
Chin. Ann. Math.
26B:3(2005),401–412.

LARGE SAMPLE PROPERTIES OF THE SIR IN

CDMA WITH MATCHED FILTER RECEIVERS∗∗∗∗

PAN Guangming∗ MIAO Baiqi∗∗ ZHU Chunhua∗∗∗

Abstract

The output signal-to-interference (SIR) of conventional matched filter receiver in
random environment is considered. When the number of users and the spreading
factors tend to infinity with their ratio fixed, the convergence of SIR is showed to
be with probability one under finite fourth moment of the spreading sequences. The
asymptotic distribution of the SIR is also obtained.
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§ 1 . Introduction

Recently, to develop more sophisticated physical-layer communication there have been
a topic of great interest in developing multiuser structures, which mitigate the interference
between users in code division multiple-access (CDMA) with random spreading sequences.
In the area much work has already been done on the performance of multiusers receivers,
however, most of which focuse on their ability to reject worst case interference, such as
near-far resistance. Lately, a different point of view has been initiated in [1], where the
spreading sequences are modelled as random sequences. For details one can refer to [1–5].
In this paper we study the out-put signal-to-interference ration (SIR) of the conventional
match filter receiver. To keep model general, we employ the spreading sequences in [1].
We show that the limiting SIR is independent of the specific realization of the random
spreading sequences. By U -statistic central limit theorem, we also obtain the asymptotic
distribution of SIR, i.e., the SIR distribution is asymptotic Gaussian, which has not been
set up in the literature. In order to obtain the above results, we mainly employ the tool of
the martingale. One may say that the relevant results had been obtained in [1, 3, 4]. But we
note that the SIR in [1] converges in probability under the condition of finite fourth moment
of the spreading sequences, that the corresponding result in [3] need finite eighth moment
condition, which holds with probability one, and that the result in [4] holds in probability for
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Gaussian random. The differences are that our results hold with probability one, and that
we only need finite fourth moment of the spreading sequences. Particularly, we can drop the
condition that the received powers are uniformly bounded in the uncorrelated cases, which
is needed in [4].

Throughout this paper, the ratio of K to N is denoted by α = K
N as K −→ ∞ and c may

denote different constant. Recent work in [1, 3, 4] showed that this method can average out
the dependence on specific spreading sequences.

The paper is organized as follows. In Section 2, we introduce a discrete time model for
CDMA system and the structure of the matched filter receiver. We present our results in
Section 3.

§ 2 . Symbol-Synchronous Model

A sampled discrete-time model for a symbol-synchronous multiaccess CDMA system
with K users, and processing gain N , is given by

Y =
K∑

i=1

Xi
√

pi si + W, (2.1)

where Xi is symbol transmitted by user i, pi is received power, si ∈ RN , is the spreading
sequences of user i, Y ∈ RN and W is additive white gaussian noise with variance σ2. The
symbols Xi are independent, EXi = 0 , EX2

i = 1, and independent of the noise. To be
more realistic, we assume that the received powers are random. Of course, we assume that
the received powers and the symbols are independent.

We shall now focus on the demodulation of user 1. A linear receiver generates an output
of the form X∗

1 = ct
1Y and the output signal-to-interference ratio (SIR) is defined by

SIR1 ≡ p1(ct
1s1)2

(ct
1c1)σ2 +

K∑
i=2

pi(ct
1si)2

.

(see [1, 2, 4]). For the conventional matched filter receiver (MF), c1 is chosen to minimize

E(ct
1Y − X1)2,

where expectation is taken by averaging over the spreading sequences and the received powers
of all interferers besides the transmitted symbols and the noise. Thus SIR1 is defined by

β1 ≡ p1(st
1s1)2

(st
1s1)σ2 +

K∑
i=2

pi(st
1si)2

. (2.2)

Here the performance measure for each user is considered as SIR achieved at the output of
the multiuser receiver. To obtain more insight, we will assume a random signature sequence
model. We assume that the spreading sequences are as follows

si =
1√
N

(vi,1, · · · , vi,N )t, i = 1, · · · , K.
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The random variables vi,k are independent and identically distributed (i.i.d.), zero mean and
variance 1. Hence, the SIR depends on the realization of the random spreading sequences
as well as the received power, and is also a random variable. We assume that the spreading
sequences are independent of the noise and that the received powers are independent of the
spreading sequences and noise.

§ 3 . Main Results

Theorem 3.1. Assume that the received powers are independent across the users and
identically distributed, Ev4

11 < ∞, E(p1)2 < ∞. Then as K −→ ∞, β1 converges almost
surely to

β∗
1 =

p1

σ2 + αEp1
.

Proof. Define

Fi = σ(p2, · · · pi, s1, · · · si) = σ(p2 · · · , pi, v11, · · · , v1N , · · · , vi1, · · · viN ).

Since the vij ’s are independent and zero mean, if j1 �= j2, we have

E(piv1j1v1j2vij1vij2 |Fi−1) = v1j1v1j2E(pivij1vij2 |Fi−1) = v1j1v1j2EpiEvij1Evij2 = 0.

It follows that

E(pi(st
1si)2|Fi−1) =

1
N2

E
(
pi

N∑
j=1

v2
1jv

2
ij |Fi−1

)
+

1
N2

E
(
pi

∑
j1 �=j2

v1j1v1j2vij1vij2 |Fi−1

)

=
1

N2

N∑
j=1

v2
1jE(piv

2
ij |Fi−1) =

1
N2

N∑
j=1

v2
1jEp1. (3.1)

Observe that

Epi(st
1si)2 = EpiE[trace((st

1si)2)] = Epitrace(Es1s
t
1Esis

t
i) =

1
N

Ep1. (3.2)

By the strong law of large number, with (3.1) and (3.2),

K∑
i=2

E(pi(st
1si)2|Fi−1) −

K∑
i=2

Epi(st
1si)2

a.s.−−→ 0 (3.3)

where “ a.s.−−→” denotes almost sure convergence. Next, let

s∗i =(vi1, vi2, · · · , viN )t, i = 1, · · · , K,

Sk =
k∑

i=2

(pi((s∗1)
ts∗i )

2 − E(pi((s∗1)
ts∗i )

2|Fi−1)). (3.4)

It is obvious that (Sk,Fk) is martingale, (S2
k,Fk) is submartingale (see [6]). For each

m > K, ε > 0, by [7, Theorem 4.18], we have

εP
(

max
K≤n≤m

S2
n

n4
≥ ε
)
≤ ES2

K

K4
+

m∑
n=K+1

E(S2
n − S2

n−1)
n4

. (3.5)
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Expanding out the first item on the right-hand side, we obtain

ES2
K =

K∑
i=2

E(pi((s∗1)
ts∗i )

2 − E(pi((s∗1)
ts∗i )

2|Fi−1))2

≤ c
( K∑

i=2

[E(pi((s∗1)
ts∗i )

2)2 + E(E(pi((s∗1)
ts∗i )

2|Fi−1))2]
)

≤ c

K∑
i=2

E(pi)2E((s∗1)
ts∗i )

4

≤ c

K∑
i=2

∑
j1

∑
j2

∑
j3

∑
j4

E[v1j1v1j2v1j3v1j4 ]E[vij1vij2vij3vij4 ], (3.6)

where we make use of martingale difference properties, Cr inequality, and Jensen inequality.
Since each of these expectations is zero except when j1 = j2 and j3 = j4, or j2 = j4 and
j1 = j3, or j1 = j4 and j2 = j3, we have

E((s∗1)
ts∗i )

4 = O(N2). (3.7)

Expanding out the second term of relation (3.5), we get

E(S2
n − S2

n−1) = E[pn((s∗1)
ts∗n)2 − E(pn((s∗1)

ts∗n)2|Fn−1)]2

+ E[Sn−1(pn((s∗1)
ts∗n)2 − E(pn((s∗1)

ts∗n)2|Fn−1))]

= E[pn((s∗1)
ts∗n)2 − E(pn((s∗1)

ts∗n)2|Fn−1)]2

≤ cE((s∗1)
ts∗n)4. (3.8)

Based on (3.5)–(3.8), for each m > K, ε > 0, we have

εP
(

max
K≤n≤m

S2
n

n4
≥ ε
)
≤

c
( K∑

i=2

E(pi((s∗1)
ts∗i )

2)2
)

K4

+ c

m∑
n=K+1

E[pn((s∗1)
ts∗n]2 − E[(pn((s∗1)

ts∗n)2|Fn−1)]2

n4

≤ c
N2

K3
+ c

m∑
n=K+1

N2

n4
.

Thus

εP
(

sup
K≤n

S2
n

n4
≥ ε
)
≤ c

N2

K3
+ c

∞∑
n=K+1

N2

n4
.

Hence as K −→ ∞,

P
(

sup
K≤n

S2
n

n4
≥ ε
)
−→ 0,
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which implies that

S2
K

K4
−→ 0, i.e.

SK

N2
−→ 0, a.s. (3.9)

Combining (3.3), (3.4) and (3.9), we can conclude that

K∑
i=2

[pi(st
1si)2 − E(pi(st

1si)2)]

=
K∑

i=2

[pi(st
1si)2 − E((pi(st

1si)2)|Fi−1)]

+
K∑

i=2

E(pi(st
1si)2|Fi−1) −

K∑
i=2

Epi(st
1si)2

a.s.−−→ 0. (3.10)

Based on (3.3), (3.10) one can obtain

K∑
i=2

pi(st
1si)2 − αEp1

a.s.−−→ 0.

Clearly (st
1s1)2 converges to 1 with probability 1, by the strong law of large numbers.

Therefore, we complete the proof of the theorem.

To relax the assumption that the received powers are i.i.d., and that the received powers
are uniformly bounded, which is needed in [4], we need the following lemma.

Lemma 3.1. Assume that almost surely the empirical distribution of (p1, · · · , pK) con-
verges weakly to a limiting Fp as K tends to infinity and sup

i
E(pi)2 < ∞. Then

lim
K→∞

E
( 1

K

K∑
i=1

pi

)
=
∫ ∞

0

xdFp(x) < ∞. (3.11)

Further, if the received powers are uncorrelated, we have

K∑
i=1

pi

K

a.s.−−→
∫ ∞

0

xdFp(x), a.s . (3.12)

Proof. Let T be continuity point of Fp(x). Observe that

lim
K→∞

E
( 1

K

K∑
i=1

pi

)
≤ sup

K
E
( 1

K

K∑
i=1

pi

)
≤ sup

i
(Ep2

i )
1
2 < ∞, (3.13)

1
K

k∑
i=1

piI(pi ≤ T ) =
∫

x≤T

xdF ∗
k (x) a.s.−−→

∫
x≤T

xdFp(x), (3.14)

where

F ∗
k (x) =

1
k

k∑
i=1

I(pi ≤ x),
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and (3.14) follows from Helly-Bray lemma. Applying dominated convergence theorem with
(3.14) yields

lim
T→∞

lim
K→∞

E
[ 1
K

k∑
i=1

piI(pi ≤ T )
]

= lim
T→∞

∫
x≤T

xdFp(x) =
∫ ∞

0

xdFp(x). (3.15)

Further, observe that

E
[ 1
K

k∑
i=1

piI(pi ≥ T )
]
≤ 1

K

k∑
i=1

Ep2
i

T
I(pi ≥ T ) ≤ 1

T
sup

i
Ep2

i ,

which implies that

lim
T→∞

lim
K→∞

E
[ 1
K

k∑
i=1

piI(pi ≥ T )
]

= 0. (3.16)

Combining (3.13), (3.15) and (3.16), we have

lim
K→∞

E
( 1

K

K∑
i=1

pi

)
=
∫ ∞

0

xdFp(x) < ∞.

Using the properties of the uncorrelated variables, we have

K∑
i=1

(pi − Epi)

K

a.s.−−→ 0, (3.17)

which follows from the strong law of large number. Thus, based on (3.11) and (3.17), the
final result follows.

Now we can set up the second main result.

Theorem 3.2. Assume that the following conditions are satisfied:
(1) The empirical distribution of the received powers of the users converges we- akly to

a deterministic distribution, say Fp(x), with probability one.
(2) sup

i
E(pi)2 < ∞, and Ev4

11 < ∞.

(3) ξ is integrable and P (pi ≤ ξ) = 1 for i = 1, · · · , k.
Then

β1
a.s.−−→ β∗

1 =
p1

σ2 + α
∫∞
0 xdFp(x)

.

Proof. Observe that

E[piv
2
ij |Fi−1] = E[E(piv

2
ij |Fi−1, pi)|Fi−1]

= E[piE(v2
ij |Fi−1, pi)|Fi−1] = E(pi|Fi−1)
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and

E
[
pi

∑
j1 �=j2

v1j1v1j2vij1vij2 |Fi−1

]

= E
[
E
(
pi

∑
j1 �=j2

v1j1v1j2vij1vij2 |Fi−1, pi

)∣∣∣Fi−1

]

= E
[
pi

∑
j1 �=j2

v1j1v1j2E(vij1vij2 )|Fi−1

]
= 0,

where i �= 1, Fi is defined as before.
It follows that

K∑
i=2

[E(pi(st
1si)2|Fi−1)] =

K∑
i=2

[ 1
N2

E
(
pi

N∑
j=1

v2
1jv

2
ij |Fi−1

)

+
1

N2
E
(
pi

∑
j1 �=j2

v1j1v1j2vij1vij2 |Fi−1

)]

=

N∑
j=1

v2
1j

K∑
i=2

E(pi|Fi−1)

N2
. (3.18)

Now define

Sk =
k∑

i=2

(pi − E(pi|Fi−1)).

Obviously [Sk,Fk] is martingale, then [S2
k,Fk] is submartingale. Thus for any m > K, ε > 0,

εP
(

max
K≤n≤m

S2
n

n2
≥ ε
)
≤ E

(S2
K

K2

)
+

m∑
n=K+1

E
(S2

n − S2
n−1

n2

)
(3.19)

≤

K∑
i=2

E[pi − E(pi|Fi−1)]2

K2
+

m∑
n=K+1

E[pn − E(pn|Fn−1)]2

n2
(3.20)

≤ c

[ K∑
i=2

Ep2
i

K2
+

m∑
n=K+1

Ep2
n

n2

]
(3.21)

≤ c
[ 1
K

+
m∑

n=K+1

1
n2

]
, (3.22)

where the inequalities (3.19)–(3.22) follow from Hajek-Renyi-Chow inequality, martingale
difference properties, Jensen inequality and the condition (2), respectively.

Hence, letting m −→ ∞ and then K −→ ∞, we have

p
(

sup
n≥K

S2
n

n2
≥ ε
)
−→ 0.
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Thus

SK

K

a.s.−−→ 0. (3.23)

Next we will show
K∑

i=1

pi

K

a.s.−−→
∫ ∞

0

xdFp(x). (3.24)

Let

F ∗
k (x) =

1
k

k∑
i=1

I(pi ≤ x).

It is obvious that ξI(ξ > T ) a.s.−−→ 0 (T −→ ∞) by Eξ < ∞. Thus

1
k

k∑
i=1

PiI(Pi > T ) =
∫

x≥T

xdF ∗
k (x) ≤ ξI(ξ > T ) <

ε

3
, a.s. (3.25)

for T > Tε whatever be k.
By Helly-Bray lemma, if T ′ > T and T ′, T are continuity points of Fp(x), then

∫ T ′

T

xdFp(x) <
ε

3
, a.s.,

and letting T ′ −→ ∞, by monotone convergence theorem, we have∫
x>T

xdFp(x) <
ε

3
, a.s. (3.26)

Observe that for any fixed T > 0, ε > 0, if k ≥ k1, we have

∣∣∣ ∫ T

0

xdF ∗
k (x) −

∫ T

0

xdFp(x)
∣∣∣ <

ε

3
, a.s. (3.27)

which follows from Helly-Bray lemma. Based on (3.25)–(3.27),∣∣∣ ∫ ∞

0

xdF ∗
k (x) −

∫ ∞

0

xdFp(x)
∣∣∣

≤
∣∣∣ ∫ T

0

xdF ∗
k (x) −

∫ T

0

xdFp(x)
∣∣∣+ ∫ ∞

T

xdF ∗
k (x) +

∫ ∞

T

xdFp(x) a.s.−−→ 0,

which follows on letting T ≥ Tε, k −→ ∞ and then ε −→ 0.
Combining (3.18), (3.23) and (3.24), we conclude that

K∑
i=2

[E(pi(st
1si)2|Fi−1)] − α

∫ ∞

0

xdFp(x) a.s.−−→ 0.

Using the condition (2), one can easily prove the following in a similar method (the same as
Theorem 3.1)

K∑
i=2

[pi(st
1si)2 − E((pi(st

1si)2)|Fi−1)]
a.s.−−→ 0,
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which completes the proof of the theorem.

Remark 3.1. Compared to [1, 3] and [4], we need the finite fourth moment of spreading
sequences only and the convergence of the SIR is almost sure.

Corollary 3.1. If the received powers are uncorrelated, the result of Theorem 3.2 holds
without the condition (3).

Proof. By Lemma 3.1, (3.24) holds. Thus the corollary follows.

Remark 3.2. If the received powers are uncorrelated, Theorem 3.2 holds without the
condition (3), i.e., we can drop the condition that the received powers are uniformly bounded,
which is needed in [4].

However, for general case, in order to obtain (3.24) we believe that some kind of condition
is necessary. Hence we also obtain the following result under the weaker condition.

Proposition 3.1. Assume that the following conditions are satisfied:
(1) Almost surely the empirical distribution of (p1, · · · , pK) converges weakly to a limiting

Fp as K tends to infinity.
(2) sup

i
E(pi)2 < ∞.

(3) For all sufficiently large x, almost surely, 1 − F ∗
K(x) ≤ A(1 − Fp(x)), where A is a

positive constant and independent of K.
Then we have

K∑
i=1

pi

K

a.s.−−→
∫ ∞

0

xdFp(x).

Proof. In the following, we use some well-known results in probability theory:

Ep1 < ∞ =⇒ lim
x→∞xP (p1 > x) = 0,

Ep1 =
∫ ∞

0

(1 − Fp1(x))dx.

Let T be continuity point of Fp(x), clearly,

K∑
i=1

pi

K
=

K∑
i=1

piI(pi ≤ T )

K
+

K∑
i=1

piI(pi ≥ T )

K
.

By Helly-Bray lemma and monotone convergence theorem, one can prove that

lim
T→∞

lim
K→∞

K∑
i=1

piI(pi ≤ T )

K
= lim

T→∞
lim

K→∞

∫
x≤T

xdF ∗
K(x) a.s.=

∫ ∞

0

xdFp(x).

To obtain the result, it suffices to show that

lim
T→∞

lim
K→∞

K∑
i=1

piI(pi ≥ T )

K

a.s.= 0. (3.28)
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Observe that

K∑
i=1

piI(pi ≥ T )

K
=
∫

x>T

xdF ∗
K(x) = −x(1 − F ∗

K(x))|∞T +
∫

x>T

(1 − F ∗
K(x))dx. (3.29)

With (3.11) and the condition (3), by dominated convergence theorem,

lim
T→∞

lim
K→∞

∫
x>T

(1 − F ∗
K(x))dx

a.s.= lim
T→∞

∫
x>T

(1 − Fp(x))dx = lim
T→∞

EξI(ξ > T ) = 0, (3.30)

where ξ is a random variable having distribution Fp(x). Further, note that

lim
T→∞

lim
K→∞

x(1 − F ∗
K(x))|∞T = lim

K→∞
lim

x→∞x(1 − F ∗
K(x)) − lim

T→∞
lim

K→∞
T (1 − F ∗

K(T )). (3.31)

Calculating the second item of the above equality, one can obtain

lim
T→∞

lim
K→∞

T (1 − F ∗
K(T )) a.s.= lim

T→∞
T (1 − Fp(T ) = 0, (3.32)

where the last equality follows from (3.11).
On the other hand, by Ep2

1 < ∞, as x −→ ∞, we have p1I(p1 > x) a.s.−−→ 0. Thus, by
induction on K, as x −→ ∞, one can prove that

K∑
i=1

piI(pi > x)

K

a.s.−−→ 0.

Hence we have

lim
K→∞

lim
x→∞x(1 − F ∗

K(x)) = lim
K→∞

lim
x→∞x

1
K

K∑
i=1

I(pi > x)

≤ lim
K→∞

lim
x→∞

1
K

K∑
i=1

piI(pi > x) a.s.= 0. (3.33)

Combining (3.29)–(3.33), the equation (3.28) holds. Thus we complete the proof.

Remark 3.3. If the received powers are uniformly bounded, or dominated by some
integrable random variable, the condition (3) holds.

As we know, the attained SIR in a finite system, will fluctuate around the limit. In order
to characterize the performance fluctuations around the asymptotic limits, we obtain the
following result.

Theorem 3.3. If the conditions of Theorem 3.1 are satisfied, then we have

√
N

(st
1s1)2 − E(st

1s1)2

(st
1s1)σ2 +

K∑
i=2

pi(st
1si)2

D−→ N(0, b), (3.34)
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where

b =
4(Ev4

11 − 1)
σ2 + αEp1

. (3.35)

Proof. We have
√

N((st
1s1)2 − E(st

1s1)2)

=
√

N
(( 1

N

N∑
i=1

v2
1i

)2

− Ev4
11

N
− 1 +

1
N

)

=
√

N
2

N2

∑
i1<i2

(v2
1i1v

2
1i2 − 1) +

√
N
( 1

N2

N∑
i=1

v4
1i −

Ev4
11

N

)

:= SN1 + SN2 . (3.36)

By appealing to the strong law of large numbers, it can be shown that

SN2

a.s.−−→ 0. (3.37)

Next observe that

SN3 :=
1(
N
2

) ∑
i1<i2

v2
1i1v

2
1i2 (3.38)

is U -statistic. Thus, by Theorem 6.2.1 in [8], we have

SN1

D−→ N(0, 4(Ev4
11 − 1)). (3.39)

Therefore, based on Slutsky’s theorem, (3.36), (3.37), (3.39) and the result of Theorem 3.1,
Theorem 3.3 holds.

Remark 3.4. It is pity that we can not prove the following
√

N(β1 − β∗
1) D−→ (0, b)

where b, β∗
1 is defined as before.

However we can obtain the following result.

Theorem 3.4. If the conditions of Theorem 3.1 are satisfied, then

N
1
2−τp1

(
E(st

1s1)2

(st
1s1)σ2 +

K∑
i=2

pi(st
1si)2

− 1
σ2 + K

N Ep1

)
a.s.−→ 0,

where τ > 0.

Proof. In fact, it suffices to show that

N
1
2−τ

(
(st

1s1 − 1)σ2 +
K∑

i=2

pi(st
1si)2 − K

N
Ep
)

a.s.−→ 0. (3.40)
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Clearly

st
1s1 − 1 = O

(√ log log N

N

)
, (3.41)

which follows from Hartman-Wintner law of the iterated logarithm. Similarly, examining
the proof of Theorem 3.1, one can obtain

K∑
i=2

E(pi(st
1si)2|Fi−1) −

K∑
i=2

Epi(st
1si)2 = O

(√ log log N

N

)
. (3.42)

Looking over the proof of Theorem 3.1 again, we have

SK

N2
= o(N−( 1

2−τ)), (3.43)

where τ > 0. Thus, combining (3.41)–(3.43), (3.40) holds.
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