λ̂x≤y≤b(x)

|Uθ(x−, y) − Wθ(x−))| = O(1)ε for x > 2x′
ε.

The proof is complete.

From Lemmas 4.3 and 4.6, we can deduce the following

Lemma 4.7. Let
Wθ(+∞) = lim

x→+∞Wθ(x−)

and let
b′(+∞) = lim

x→+∞ b′+(x+).

Then
lim

x→+∞ sup
λ̂x≤y≤b(x)

|λ1(Uθ(x−, y) − λ1(Wθ(+∞))| = 0

and
Wθ(+∞) · (−b′(+∞), 1) = 0.

Then, by Lemmas 4.3 and 4.7 and by Liu’s result (see [12]), we have the following

Lemma 4.8. (1) If λ1(Wθ(+∞)) > λ1(U∞), then

Wθ(+∞) ∈ S−
1 (U∞).

(2) If λ1(Wθ(+∞)) ≤ λ1(U∞), then

Wθ(+∞) ∈ R+
1 (U∞).

Therefore, the equation
Φ(0, α∞, U∞) = Wθ(+∞)

has a unique solution α∞.

Taking into account the geometry of the boundary, we can deduce the following

Lemma 4.9. Suppose that | arctan(b′(+∞))| < δ2. Then

( i ) if b′(+∞) > 0 then λ1(U∞) < λ1(Wθ(+∞));

( ii ) if b′(+∞) = 0 then λ1(U∞) = λ1(Wθ(+∞));

(iii) if b′(+∞) < 0 then λ1(U∞) > λ1(Wθ(+∞)).



ON THE ASYMPTOTIC BEHAVIOUR 391

Proof. By Lemma 2.1 and Lemmas 4.7 and 4.8, we have

α∞ = K0ω∞,

where ω∞ = arctan b′(+∞) and K0 > 0. Then, noticing that

d

dε
λ1(Ψ(0, ε, U∞))

∣∣∣
ε=0

= 1,

we have
λ1(Wθ(+∞)) − λ1(U∞) = K0ω∞ + O(1)|ω∞|2,

which implies the desired result.

Then, by carrying out same argument as in [12] (see also [14]) and by making use of
Lemmas 4.6, and 4.9, we have

Theorem 4.1. Suppose that TV{b′+; [0, +∞)} + | arctan b′(0)| is small. Then

( i ) if b′(+∞) > 0, then the amount of shock waves approaches zero as x → ∞ and
Uθ(x, y) approaches the rarefaction (α∞, 0);

( ii ) if b′(+∞) < 0, then there exists a 1-shock which approaches the shock (α∞, 0) both
in strength and speed as x → +∞; moreover, the total variation of Uθ outside this shock
wave approaches zero as x → +∞;

(iii) if b′(+∞) = 0, then sup
y<b(x)

|U(x, y) − U∞| → 0 as x → +∞. Here (α∞, 0) is given

in Lemma 4.8.
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