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CONVEXITY AND SYMMETRY OF TRANSLATING
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Abstract

This paper proves that any rotationally symmetric translating soliton of mean cur-
vature flow in R3 is strictly convex if it is not a plane and it intersects its symmetric
axis at one point. The authors also study the symmetry of any translating soliton of
mean curvature flow in Rn.
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§ 1 . Introduction

Let T ∈ Rn+1 be a unit vector and f : M → Rn+1 a smooth immersion. The surface

M0 = f(M) is called a translating solition of mean curvature flow (MCF), if it is an n-

dimensional smooth manifold (without boundary) and satisfies the equation

−〈T, ν(f(p))〉 = H(f(p)), p ∈ M, (1.1)

where ν and H are the outer unit normal and the mean curvature, respectively, at the point

f(p) on the surface M0 = f(M), and 〈 , 〉 denotes the usual Euclidean inner product. Here,

the signs are chosen such that the mean curvature of a convex surface is nonnegative and
�H = −Hν is the mean curvature vector.

Let F (·, t) = f(·) + tT. Then it follows from (1.1) that

−〈∂tF, ν(F )〉 = H(F ). (1.2)

This means that the one-parameter family of Mt = F (M, t) is a solution of MCF

∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈ M, t ∈ (0, T ) (1.3)
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up to a tangential diffeomorphism. Therefore, a translating soliton is the solution of MCF

which moves by vertical translating along T -direction.

It is proved in [1–3] that a type II singularity of a MCF evolved by a mean convex initial

surface is characterized by a complete convex translating soliton. Moreover, it is believed

that such a soliton should be rotationally symmetric (see [3, Conjecture 2]). In a very recent

paper [4], Wang showed the conjecture in the case n = 2 and claimed that this conjecture

might be wrong if n ≥ 3. A natural question is that whether any 2-dimensional translating

soliton is strictly convex (see the open problem in [4]) and what is the optimal condition for

the symmetry of higher dimensional translating soliton.

In this paper, we try to study these problems and will prove the following results.

Theorem 1.1. Let Σ be a rotationally symmetric translating soliton of MCF in R3.

If Σ intersects its symmetric axis at one point, then either Σ is a plane orthogonal to its

symmetric axis, or Σ is strictly convex, and Σ = {(x, ρ(|x|)) : x ∈ R2} up to a rigid motion,

where ρ ∈ C∞[0,∞) satisfies

ρ′′(t)
1 + (ρ′(t))2

+
ρ′(t)

t
= 1, t ∈ (0,∞) (1.4)

and

ρ′′(t) > 0 for t ∈ (0,∞), ρ(0) = ρ′(0) = 0. (1.5)

Moreover, the function u(x) = ρ(|x|) satisfies

|x|
2

≤ |∇u(x)| ≤ |x|, ∀x ∈ R2 (1.6)

and

|x|2
4

≤ u(x) ≤ |x|2
2

, ∀x ∈ R2. (1.7)

Theorem 1.2. Suppose n ≥ 2. Then we have the following conclusions.

(1) Any n-dimensional strictly convex and complete translating soliton of MCF can be

represented as a graph {(x, u(x)) : x ∈ Ω} for an unbounded convex domain Ω ⊂ Rn and a

strictly convex, smooth function u satisfying equation

div
( ∇u√

1 + |∇u|2
)

=
1√

1 + |∇u|2 . (1.8)

(2) Suppose that u ∈ C2(Rn) satisfies (1.8) in Rn. If there are a sequence rk → ∞ and

a point p ∈ Rn such that

sup
k≥1

[u(xk) − u(yk)] ≥ 0 (1.9)



CONVEXITY AND SYMMETRY OF TRANSLATING SOLITONS 415

for any sequences {yk} and {xk}, yk ∈ Brk
(p) = {x ∈ Rn : |x − p| < rk} and xk ∈ ∂Brk

(p),

the boundary of Brk
(p), which satisfy lim

k→∞
|yk|
|xk| = 1, then u must be rotationally symmetric

about the point p, i.e., u(x) = U(|x − p|) for all x ∈ Rn and some function U ∈ C2[0,∞).

Corollary 1.1. If (1.9) is replaced either by

lim
k→∞

[u(rkx + p) − u(rky + p)] = 0 (1.10)

uniformly for x, y ∈ Sn−1 = ∂B1(0), or by

lim
k→∞

[u(rkx + p)) − g(rk)] = 0 (1.11)

uniformly for x ∈ Sn−1, where g is some function defined in [0,∞), then Theorem 1.2(2) is

still true, i.e., u must be rotationally symmetric about the point p.

Properties of similar problems were studied in [5–8].

§ 2 . Proof of Theorem 1.1

Let Σ ⊂ R3 be a rotationally symmetric translating soliton of MCF along the unit

direction T . Choose a coordinate system for R3 such that one of the coordinate axis, say

x1-axis for example, is the symmetric axis of Σ. Let T = (x0, y0, z0) be the unit vector. If

Σ is not a plane orthogonal to the x1-axis, then we can parameterize Σ by

f : [a, b) × [0, 2π) �→ R3, f(t, θ) = (t, r(t) cos θ, r(t) sin θ),

where −∞ < a < b ≤ +∞, r ∈ C∞(a, b), r(a) = 0, r > 0 in (a, b). Here we have chosen the

line ab as the symmetric axis and assumed that f(a, 0) is the intersection point of Σ and its

symmetric axis. Note that the outer unit normal of Σ

ν(f) =

∂f

∂θ
× ∂f

∂t∣∣∣∂f

∂θ
× ∂f

∂t

∣∣∣ =
(−r′, cos θ, sin θ)

[1 + (r′)2]
1
2

,

the metric tensor

g =

(
1 + (r′)2 0

0 r2

)
,

and the second fundamental form

A =

⎛
⎜⎝

−r′′

[1+(r′)2]
1
2

0

0 r

[1+(r′)2]
1
2

⎞
⎟⎠ .

Then we see that the two principal curvatures of Σ are

λ1 =
−r′′

[1 + (r′)2]
3
2
, λ2 =

1
r[1 + (r′)2]

1
2

(2.1)
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and the mean curvature

H = λ1 + λ2 =
1 + (r′)2 − rr′′

r[1 + (r′)2]
3
2

.

Therefore, by (1.1) we see that y0 = z0 = 0 and |x0| = 1. Moreover, H(f(t, p)) > 0 when t

near a. Thus x0 = 1 again by (1.1) and, therefore, the equation for soliton Σ is

r(t)r′′(t) + r(t)[r′(t)]3 − [r′(t)]2 + r(t)r′(t) − 1 = 0, ∀ t ∈ (a, b). (2.2)

Furthermore, the strict convexity of the soliton Σ, which we want to prove below, is equiv-

alent to

r′′(t) < 0, ∀ t ∈ (a, b). (2.3)

Since r(a) = 0, r′(a) = +∞ by the smoothness of Σ. Thus we may choose a small interval

[α, β] ⊂ (a, b), near a sufficiently, such that r′′(t) < 0, ∀ t ∈ [α, β].

Lemma 2.1. Let

ā = inf{t ∈ (a, b) : r′′(t) < 0}. (2.4)

Then r′′(t) < 0 for all t ∈ (ā, b).

Proof. Suppose the contrary that there is a zero point of r′′ in (ā, b). We use t1 to

denote the first zero point. Note that (2.2) can be rewritten as

r′′ = [1 + (r′)2]
1 − rr′

r
in (a, b). (2.5)

Then

r′(t) > 0, ∀ t ∈ (ā, t1) (2.6)

since r′′(t) < 0 for all t ∈ (ā, t1). It follows from (2.5) and (2.4) that there exists t2 ∈ (ā, t1)

such that

d(−r′′)
dt

≥ A(t)(−r′′) in (t2, t1) for A(t) =
r′ − 1 − 2r(r′)2

r
. (2.7)

Integration of (2.7) yields

ln(−r′′(t1 − ε)) − ln(−r′′(t2)) =
∫ t1−ε

t2

d(−r′′)
−r′′

≥
∫ t1−ε

t2

A(t)dt.

Letting ε → 0+ we obtain a contradiction.

Lemma 2.2. Let ā be defined by (2.4). Then −∞ < a = ā < b = +∞.

Proof. Suppose the contrary that a < ā. We conclude that

r′′(t) > 0, ∀ t ∈ (a, ā). (2.8)



CONVEXITY AND SYMMETRY OF TRANSLATING SOLITONS 417

Otherwise, there is t2 ∈ (a, ā) such that r′′(t2) = 0 since r′′(t) ≥ 0 in (a, ā) by the definition

of ā. Using (2.5) we see that

1 = r(t2)r′(t2) (2.9)

and t2 is a minimum point of the function 1 − rr′ in the interval (a, ā). Hence

0 = (1 − rr′)′(t2) = −[r′(t2)]2 − r(t2)r′′(t2) = −[r′(t2)]2,

contradicting (2.9).

However, (2.8) is impossible because of the fact r′(a) = +∞ (by the smoothness of Σ at

a). Therefore we have proved −∞ < a = ā.

In order to prove b = +∞ we use (2.5) and Lemma 2.1 that

r′′(t) < 0, r′(t) > 0, ∀ t ∈ (a, b). (2.10)

Consequently, we have

+∞ ≥ A := lim
t→a+

r′(t) > r′(t) > lim
t→b−

r′(t) := B ≥ 0, ∀ t ∈ (a, b). (2.11)

Choose t0 ∈ (a, b). (2.10) yields

r(t) − r(t0) ≤ r′(t0)(t − t0), ∀ t ∈ [t0, b). (2.12)

Now suppose that b is finite. Then r(b) := lim
t→b−

r(t) is finite by (2.12). Therefore, r(b) = 0

and r′(b) := lim
t→b−

r′(t) = −∞ since Σ is smooth and without boundary, contradicting (2.11).

In this way, we have shown Lemma 2.2.

Proof of Theorem 1.1. (Continued). Combining Lemmas 2.1 and 2.2, we see that Σ

is strictly convex. Furthermore, it follows from (2.5) that

d

dt
(2t − r2) < 0, ∀ t ∈ (a,∞),

which yields

r(t) >
√

2(t − a) + r2(a) =
√

2(t − a), ∀ t ∈ (a,∞). (2.13)

Choosing a new coordinate system such that the translating direction T = (0, 0, 1) and using

(2.13) and the strict convexity of Σ, we have Σ = {(x, ρ(|x|)) : x ∈ R2} for some function

ρ ∈ C∞[0,∞). Rewriting (1.1) for ρ, we obtain

ρ′′(t)
1 + (ρ′(t))2

+
ρ′(t)

t
= 1, ∀ t ∈ (0,∞). (2.14)

The strict convexity reads as

ρ′′(t) > 0 for t ∈ (0,∞). (2.15)
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By a rigid motion, we may assume the origin to be the lowest point of the strictly convex

surface Σ. Thus

ρ(0) = ρ′(0) = 0. (2.16)

Therefore, in order to complete the proof of Theorem 1.1, we want only to prove (1.6) and

(1.7). It follows from (2.14)–(2.16) that ρ′(t)
t < 1 and ρ′′ + 1

t ρ
′ ≥ 1 for all t ∈ (0,∞). This

fact yields

ρ′(t) ≤ t and ρ(t) ≤ t2

2
, ∀ t ∈ [0,∞). (2.17)

Let ω(t) = ρ(t) − t2

4 . Then

ω′′ +
ω′

t
≥ 0 for t ∈ (0,∞), ω(0) = 0 = ω′(0). (2.18)

Consequently, we conclude that

w′(t) ≥ 0, ∀ t ∈ (0,∞). (2.19)

Otherwise, we could find t0 ≥ 0 and δ > 0 such that w′(t0) = 0 but w′(t) < 0 for t ∈
(t0, t0 + δ]. Integrating (2.18), we have

0 > w′(t0 + δ) ≥ −
∫ t0+δ

t0

w′(t)
t

dt > 0,

a contradiction. It follows from (2.18) and (2.19) that t
2 ≤ ρ′(t) and t2

4 ≤ ρ(t) for all

t ∈ [0,∞), which, together with (2.17), yields the desired (1.6) and (1.7).

§ 3 . Proofs of Theorem 1.2 and Corollary 1.1

Let n ≥ 2. It is easy to see that any n-dimensional strictly convex translating soliton M

can be represented as a graph over a domain Ω ⊂ Rn orthogonal to the translating direction.

In fact, by the definition (see (1.1)), the outer unit normal at every point of such a soliton

always has an angle larger than π
2 with the translating direction. If the soliton can not be

represented as a graph over any domain Ω ⊂ Rn orthogonal to the translating direction, by

the connectedness, one can find a point at which the normal is orthogonal to the translating

direction. This yields a contradiction.

Therefore, we may assume M = {(x, u(x)) : x ∈ Ω} for a u ∈ C∞(Ω) and a domain Ω ⊂
Rn. Obviously, Ω is convex since M is strictly convex. We will show that Ω is unbounded,

and therefore it is the entire Rn when M is rotationally symmetric.

Note that the induced metric on M is g = gijdxidxj with

gij = δij + uiuj , (3.1)
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where we have used the Kronecker’s symbol, the summation convention and the notations

ui =
∂u

∂xi
, uij =

∂2u

∂xi∂xj
, etc.

According to the sign choice in Section 1, the outer unit normal

ν =
(∇u,−1)√
1 + |∇u|2 .

Hence the second fundamental form

hij = −
〈
ν,

∂2u(x)
∂xi∂xj

〉
=

uij√
1 + |∇u|2 (3.2)

and the mean curvature

H = gijhij = div
( ∇u√

1 + |∇u|2
)
. (3.3)

Since the translating direction is T = (0, 0, · · · , 1), the translating soliton equation (1.1) is

turned to Equation (1.8).

Now, suppose the contrary that Ω is bounded. Since Ω is convex, we may choose an

x0 ∈ ∂Ω and a ball BR0(y0) ⊂ Rn such that

x0 ∈ BR0(y0) ∩ ∂Ω = {x0} and BR0(y0) ⊃ Ω.

Hence M ⊂ BR0(y0) × R. This, together with the convexity of M, implies

H((x, u(x))) ≥ n

R0
as x → x0 with x ∈ Ω. (3.4)

On the other hand, since M is complete and x0 is on the boundary, |∇u(x)| → ∞ as x

goes to x0. It follows from (3.3) and (1.8) that H((x, u(x))) → 0 as x → x0, which contradicts

(3.4).

In order to prove Theorem 1.2(2), we use u ∈ C2(Rn) to denote a solution of (1.8) in Rn

and rewrite (1.8) as

(
δij − ui(x)uj(x)

1 + |∇u(x)|2
)
uij(x) = 1, ∀x ∈ Rn. (3.5)

Without loss of generality, we assume that the point p in Theorem 1.2(2) is the origin

in Rn. We want only to prove that u is symmetric in any direction with respect to the

origin. Since Equation (3.5) is symmetric in every direction, it is sufficient to do this in one

direction. Without loss of generality, we will do it in x1-direction. Hence, for the proof of

Theorem 1.2(2), it is enough to prove

u(−x1, x2, · · · , xn) = u(x1, x2, · · · , xn), ∀x = (x1, x2, · · · , xn) ∈ Rn. (3.6)
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Denote x = (x1, x2, · · · , xn) = (x1, x
′). For any λ ∈ R, we define

Σ(λ) = {x = (x1, x
′) ∈ Rn : x1 < λ}, wλ(x) = u(x1, x

′) − u(2λ − x1, x
′).

Then we conclude that for any λ < 0,

wλ(x) = u(x1, x
′) − u(2λ − x1, x

′) ≥ 0, ∀x = (x1, x
′) ∈ Σ(λ). (3.7)

In order to prove (3.7), we need an elliptic equation for the function wλ(x). For any

λ ∈ R, since both u(x) and vλ(x) = u(2λ−x1, x
′) satisfy Equation (3.5), the function wλ(x)

satisfies

Aij(x)(wλ)ij + Bi(x)(wλ)i = 0 in Rn, (3.8)

where

Aij(x) = δij − ui(x)uj(x)
1 + |∇u(x)|2

and

Bi(x) =
(uj(vλ)kj(vλ)k(ui + (vλ)i) − (1 + |∇u|2)(vλ)j(vλ)ij

(1 + |∇u|2)(1 + |∇vλ|2)
)
(x)

−
( (1 + |∇vλ|2)uj(vλ)ji

(1 + |∇u|2)(1 + |∇vλ|2)
)
(x).

Since the maximum eigenvalue of the n × n matrix (uiuj) is |∇u|2, (3.8) is a linear elliptic

equation in Rn and is strictly elliptic on any bounded domain in Rn. Therefore, a strong

maximum principle can be applied to Equation (3.8).

Now suppose the contrary that (3.7) is false for some λ1 < 0. Then we could find

x̂ ∈ Σ(λ1) such that wλ1 (x̂) < 0. Choose k0 such that rk > |x̂| for all k ≥ k0. Then we claim

that for each k ≥ k0, there exist

xk = (xk
1 , x′

k) ∈ ∂Brk
(0)) ∩ Σ(λ1)

such that

wλ1(x
k) < wλ1(x̂) < 0, ∀ k > k0. (3.9)

In fact, suppose the contrary that (3.9) were not true for some k. Then wλ1 would attain

its interior minimum at a point in Brk
(0) ∩ Σ(λ1) since

wλ1(x) = 0, ∀x ∈ ∂Σ(λ1). (3.10)

Therefore, by the strong maximum principle we obtain that

wλ1(x) = wλ1(x̂) < 0, ∀x ∈ Brk0
(0) ∩ Σ(λ1), (3.11)
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contradicting (3.10). In this way, we have obtained (3.9).

However, noticing that λ1 < 0 implies the fact

|xk|2 > |(2λ1 − xk
1 , x′

k)|2

and

lim
k→∞

|(2λ1 − xk
1 , x′

k)|
|xk| = 1,

and using the assumption (1.9), we have

sup{wλ1(x
k) : k ≥ k0} ≥ 0,

which contradicts (3.9). This proves (3.7).

Letting λ → 0− in (3.7) we obtain

u(x1, x
′) ≥ u(−x1, x

′), ∀x = (x1, x
′) ∈ Rn with x1 < 0.

The opposite inequality is also true, because V (x) := u(−x1, x
′) is a solution to (3.5) in Rn.

This proves (3.6) and thus Theorem 1.2.

Proof of Corollary 1.1. We want only to show that the assumption (1.9) can be

derived from (1.10) or (1.11). Obviously, (1.11) implies (1.10) and (1.10) implies (1.11) by

taking g(rk) = u(rk(1, 0) + p). Thus (1.11) is equivalent to (1.10).

For each k ≥ 1, choose zk ∈ ∂Brk
(p) such that

max
∂Brk

(p)
u(x) = u(zk).

Since constants u(zk) are supersolution of the Dirichlet problem of Equation (1.8) on the

ball Brk
(p) with the boundary value u(x), we obtain

u(y) ≤ u(zk), ∀ y ∈ Brk
(p)

by the comparison principle in [9, Theorem 10.1]. Then (1.9) follows immediately from

(1.10).
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