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Abstract

In this paper, some properties of mixed intersection bodies are given, and inequali-
ties from the dual Brunn-Minkowski theory (such as the dual Minkowski inequality, the
dual Aleksandrov-Fenchel inequalities and the dual Brunn-Minkowski inequalities) are
established for mixed intersection bodies.
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§ 1 . Introduction

Intersection body is a basic concept in the dual Brunn-Minkowski theory. The history
of intersection bodies began with Busemann’s theorem which has important implications
for Busemann’s theory of area in Finsler spaces (see [3]). Intersection bodies were first
explicitly defined and named by Lutwak in the important paper [14], and played a key role
in the ultimate solution of Busemann-Petty problem (see [4, 7, 8, 10, 11, 14, 26–28]). It was
in [6, 14] that the duality between intersection bodies and projection bodies was first made
clear. Interest in projection bodies was rekindled by three highly influential articles which
appeared in the latter half of the 60’s by Bolker [1], Petty [19], and Schneider [22]. Projection
bodies have been the objects of intense investigation during the past three decades (see [2, 6,
21, 24]), and Lutwak established the inequalities for the mixed projection bodies and their
polar bodies (see [13, 15, 16]). Though the notion of mixed intersection bodies has also
been raised (see [12, p.251]), their properties have not been studied systematically by now.
The corresponding work about the mixed intersection bodies is done in this paper. Basic
properties of mixed intersection bodies are given in §2. In §3, the proof of dual Minkowski
inequality for mixed intersection bodies is presented and an upper bound estimate about
mixed intersection bodies is given. The dual Aleksandrov-Fenchel inequalities and dual
Brunn-Minkowski inequalities for mixed intersection bodies are proven in §4 and §5. At the
same time the equality conditions of these inequalities are obtained.
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As usual, Sn−1 denotes the unit sphere, B the unit ball, and o the origin in Euclidean
n-space E

n. If u is a unit vector, that is, an element of Sn−1, we denote by u⊥ the (n− 1)-
dimensional subspace orthogonal to u and by lu the line through the origin parallel to u.
We write Vk for k-dimensional Lebesgue measure in E

n, where 0≤ k ≤ n, and where we
identify Vk with k-dimensional Hausdorff measure (V0 is the counting measure). We also
generally write V instead of Vn. κi denotes the volume of i-dimensional unit ball, where
1 ≤ i ≤ n.

A set L is star-shaped at o if L∩ lu is either empty or a (possibly degenerate) closed line
segment for each u ∈ Sn−1. If L is star-shaped at o, we define its radial function ρL by

ρL(u) =

⎧⎨
⎩

max{c : cu ∈ L}, L ∩ lu �= ∅,
0, otherwise.

A body is a compact set equal to the closure of its interior. By a star body we mean a
body L star-shaped at o such that ρL, restricted to its support, is continuous. We denote
the class of star bodies in E

n by Ln, and the subclass of star bodies containing the origin
in their interiors by Lno .

If xi ∈ E
n, 1 ≤ i ≤ m, then x1+̃ · · · +̃xm is defined to be the usual vector sum of the

points xi, if all of them are contained in a line through o, and 0 otherwise. Let Li be a star
body in E

n with o ∈ Li, and ti ≥ 0, 1 ≤ i ≤ m. Then

t1L1+̃ · · · +̃tmLm = {t1x1+̃ · · · +̃tmxm : xi ∈ Li, 1 ≤ i ≤ m}

is called a radial linear combination. Moreover, for each u ∈ Sn−1,

ρt1L1�+t2L2
(u) = t1ρL1(u) + t2ρL2(u). (1.1)

The dual mixed volume Ṽ (L1, · · · , Ln) of star bodies L1, · · · , Ln containing the origin
in E is defined by

Ṽ (L1, · · · , Ln) =
1
n

∫
Sn−1

ρL1(u) · · · ρLn(u)du, (1.2)

where du signifies integration on Sn−1 with respect to Vn−1, which in Sn−1 is identified with
spherical Lebesgue measure. When L1 = L2 = · · · = Ln−i = K1, Ln−i+1 = · · · = Ln = K2

in (1.2), we write Ṽi(K1,K2) for Ṽ (K1, n− i;K2, i). For 0 ≤ i ≤ n, the dual volume Ṽi(L)
and dual quermassintegral W̃n−i(L) are defined by

Ṽi(L) = W̃n−i(L) = Ṽ (L, i;B, n− i) =
1
n

∫
Sn−1

ρL(u)idu. (1.3)

In particular, Ṽn(L) = V (L), i.e., the polar coordinate formula for volume of star body L

with o ∈ L is

V (L) =
1
n

∫
Sn−1

ρL(u)ndu. (1.4)
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Let Lj be a star body in E
n with o ∈ Lj , 1 ≤ j ≤ n, and suppose that 1 ≤ i ≤ n. Lutwak

proved the dual Aleksandrov-Fenchel inequality (see [6, Section B.4])

Ṽ (L1, · · · , Ln)i ≤
i∏

j=1

Ṽ (Lj , i;Li+1, · · · , Ln), (1.5)

in which the equality holds if and only if L1, · · · , Li are dilatates of each other. The inequality
has the same form as the classical Aleksandrov-Fenchel inequality. Two special cases of (1.5)
are worthy of note. If Li ∈ Ln, with o ∈ Li, and 1 ≤ i ≤ n, then

Ṽ (L1, · · · , Ln)n ≤ V (L1)V (L2) · · ·V (Ln), (1.6)

and

Ṽi(L1, L2)n ≤ V (L1)n−iV (L2)i, (1.7)

in which the equalities hold if and only if the bodies are dilatates of each other.
If L ∈ Ln, n ≥ 2, with ρL ∈ C(Sn−1), then the intersection body I(L) of L is a star

body defined by

ρIL(u) = Vn−1(L ∩ u⊥) =
1

n− 1

∫
Sn−1∩u⊥

ρL(v)n−1dv. (1.8)

Suppose that f is a bounded Borel function on Sn−1. The spherical Radon transform
Rf of f is defined by

(Rf)(u) =
∫
Sn−1∩u⊥

f(v)dv for all u ∈ Sn−1.

The transform R is self-adjoint (see, for example, [6, Theorem C.2.6]), that is,∫
Sn−1

f(u)(Rg)(u)du =
∫
Sn−1

(Rf)(u)g(u)du, (1.9)

for bounded Borel functions f and g on Sn−1. Let φ ∈ SOn, where SOn is the special
orthogonal group of rotations about the origin. Then (see [25, p.635])

φ(Rf)(u) = (Rf)(φ−1u) =
∫
Sn−1∩(φ−1u)⊥

f(v)dv. (1.10)

Suppose L ∈ Lno and u ∈ Sn−1. The i-chord function ρi,L of L at o is defined by

ρi,L(u) =

⎧⎨
⎩
ρL(u)i + ρL(−u)i, i �= 0,

ρL(u)ρL(−u), i = 0,
(1.11)

and the i-chordal symmetral ∇̃iL of L is a centered set defined by

ρi,�∇iL
(u) = ρi,L(u). (1.12)
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§ 2 . Properties of Mixed Intersection Bodies

Definition 2.1. (see [12, 14]) Let K1, · · · ,Kn−1 ∈ Ln, n ≥ 2. The mixed intersection
body I(K1, · · · ,Kn−1) of K1, · · · , Kn−1 is defined by

ρI(K1,··· ,Kn−1)(u) = ṽ(K1 ∩ u⊥, · · · ,Kn−1 ∩ u⊥), (2.1)

where u ∈ Sn−1, ṽ is (n− 1)-dimensional dual mixed volume.

The definition implies that I(K1, · · · ,Kn−1) is a centered star body. Taking K1 = · · · =
Kn−1 = K, we notice that the diagonal form of the mixed intersection body reduces to the
intersection body, i.e., I(K, · · · ,K) = I(K). Specially, I(B, · · · , B) = κn−1B. By (1.2), we
can rewrite (2.1) as the equivalent integral form, restricted to the star bodies containing the
origin in their interiors, involving the spherical Radon transform R:

ρI(K1,··· ,Kn−1)(u) =
1

n− 1

∫
Sn−1∩u⊥

ρK1(v) · · · ρKn−1(v)dv (2.2)

= R
( 1
n− 1

ρK1 · · · ρKn−1

)
(u).

Now, we develop some basic properties of the mixed intersection operator I : Lno×· · ·×Lno︸ ︷︷ ︸
n−1

→ Lno . Of course, most of the following results remain valid for I : Ln×· · ·×Ln︸ ︷︷ ︸
n−1

→ Ln.

Proposition 2.1. The mixed intersection operator is positively homogeneous, i.e., if
K1, · · · ,Kn−1 ∈ Lno , and α1, · · · , αn−1 ≥ 0, then

I(α1K1, · · · , αn−1Kn−1) = α1 · · ·αn−1I(K1, · · · ,Kn−1).

Proposition 2.2. The mixed intersection operator is multilinear with respect to the
radial linear combinations, i.e., if K ′,K1, · · · ,Kn−1 ∈ Lno , and α, β ≥ 0, then

I(αK1+̃βK ′,K2, · · · ,Kn−1) = αI(K1,K2, · · · ,Kn−1)+̃βI(K ′,K2, · · · ,Kn−1).

Proposition 2.3. The mixed intersection operator is monotone nondecreasing with
respect to set inclusion, i.e., if K ′,K,K2, · · · ,Kn−1 ∈ Lno , K ⊂ K ′, then

I(K,K2, · · · ,Kn−1) ⊂ I(K ′,K2, · · · ,Kn−1).

These properties of the mixed intersection operator follow immediately from (2.2) and
(1.1).

The intersection bodies of linearly equivalent star bodies are linearly equivalent (see [17]),
i.e., if φ ∈ GLn, then I(φL) = |detφ|φ−t (IL), where φ−t is the transpose of the inverse of
φ. For the special orthogonal group SOn (with determinant one) and the mixed intersection
operator, we have

Proposition 2.4. If K1, · · · ,Kn−1 ∈ Lno , φ ∈ SOn, then

I(φK1, · · · , φKn−1) = φ−tI(K1, · · · ,Kn−1).
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Proof. Let u ∈ Sn−1. By the property of linear transformation: x · φy = φtx · y, we
know that x · u = 0 if and only if φ−1x · φtu = 0. Therefore, if ω is the unit vector in the
direction of φtu, then ω⊥ = φ−1u⊥.

If E is a Vn−1-measurable subset of (n− 1)-dimensional subspace u⊥ in E
n, with o ∈ E,

and ψ is a linear transformation in E
n, then we have (see [6, p.274])

Vn−1(ψE) =
1

n− 1

∫
Sn−1∩u⊥

ρn−1
ψE (u)du = ‖ψ−tu‖|detψ|Vn−1(E).

It is easy to see that, if L1, · · · , Ln−1 are Vn−1-measurable star bodies contained in u⊥,
with o ∈ L1, · · · , Ln−1, then

ṽ(ψL1, · · · , ψLn−1) =
1

n− 1

∫
Sn−1∩u⊥

ρψL1(v) · · · ρψLn−1(v)dv

= ‖ψ−tu‖|detψ|ṽ(L1, · · · , Ln−1).

Hence

ρI(φK1,··· ,φKn−1)(u) = ṽ(φK1 ∩ u⊥, · · · , φKn−1 ∩ u⊥)

= ṽ(φ(K1 ∩ φ−1u⊥), · · · , φ(Kn−1 ∩ φ−1u⊥))

= ‖φ−tu‖ ṽ(K1 ∩ φ−1u⊥, · · · ,Kn−1 ∩ φ−1u⊥)

=
1

n− 1
‖φ−tu‖

∫
Sn−1∩(φ−1u⊥)

ρK1(v) · · · ρKn−1(v)dv

=
1

n− 1
‖φ−tu‖

∫
Sn−1∩

(
φtu

‖φtu‖

)⊥ ρK1(v) · · · ρKn−1(v)dv

=
1

n− 1
‖φ−tu‖

∫
Sn−1∩((‖φtu‖φ−t)−1u)⊥

ρK1(v) · · · ρKn−1(v)dv.

From the property (1.10) of spherical Radon transform, we have

ρI(φK1,··· ,φKn−1)(u) = ‖φ−tu‖ · ‖φtu‖ · φ−t
( 1
n− 1

∫
sn−1∩u⊥

ρK1(v) · · · ρKn−1(v)dv
)

= φ−t(ρI(K1,··· ,Kn−1)(u)).

The proof is completed.

Proposition 2.5. Let M = (K1, · · · ,Kn−i−1), 1 ≤ i ≤ n − 1, and write Ii(M,K) for
I(M,K, · · · ,K︸ ︷︷ ︸

i

). If K,L,K1, · · · ,Kn−i−1 ∈ Lno , then

Ii(M,K ∩ L)+̃Ii(M,K ∪ L) = Ii(M,K)+̃Ii(M,L).

Proof. Since ρK∪L(u) =max{ρK(u), ρL(u)}, ρK∩L(u)=min{ρK(u), ρL(u)}, and to-
gether with (1.1), we get

ρIi(M,K∩L)�+Ii(M,K∪L)(u) = ρIi(M,K)�+Ii(M,L)(u), u ∈ Sn−1.
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Thus, it is easy to obtain Proposition 2.5.

Take K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = L in I(K1, · · · ,Kn−1), and
I(K, · · · ,K︸ ︷︷ ︸

n−i−1

, L, · · · , L︸ ︷︷ ︸
i

) will be written as Ii(K,L). If L = B, then Ii(K,B) is called the ith

intersection body of K and is usually written as IiK. Specially, IK=I0K.

Proposition 2.6. If K is a centered star body, and L ∈ Lno , 0 < i ≤ n− 1, then

Ii(K, ∇̃iL) = Ii(K,L).

Proof. Let u ∈ Sn−1. From (1.11) and (1.12), it follows that

ρ
�∇iL

(u) =
(ρL(u)i + ρL(−u)i

2

) 1
i

.

Since K is centered, ρK(−u)i = ρK(u)i. Thus

ρIi(K,�∇iL)(u) =
1

n− 1

∫
sn−1∩u⊥

ρK(v)n−i−1ρ
�∇iL

(v)idv

=
1

2(n− 1)

( ∫
sn−1∩u⊥

ρK(v)n−i−1ρL(v)idv +
∫
sn−1∩u⊥

ρK(v)n−i−1ρL(−v)idv
)

=
1

2(n− 1)

( ∫
sn−1∩u⊥

ρK(v)n−i−1ρL(v)idv +
∫
sn−1∩u⊥

ρK(−v)n−i−1ρL(−v)idv
)

=
1

n− 1

∫
sn−1∩u⊥

ρK(v)n−i−1ρL(v)idv

= ρIi(K,L)(u).

The proof is completed .

Proposition 2.7. If K1, · · · ,Kn−1,K
′
1, · · · ,K ′

n−1 ∈ Lno , I(K1, · · · ,Kn−1) = I(K ′
1, · · · ,

K ′
n−1), and M is a centered star body, then

Ṽ (K1, · · · ,Kn−1,M) = Ṽ (K ′
1, · · · ,K ′

n−1,M).

Proof. Since M is a centered star body, ρM ∈ C∞
e (Sn−1). Thus, there is f ∈ Ce(Sn−1),

such that ρM = Rf (see [14, 23]).
Since for each u ∈ Sn−1, ρI(K1,··· ,Kn−1)(u) = ρI(K′

1,··· ,K′
n−1)

(u), we have

R(ρK1 · · · ρKn−1) = R(ρK′
1
· · · ρK′

n−1
).

Then, by (1.2), (1.9) and the above equalities, it follows that

Ṽ (K1, · · · ,Kn−1,M) =
1
n

∫
Sn−1

ρK1(u) · · · ρKn−1(u)ρM (u)du

=
1
n

∫
Sn−1

ρK1(u) · · · ρKn−1(u)Rf(u)du

=
1
n

∫
Sn−1

R(ρK1 · · · ρKn−1)(u)f(u)du

=
1
n

∫
Sn−1

R(ρK′
1
· · · ρK′

n−1
)(u)f(u)du
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=
1
n

∫
Sn−1

ρK′
1
(u) · · · ρK′

n−1
(u)ρM (u)du

= Ṽ (K ′
1, · · · ,K ′

n−1,M).

§ 3 . Dual Minkowski Inequality for Mixed Intersection Bodies

In this section, the following dual Minkowski inequalities for mixed intersection bodies
will be established.

Theorem 3.1. If K,K ′ ∈ Lno , and 0 ≤ i ≤ n− 1, then

V (Ii(K,K ′))n−1 ≤ V (IK)n−i−1V (IK ′)i, (3.1)

and the equality holds if and only if K and K ′ are dilatates.

Proof. Suppose u ∈ Sn−1.
Let L1, L2 be star bodies contained in (n− 1)-dimensional subspace u⊥, o ∈ L1, L2, and

write ṽi(L1, L2) for ṽ(L1, n− i− 1;L2, i). From (1.7), we have

ṽi(L1, L2)n−1 ≤ Vn−1(L1)n−i−1Vn−1(L2)i.

Now using the polar coordinate formula for volume (1.4), the above inequality and Hölder
integral inequality, we have

V (Ii(K,K ′)) =
1
n

∫
Sn−1

ρIi(K,K′)(u)ndu =
1
n

∫
Sn−1

ṽi(K ∩ u⊥,K ′ ∩ u⊥)ndu

≤ 1
n

∫
Sn−1

Vn−1(K ∩ u⊥)(n−i−1)·n/(n−1) · Vn−1(K ′ ∩ u⊥)i·n/(n−1)du

≤ 1
n

( ∫
Sn−1

Vn−1(K ∩ u⊥)ndu
)(n−i−1)/(n−1)( ∫

Sn−1
Vn−1(K ′ ∩ u⊥)ndu

)i/(n−1)

=
( 1
n

∫
Sn−1

ρIK(u)ndu
)(n−i−1)/(n−1)( 1

n

∫
Sn−1

ρIK′(u)ndu
)i/(n−1)

= V (IK)(n−i−1)/(n−1)V (IK ′)i/(n−1).

From the equality conditions of the inequality (1.7) and Hölder integral inequality, this
implies thatK∩u⊥ andK ′∩u⊥ must be dilatates. It is well known that ifK∩u⊥ andK ′∩u⊥
are dilatates for all u ∈ Sn−1, then K and K ′ are dilatates (see [20]). Hence, we get that
Theorem 3.1 holds with equality if and only if K and K ′ are dilatates.

Corollary 3.1. If K is a convex body whose centroid is at the origin, K∗ is the polar
body of K, and 0 ≤ i ≤ n− 1, then

V (Ii(K∗,K)) · V (K)n−2i−1 ≤ κnn−1 · κn−2i
n ,

and the equality holds if and only if K is a centered ellipsoid.

Proof. Taking K = K∗, K ′ = K in Theorem 3.1, we have

V (Ii(K∗,K))n−1 ≤ V (I(K∗))n−i−1V (IK)i.
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Notice the following two well-known inequalities: Busemann intersection inequality (see
[6, p.333]) states that if K ∈ Lno , then

V (IK) ≤ (κnn−1/κ
n−2
n )V (K)n−1,

and the equality holds if and only if K is a centered ellipsoid; the Extended Blaschke-Santaló
inequality (see [18]) states that if K is a convex body whose centroid is at the origin, then

V (K∗)V (K) ≤ κ2
n,

and the equality holds if and only if K is a centered ellipsoid.
Hence, we get

V (Ii(K∗,K))n−1 ≤ (κn(n−1)
n−1 /κ(n−1)(n−2)

n )V (K∗)(n−1)(n−i−1)V (K)(n−1)i

≤ (κn(n−1)
n−1 /κ(n−1)(n−2)

n ) · (κ2(n−1)(n−i−1)
n /V (K)(n−1)(n−i−1))V (K)(n−1)i

= κ
n(n−1)
n−1 · κ(n−1)(n−2i)

n · V (K)(n−1)(2i−n+1).

It is easy to obtain the equality condition of Corollary 3.1.

§ 4 . Dual Aleksandrov-Fenchel Inequalities
for Mixed Intersection Bodies

The dual Aleksandrov-Fenchel inequality, for mixed intersection bodies, which will be
proven is: If K1, · · · ,Kn−1 ∈ Lno , 1 ≤ i ≤ n− 1, then

V (I(K1, · · · ,Kn−1))i ≤
i∏

j=1

V (I(Kj , i;Ki+1, · · · ,Kn−1)), (4.1)

and the equality holds if and only if K1, · · · ,Ki are dilatates.
This is the special case i = 0 of Theorem 4.1.

Theorem 4.1. If K1, · · · ,Kn−1 ∈ Lno , 0 ≤ i ≤ n, 0 < m ≤ n− 1, then

W̃i(I(K1, · · · ,Kn−1))m ≤
m∏
j=1

W̃i(I(Kj ,m;Km+1, · · · ,Kn−1)),

and the equality holds if and only if K1, · · · ,Km are dilatates.

Proof. By (1.3) and (2.2), we have

W̃i(I(K1, · · · ,Kn−1))

=
1
n

∫
Sn−1

ρI(K1,··· ,Kn−1)(u)n−idu

=
1
n

∫
Sn−1

( 1
n− 1

∫
Sn−1∩u⊥

ρK1(v) · · · ρKn−1(v)dv
)n−i

du.
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An extension of Hölder inequality states that (see [9, p.140])

∫
Ω

m∏
i=1

fi(u)du ≤
m∏
i=1

( ∫
Ω

fi(u)mdu
)1/m

,

and the equality holds if and only if fi are proportional.
Applying the extension of Hölder inequality, we have

W̃i(I(K1, · · · ,Kn−1))m

≤
( 1
n

∫
Sn−1

( m∏
j=1

( 1
n− 1

∫
Sn−1∩u⊥

ρKj(v)
mρKm+1(v) · · · ρKn−1(v)dv

))(n−i)/m
du

)m

=
( 1
n

∫
Sn−1

( m∏
j=1

ρI(Kj ,m;Km+1,··· ,Kn−1)(u)
)(n−i)/m

du
)m

.

Applying the extension of Hölder inequality again, we obtain

W̃i(I(K1, · · · ,Kn−1))m ≤
m∏
j=1

( 1
n

∫
Sn−1

ρI(Kj ,m;Km+1,··· ,Kn−1)(u)n−idu
)

=
m∏
j=1

W̃i(I(Kj ,m;Km+1, · · · ,Kn−1)).

From the equality condition of the first Hölder inequality, this implies that ρKj (v)m

ρKm+1(v) · · · ρKn−1(v) (j = 1, · · · ,m) must be proportional. Since Ki∈Lno (i = 1, · · · , n−1),
K1, · · · ,Km are dilatates. It follows that there exist ai ≥ 0 (i = 2, · · · ,m) such that
K1 = aiKi. Then

ρI(K1,m;Km+1,··· ,Kn−1)(u) = ṽ(K1 ∩ u⊥,m;Km+1 ∩ u⊥, · · · ,Kn−1 ∩ u⊥)

= ṽ(ai(Ki ∩ u⊥),m;Km+1 ∩ u⊥, · · · ,Kn−1 ∩ u⊥)

= ami ṽ((Ki ∩ u⊥),m;Km+1 ∩ u⊥, · · · ,Kn−1 ∩ u⊥)

= ami ρI(Ki,m;Km+1,··· ,Kn−1)(u).

That K1 = aiKi (i = 2, · · · ,m) implies that ρI(Kj,m;Km+1,··· ,Kn−1) (j = 1, · · · ,m) are
proportional, which is also the equality condition of the second Hölder inequality. So the
equality of Theorem 4.1 holds if and only if K1, · · · ,Km are dilatates.

Taking i = n− 1 in (4.1), we have

Corollary 4.1. If K1, · · · ,Kn−1 ∈ Lno , then

V (I(K1, · · · ,Kn−1))n−1 ≤ V (I(K1)) · · ·V (I(Kn−1)),

and the equality holds if and only if K1, · · · ,Kn−1 are dilatates.

Taking K1 = · · · = Kn−2−j = K, Kn−1−j = L, Kn−j = · · · = Kn−1 = B in (4.1), where
1 ≤ j ≤ n− 2, we obtain
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Corollary 4.2. If K,L ∈ Lno , 1 ≤ j < n− 2, then

V (I(K, · · · ,K︸ ︷︷ ︸
n−2−j

, L,B, · · · , B︸ ︷︷ ︸
j

))n−1−j ≤ V (IjK)n−2−jV (IjL),

and the equality holds if and only if K and L are dilatates.

Remark 4.1. Take K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = K ′, i = n − 1 in
(4.1), and Theorem 3.1 follows immediately.

§ 5 . Dual Brunn-Minkowski Inequalities
for Mixed Intersection Bodies

First, in this section, we will consider the dual Brunn-Minkowski inequality for the mixed
intersection bodies and the radial Blaschke linear combination.

Let K and K ′ be star bodies in E
n with o ∈ K,K ′, α1, α2 ≥ 0, and define the radial

Blaschke linear combination α1 ·K+̂α2 ·K ′ by

ρα1·K�+α2·K′(u)n−1 = α1ρK(u)n−1 + α2ρK′(u)n−1. (5.1)

Theorem 5.1. If K, K ′, L ∈ Lno , α1, α2 ≥ 0, then

V (I1(α1 ·K+̂α2 ·K ′, L))1/n ≤ α1V (I1(K,L))1/n + α2V (I1(K ′, L))1/n,

and the equality holds if and only if I1(K,L), I1(K ′, L) are dilatates.

Proof. Let u ∈ Sn−1. Since K∩u⊥,K ′∩u⊥ are star bodies containing the origin in u⊥,
by (5.1), we have

ρα1·(K∩u⊥)�+α2·(K′∩u⊥)(v)
n−2 = α1ρK∩u⊥(v)n−2 + α2ρK′∩u⊥(v)n−2.

Then, from (2.2) and the above equality, we get

ρI1(α1·K�+α2·K′,L)(u)

=
1

n− 1

∫
Sn−1∩S

ρ(α1·K�+α2·K′)∩u⊥(v)n−2ρL∩u⊥(v)dv

=
1

n− 1

∫
Sn−1∩S

ρ(α1·(K∩u⊥)�+α2·(K′∩u⊥))(v)
n−2ρL∩u⊥(v)dv

=
α1

n− 1

∫
Sn−1∩S

ρK∩u⊥(v)n−2ρL∩u⊥(v)dv +
α2

n− 1

∫
Sn−1∩S

ρK′∩u⊥(v)n−2ρL∩u⊥(v)dv

=
α1

n− 1

∫
Sn−1∩u⊥

ρK(v)n−2ρL(v)dv +
α2

n− 1

∫
Sn−1∩u⊥

ρK′(v)n−2ρL(v)dv

= α1ρI1(K,L)(u) + α2ρI1(K′,L)(u).

Using (1.4), the above result and Minkowski integral inequalities, we have

V (I1(α1 ·K+̂α2 ·K ′, L))

=
1
n

∫
Sn−1

(α1ρI1(K,L)(u) + α2ρI1(K′,L)(u))ndu
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≤
(( 1

n

∫
Sn−1

αn1ρI1(K,L)(u)ndu
)1/n

+
( 1
n

∫
Sn−1

αn2 ρI1(K′,L)(u)ndu
)1/n)n

= (α1V (I1(K,L))1/n + α2V (I1(K ′, L))1/n)n.

From the equality condition of Minkowski integral inequality, it shows that ρI1(K,L)(u) =
aρI1(K′,L)(u), where a ≥ 0. Thus, Theorem 5.1 holds with equality if and only if I1(K,L),
I1(K ′, L) are dilatates.

Second, the dual Brunn-Minkowski inequalities for the radial linear combination and
intersection bodies, which will be established is: If K,L ∈ Lno , then

V (I(K+̃L))1/(n(n−1)) ≤ V (IK)1/(n(n−1)) + V (IL)1/(n(n−1)),

and the equality holds if and only if K and L are dilatates.
This is the special case j = 0, i = 0 of Theorem 5.2.

Theorem 5.2. If 0 ≤ i < n, 0 ≤ j < n − 1, K, L, M1, · · · ,Mi, M
′
1, · · · ,M ′

j ∈ Lno ,
C = (M1, · · · ,Mi), and D = (M ′

1, · · · ,M ′
j), then

Ṽi(Ij(K+̃L,D), C)1/((n−i)(n−j−1))

≤ Ṽi(Ij(K,D), C)1/((n−i)(n−j−1)) + Ṽi(Ij(L,D), C)1/((n−i)(n−j−1)),

and the equality holds if and only if K,L are dilatates.

In order to prove Theorem 5.2, we need the following two lemmas.

Lemma 5.1. If K1, · · · ,Kn−1, L1, · · · , Ln−1 ∈ Lno , then

Ṽ (K1, · · · ,Kn−1, I(L1, · · · , Ln−1)) = Ṽ (L1, · · · , Ln−1, I(K1, · · · ,Kn−1)).

Proof. Let u ∈ Sn−1. Then

Ṽ (K1, · · · ,Kn−1, I(L1, · · · , Ln−1))

=
1
n

∫
Sn−1

ρK1(u) · · · ρKn−1(u)ρI(L1,··· ,Ln−1)(u)du

=
1
n
· 1
n− 1

∫
Sn−1

ρK1(u) · · · ρKn−1(u)
∫
Sn−1∩u⊥

ρL1(v) · · · ρLn−1(v)dvdu.

Let f = ρK1 · · · ρKn−1, g = ρL1 · · · ρLn−1 . Then

Ṽ (K1, · · · ,Kn−1, I(L1, · · · , Ln−1)) =
1
n
· 1
n− 1

∫
Sn−1

f(u)Rg(u)du.

In the same way,

Ṽ (L1, · · · , Ln−1, I(K1, · · · ,Kn−1)) =
1
n
· 1
n− 1

∫
Sn−1

g(u)Rf(u)du.

From the property (1.9) of the spherical Radon transformation, we obtain Lemma 5.1.

Lemma 5.2. If 0 ≤ i < n− 1, K,L,K1, · · · ,Ki ∈ Lno , and C = (K1, · · · ,Ki), then

Ṽi(K+̃L,C)1/(n−i) ≤ Ṽi(K,C)1/(n−i) + Ṽi(L,C)1/(n−i), (5.2)
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and the equality holds if and only if K and L are dilatates.

Proof. Let ρC = ρK1 · · · ρKi .
By (1.3), (1.1) and Minkowski integral inequality, we obtain

Ṽi(K+̃L,C)1/(n−i)

=
( 1
n

∫
Sn−1

ρK�+L(u)n−iρC(u)du
)1/(n−i)

=
( 1
n

∫
Sn−1

(ρK(u)ρC(u)1/(n−i) + ρL(u)ρC(u)1/(n−i))n−idu
)1/(n−i)

≤
( 1
n

∫
Sn−1

ρK(u)n−iρC(u)du
)1/(n−i)

+
( 1
n

∫
Sn−1

ρL(u)n−iρC(u)du
)1/(n−i)

= Ṽi(K,C)1/(n−i) + Ṽi(L,C)1/(n−i).

From the equality condition of Minkowski integral inequality, we get that (5.2) holds
with equality if and only if ρK(u)ρC(u)1/(n−i) = aρL(u)ρC(u)1/(n−i), where a ≥ 0. This
implies that ρK(u) = ρaL(u), i.e., K = aL. The proof is completed.

Proof of Theorem 5.2. If j = n− 2, then from Proposition 2.2, it follows that

In−2(K+̃L,D) = In−2(K,D)+̃In−2(L,D).

Hence, for j = n− 2, the inequality of Theorem 5.2 reduces to the one of Lemma 5.2.
For i = n− 1, using Lemma 5.1 and Lemma 5.2, we obtain

Ṽn−1(Ij(K+̃L,D), C)1/(n−j−1)

= Ṽ (K+̃L, · · · ,K+̃L︸ ︷︷ ︸
n−j−1

, D, · · · , D︸ ︷︷ ︸
j

, I(C, · · · , C))1/(n−j−1)

≤ Ṽ (K, · · · ,K︸ ︷︷ ︸
n−j−1

, D, · · · , D︸ ︷︷ ︸
j

, I(C, · · · , C))1/(n−j−1)

+ Ṽ (L, · · · , L︸ ︷︷ ︸
n−j−1

, D, · · · , D︸ ︷︷ ︸
j

, I(C, · · · , C))1/(n−j−1)

= Ṽn−1(Ij(K,D), C)1/(n−j−1) + Ṽn−1(Ij(L,D), C)1/(n−j−1).

Thus, only the cases where j < n− 2, and i < n− 1 need to be treated.
Suppose Q ∈ Lno . Using Lemma 5.1 and Lemma 5.2, we get

Ṽ (Q,n− i− 1;C; Ij(K+̃L,D))1/(n−j−1)

= Ṽ (K+̃L, n− j − 1;D; Ii(Q,C))1/(n−j−1) (5.3)

≤ Ṽ (K,n− j − 1;D; Ii(Q,C))1/(n−j−1)

+ Ṽ (L, n− j − 1;D; Ii(Q,C))1/(n−j−1). (5.4)
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Using Lemma 5.1 again and the dual Aleksandrov-Fenchel inequality, we have

Ṽ (K,n− j − 1;D; Ii(Q,C))1/(n−j−1)

= Ṽ (Q,n− i− 1;C; Ij(K,D))1/(n−j−1)

= Ṽ (Q,n− i− 1; Ij(K,D);C)1/(n−j−1)

≤ Ṽi(Q,C)(n−1−i)/((n−j−1)(n−i))Ṽi(Ij(K,D), C)1/((n−j−1)(n−i)). (5.5)

In exactly the same way, it can be seen that

Ṽ (L, n− j − 1;D; Ii(Q,C))1/(n−j−1)

≤ Ṽi(Q,C)(n−1−i)/((n−j−1)(n−i))Ṽi(Ij(L,D), C)1/((n−j−1)(n−i)). (5.6)

Combining (5.3)–(5.6), we obtain

Ṽ (Q,n− i− 1;C; Ij(K+̃L,D))1/(n−j−1)Ṽi(Q,C)−(n−1−i)/((n−j−1)(n−i))

≤ Ṽi(Ij(K,D), C)1/((n−j−1)(n−i)) + Ṽi(Ij(L,D), C)1/((n−j−1)(n−i)).

Take Q=Ij(K+̃L,D), and the inequality of Theorem 5.2 is obtained.
Consider the equality condition of Theorem 5.2. From the equality condition of (5.4), it

follows that K and L are dilatates. There exists a ≥ 0, such that K = aL.
Let ρD(u) = ρM ′

1
(u) · · · ρM ′

j
(u). When K = aL,

ρIj(K�+L,D)(u) =
1

n− 1

∫
Sn−1∩u⊥

ρK�+L(v)n−j−1ρD(v)dv

=
1

n− 1

∫
Sn−1∩u⊥

ρaL�+L(v)n−j−1ρD(v)dv

=
1

n− 1

∫
Sn−1∩u⊥

ρ(a+1)L(v)n−j−1ρD(v)dv

= (a+ 1)n−j−1 1
n− 1

∫
Sn−1∩u⊥

ρL(v)n−j−1ρD(v)dv

= (a+ 1)n−j−1ρIj(L,D)(u).

In the same way, when K = aL, ρIj(K�+L,D)(u) = (1 + 1
a )n−j−1ρIj(K,D)(u).

Since (5.5) holds with equality if and only if Ij(K+̃L,D) and Ij(K,D) are dilatates, and
(5.6) holds with equality if and only if Ij(K+̃L,D) and Ij(L,D) are dilatates, this shows
that Theorem 5.2 holds.

Corollary 5.1. If K,L,M,M ′
1, · · · ,M ′

n−2 ∈ Lno , D = (M ′
1, · · · ,M ′

n−2), then

Ṽ (M,n− 1; I(D,K+̃L)) ≤ V (M)(n−1)/n(V (I(D,K))1/n + V (I(D,L))1/n),

and the equality holds if and only if M, I(D,L), I(D,L) are dilatates.

Proof. Taking i = n− 1, j = n− 2, M1 = · · · = Mi = M in Theorem 5.2, we get

Ṽ (M,n− 1; I(D,K+̃L)) ≤ Ṽ (M,n− 1; I(D,K)) + Ṽ (M,n− 1; I(D,L)).

According to (1.7), Corollary 5.1 follows immediately.
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