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Abstract

By means of a nonstandard estimation about the energy functional, the authors
prove the existence of a global attractor for an abstract nonlinear evolution equation. As
an application, the existence of a global attractor for some nonlinear reaction-diffusion
equations with some distribution derivatives in inhomogeneous terms is obtained.
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§ 1 . Introduction

The main purpose of this paper is to prove the existence of the global attractor for the
following abstract dynamical system in Hilbert space:

du

dt
+ Au + g(u) = f. (1.1)

As an application, we consider the existence of the global attractor for the following nonlinear
reaction-diffusion equation

∂u

∂t
− Δu + g(u) = Dif

i + f, (1.2)

u|∂Ω = 0. (1.3)

Corresponding to the abstract dynamical system (1.1), we give three Hilbert spaces H ,
V and D(A) satisfying

D(A) ⊂ V ⊂ H = H∗ ⊂ V ∗, (1.4)

where the injections are all compact continuous, each space is dense in the next one, H∗ and
V ∗ are the dual spaces of H and V respectively. As usual, the norm and the scalar product
on H and V are denoted by | · |, (·, ·) and ‖ · ‖, ((·, ·)) respectively.
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We assume that the operator A is self-adjoint,

A :
V → V ∗

D(A) → H
is an isomorphism (1.5)

and there exists α > 0 such that

〈Au, u〉V ∗ ≥ α‖u‖2 for any u ∈ V. (1.6)

The inner product and the norm on D(A) are denoted by (Au, Au) and |Au| = (Au, Au)
1
2

respectively.
Under these assumptions, A−1 : H → D(A) ↪→ H is compact and there exists a complete

orthonormal basis of H , {wj}j∈N , such that

Awj = λjwj , j = 1, 2, · · · , (1.7)

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · and λj → ∞ as j → ∞, (1.8)

(wj , wk) = δjk, 〈Awj , wk〉 = λjδjk. (1.9)

The assumptions about the nonlinear term g(u) in (1.1) and (1.2) will be given in the
next two sections respectively.

The problem about the existence of global attractor for the system (1.1) has widely
applying background, especially in physics and mechanics, and many important results
associated with this problem have been obtained in the past two decades, see [5, 8, 10–13].

Since the solutions of (1.1) or (1.2)–(1.3) have no higher regularity, we can not use the
usual existence theorem and the standard estimation of the energy functional to prove the
existence of global attractor for our problem.

Recently, using the concept of non-compactness measure, the authors of [9] have given
a new method to obtain the existence of global attractors for some abstract semigroups as
follows.

Theorem 1.1. (see [9]) Let X be a Banach space and {S(t)}t≥0 be a continuous
semigroup on X. If the following conditions hold:

(1) There exists a bounded absorbing set for {S(t)}t≥0 in X;
(2) For any bounded set B of X and any ε > 0, there exist t(B) > 0 and a finite

dimensional subspace X1 of X, such that

{‖PS(t)x‖ | x ∈ B, t ≥ t(B)} is bounded

and

‖(I − P )S(t)x‖ ≤ ε for any x ∈ B, t ≥ t(B),

where P : X → X1 is a bounded projector. Then there exists a global attractor for {S(t)}t≥0

in (X, ‖ · ‖). Furthermore, if X is a uniformly convex Banach space, especially a Hilbert
space, then the two conditions mentioned above are also necessary.

We will use this theorem and some nonstandard estimations of the energy functional to
prove the existence of global attractors for the dynamical system (1.1) and the reaction-
diffusion equations (1.2)–(1.3).

Our main results are Theorem 2.1 and Theorem 3.1 which are stated and proved in
Sections 2 and 3 respectively.
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§ 2 . The Existence of the Global Attractor for System (1.1)

Definition 2.1. Let X be a Banach space and {S(t)}t≥0 be a continuous semigroup on
X. We say that {S(t)}t≥0 is uniformly continuous with respect to t, if for any ε > 0 and
any bounded set B in X, there exists δ > 0 such that

‖S(t)x − x‖ < ε for any x ∈ B, 0 ≤ t ≤ δ. (2.1)

Theorem 2.1. Assume that f ∈ V ∗ and the operator A in the system (1.1) satisfies all
the assumptions given in Section 1. Assume furthermore that the semigroup {S(t)}t≥0 of
solutions corresponding to (1.1) is well defined for all nonnegative time and continuous in
H. Then {S(t)}t≥0 has a global attractor in H, provided that

(1) {S(t)}t≥0 is uniformly continuous with respect to t in H;
(2) {S(t)}t≥0 has a bounded absorbing set B0 in H;
(3) There exist two positive constants C0 and C1 such that all solutions u(t) = S(t)u0 of

the system (1.1) with initial data u0 ∈ B0 satisfy the following inequalities
∫ t+r

t

〈Au, u〉ds ≤ C0r + C1, (2.2)

∫ t+r

t

|〈g(u), u〉|ds ≤ C0r + C1. (2.3)

Proof. Without loss of generality, we assume f = 0.
Since {S(t)}t≥0 has a bounded absorbing set in H , for any bounded set B ⊂ H , there

exists t(B) > 0 such that

u(t) = S(t)u0 ∈ B0 for any t ≥ t(B), u0 ∈ B.

Especially, if we take B = B0, then there exists t0 > 0 such that

u(t) = S(t)u0 ∈ B0 for any t ≥ t0, u0 ∈ B0.

So there exists a positive constant C2 such that

|u(t)|2 = |S(t)u0|2 ≤ C2 as t ≥ t1 = t(B) + t0, u0 ∈ B. (2.4)

Taking the inner product of (1.1) with u(t) and integrating from t to t + r with respect to
s, we obtain

1
2
|u(t + r)|2+

∫ t+r

t

〈Au, u〉ds+
∫ t+r

t

〈g(u), u〉ds =
1
2
|u(t)|2 ≤ C2 as t≥ t1, u0 ∈ B. (2.5)

Then, noting (2.3), we get

|u(t + r)|2 + 2
∫ t+r

t

〈Au, u〉ds ≤ 2(C0r + C1 + C2) as t ≥ t1, u0 ∈ B.

For brevity, we assume

|u(t + r)|2 +
∫ t+r

t

〈Au, u〉ds ≤ C0r + C1 + C2 as t ≥ t1, u0 ∈ B. (2.6)
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Now, in order to prove that {S(t)}t≥0 has a global attractor in H , we only need to verify
the second presumption in Theorem 1.1.

Let
Hm

1 = span{w1, · · · , wm} and Hm
2 = (Hm

1 )⊥,

where {wj} satisfies (1.7)–(1.9). Each u in H can be decomposed in the following form

u = um
1 + um

2 , um
1 ∈ Hm

1 , um
2 ∈ Hm

2 ,

where um
1 = Pmu, Pm : H → Hm

1 is an orthogonal projector. By (1.9) and the properties of
the operator, it follows from (2.5) that

|um
2 (t + r)|2 + λm

∫ t+r

t

|um
2 (s)|2ds ≤ |um

2 (t + r)|2 +
∫ t+r

t

〈Aum
2 , um

2 〉ds

≤ |u(t + r)|2 +
∫ t+r

t

〈Au, u〉ds ≤ C0r + C1 + C2. (2.7)

Now in order to prove our result, it is sufficient to prove that for any ε > 0, there exist
T > 0 and M > 0 such that if r ≥ T and m ≥ M , then we have

|um
2 (t + r)|2 = |(I − Pm)u(t + r)|2 = |(I − Pm)S(t + r)u0|2 < ε for any u0 ∈ B. (2.8)

(2.8) will be accomplished in three steps.

Step 1. Take M0 and T0 so large that T0 ≥ C1+C2
C0

and λm ≥ 4C0
ε as m ≥ M0. We claim

that if t ≥ t1, u0 ∈ B, t1 being given by (2.4), then there exists r0 ∈ [0, T0] such that

|um
2 (t + r0)|2 <

ε

2
. (2.9)

In fact, if this conclusion is not true, then there exist some t′ ≥ t1, u′
0 ∈ B, such that for

any r ∈ [0, T0], we have

|um
2 (t′ + r)|2 ≥ ε

2
. (2.10)

However, it follows from (2.7) that

|um
2 (t′ + T0)|2 ≤ C0T0 + C1 + C2 − λm

∫ t′+T0

t′
|um

2 (s)|2ds

≤ C1 + C2 −
(
λm

ε

2
− C0

)
T0 ≤ C1 + C2 − C0T0 ≤ 0,

which contradicts (2.10).

Step 2. If there exists an r′ ∈ [0, T0] such that

|um
2 (t + r′)|2 <

ε

2
as t ≥ t1, u0 ∈ B,

then from the uniformly continuity of the semigroup with respect to t, there exists a constant
δ > 0, such that for any r ∈ [0, δ], we have

|um
2 (t + r′ + r)| ≤ |um

2 (t + r′)| + |um
2 (t + r′ + r) − um

2 (t + r′)|
≤ |um

2 (t + r′)| + |u2(t + r′ + r) − u2(t + r′)|

≤
√

ε

2
+ |S(r) · u(t + r′) − u(t + r′)| ≤

√
ε

2
+

√
ε

8
.
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Hence

|um
2 (t + r′ + r)|2 ≤ ε. (2.11)

Step 3. Combining the two steps above, we choose M1(≥ M) such that λm ≥ 2
ε (C0 +

C1+C2
δ ) as m ≥ M1. We infer that

|um
2 (t + r)|2 ≤ ε as t ≥ t1, u0 ∈ B, r ≥ T0. (2.12)

In fact, if there exists an r0 ≥ T0 such that |um
2 (t + r0)|2 > ε, then set

r∗ = sup
{

r ∈ [0, r0]
∣∣∣|um

2 (t + r)|2 =
ε

2

}
,

r∗ = inf
{
r ∈ [r∗, r0] | |um

2 (t + r)|2 = ε
}

,

which implies that
ε

2
≤ |um

2 (t + r)|2 ≤ ε if r ∈ [r∗, r∗].

Combining this with the proof of Step 2, we get

r∗ − r∗ ≥ δ. (2.13)

Noting (2.7) again, we get

ε = |um
2 (t + r∗)|2 ≤ C0(r∗ − r∗) + C1 + C2 − λm

∫ t+r∗

t+r∗
|um

2 (s)|2ds

≤ C1 + C2 −
(
λm

ε

2
− C0

)
(r∗ − r∗) ≤ C1 + C2 −

(
λm

ε

2
− C0

)
δ ≤ 0.

It is a contradiction. Therefore (2.10) holds and the proof is complete.

Analogously, if we take Au as a test function, then we can also obtain the uniformly
boundedness about ∫ t+r

t

〈Au, Au〉ds and
∫ t+r

t

|〈g(u), Au〉|ds

with respect to t, and then we have the following result.

Theorem 2.2. Assume that f ∈ H and the operator A in the system (1.1) satisfies all
the assumptions given in Section 1. Assume furthermore that the semigroup {S(t)}t≥0 of
solutions corresponding to (1.1) is well defined for all nonnegative time and continuous in
V . Then {S(t)}t≥0 has a global attractor in V , provided that

(1) {S(t)}t≥0 is uniformly continuous with respect to t in V ;
(2) {S(t)}t≥0 has a bounded absorbing set B0 in V ;
(3) There exist two positive constants C0 and C1 such that all solutions u(t) = S(t)u0 of

the system (1.1) with initial data u0 ∈ B0 satisfy the following inequalities∫ t+r

t

〈Au, Au〉ds ≤ C0r + C1, (2.14)

∫ t+r

t

|〈g(u), Au〉|ds ≤ C0r + C1. (2.15)

Remark 2.1. We can apply Theorem 2.2 to Equation (1.2) if we remove the distribution
term Dif

i. In (1.2), in this case we can take Au as a test function.
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§ 3 . TheExistenceof theGlobalAttractor for theNonlinearReaction-
Diffusion Equation with Distribution Derivatives

In this section, we will use Theorem 2.1 to consider the existence of a global attractor for
the continuous semigroup generated by weak solutions of the following nonlinear reaction-
diffusion equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
− Δu + g(u) = Dif

i + f, in Ω,

u = 0, on ∂Ω,

u(0, x) = u0, in Ω,

(3.1)

where Ω is a bounded domain in Rn with smooth boundary, Δ is the Laplace operator in
Ω, Di = ∂

∂xi
is distribution derivative, f i, f ∈ L2(Ω) (i = 1, · · · , n) and g is a C1 function

with g(0) = 0 and satisfies the following assumptions

C1|s|p − C0 ≤ g(s)s ≤ C2|s|p + C0, p ≥ 2 (3.2)

and

g′(s) ≥ −l (3.3)

for all s ∈ R.
There are many results about the existence of global attractors for the reaction-diffusion

equation without the inhomogeneous term Dif
i+f , see [10, 11, 13]. Now, since the equation

includes some distribution derivatives in inhomogeneous term, the solution has no higher
regularity. Therefore we can not take −Δu as a test function for the equation and can
not use the usual method to prove that the semigroup of solution of (3.1) has a bounded
absorbing set in H1

0 (Ω). However, we can use the abstract result, Theorem 2.1 , to prove
that the system (3.1) has also a global attractor in H .

Let A = −Δ, H = L2(Ω), V = H1
0 (Ω) and D(A) = H2(Ω) ∩ H1

0 (Ω), {λj} be the
eigenvalues of −Δ in H1

0 (Ω) and {wj} be the eigenvectors corresponding to {λj} which form
an orthonormal basis of H . The conditions about the space and operator A in Theorem 2.1
are all satisfied, and in order to verify the other conditions in Theorem 2.1, we only need to
show the following four lemmas.

Lemma 3.1. Assume that Ω ⊂ Rn is a bounded domain with smooth boundary, f i, f ∈
H (i = 1, 2, · · · , n) and g is a C1 function with g(0) = 0 and satisfies (3.2) and (3.3). Then
for any T > 0 and initial data u0 ∈ H, there exists a unique weak solution u of Equation
(3.1) which satisfies

u ∈ L2(0, T ; V ) ∩ Lp(ΩT ), ΩT = (0, T ) × Ω and u ∈ C([0, T ]; H).

Furthermore, the mapping u0 → u(t) is continuous in H and if v(t) is the solution with
initial data v0, then we have the following stability

|u(t) − v(t)| ≤ |u0 − v0|elt, (3.4)

where l is given in (3.3).
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This lemma and the next lemma are completely similar to that in [11, 13], so we omit
the proofs.

Lemma 3.2. Under the hypothesis of Lemma 3.1, the semigroup {S(t)}t≥0 of solutions
for (3.1) possesses a bounded absorbing set B0 in H, and there exist two constants C3,
C4 > 0 such that for any u0 ∈ B0, the corresponding solution u(t) of (3.1) satisfies

∫ t+r

t

〈Au, u〉ds ≤ C3r + C4, (3.5)

∫ t+r

t

|g(u) · u|ds ≤ C3r + C4, (3.6)

where t ≥ t0, r > 0 is arbitrary.

Lemma 3.3. (see [11]) Let X ↪→ H ↪→ Y be Banach spaces such that X is reflexive
and the embedding X ↪→ H is compact. Suppose that {un} is a uniformly bounded sequence

in L2(0, T ; X) and
{dun

dt

}
is uniformly bounded in Lr(0, T ; Y ) for some r > 1. Then there

is a subsequence of {un}, which converges strongly in L2(0, T ; H).

This lemma is a compactness theorem. In our case, we take

X = V = H1
0 (Ω), H = L2(Ω), Y = H−s(Ω),

where s > 0 such that

H−1(Ω) + Lq(Ω) ⊂ H−s(Ω),
1
q

+
1
p

= 1.

Hence, all solutions of (3.1) with initial data in B0 are uniformly bounded in L2(t0, T0; V ),
and { du(t)

dt | t ∈ [t0, T0], u0 ∈ B0} is also uniformly bounded in Lq(t0, T0; H−s) (q > 1).
Therefore, by Lemma 3.3, {u(t) | t ∈ [t0, T0], u0 ∈ B0} is compact in L2(t0, T0; H), where
t0 > 0 is a constant such that u(t) ∈ B0 as t ≥ t0, and T0 > t0 is fixed.

Lemma 3.4. Under all the assumptions of Lemma 3.1, the semigroup {S(t)}t≥0 asso-
ciated with Equation (3.1) is uniformly continuous with respect to t.

Proof. Since B0 is a bounded absorbing set, we only need to prove that for any ε > 0,
there exists a δ > 0 such that for any 0 ≤ r ≤ δ, t ≥ t0 and u0 ∈ B0, we have

|S(t + r)u0 − S(t)u0| = |S(r)(S(t)u0) − S(t)u0| < ε. (3.7)

Since {u(t) = S(t)u0 | t ∈ [t0, T0], u0 ∈ B0} is compact in L2(0, T ; H), we can choose
u1, · · · , uN such that for any u(t) = S(t)u0, t ∈ [t0, T0] and u0 ∈ B0, there exists some
i, 1 ≤ i ≤ N , satisfying

(∫ T0

t0

|u(t) − ui(t)|2 dt
) 1

2
<

ε

4
(T0 − t0)

1
2 e−l(T0−t0), (3.8)

which implies that there exists some t1 ∈ [t0, T0], such that

|u(t1) − ui(t1)| <
ε

3
e−l(T0−t0). (3.9)



400 ZHONG, C. K., SUN, C. Y. & NIU, M. F.

Combining it with (3.4), we have

|u(t) − ui(t)| ≤ |u(t1) − ui(t1)| el|t−t1| ≤ ε

3
for any t ∈ [t0, T0]. (3.10)

On the other hand, ui ∈ C([t0, T0]; H), i = 1, 2, · · · , n, and then we can find a δ > 0 such
that for any i, 1 ≤ i ≤ N , we have

|ui(t) − ui(t′)| <
ε

3
as t, t′ ∈ [t0, T0], |t − t′| < δ. (3.11)

Therefore, it follows from (3.10) and (3.11) that

|S(t + r)u0 − S(t)u0| = |S(t0 + r)S(t − t0)u0 − S(t0)S(t − t0)u0|
< |S(t0 + r)S(t − t0)u0−ui(t0 + r)| + |ui(t0 + r)−ui(t0)| + |ui(t0)−S(t0)S(t − t0)u0| <ε.

The proof is complete.

Thanks to the above four lemmas, by Theorem 2.1 we can obtain the following result
immediately.

Theorem 3.1. Assume that Ω is a bounded domain in Rn with smooth boundary,
f i, f ∈ H, i = 1, · · · , n, and g is a C1 function with g(0) = 0 and satisfies the constructive
conditions (3.2) and (3.3). Then the semigroup {S(t)}t≥0 associated with Equation (3.1) has
a global attractor, which attracts uniformly any bounded set in H.
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