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Abstract

By using dressing actions of the G1,1
n−1,n−1-system, the authors study geometric

transformations for flat time-like n-submanifolds with flat, non-degenerate normal bun-
dle in anti-de Sitter space H2n−1

1 (−1), where G1,1
n−1,n−1 = O(2n − 2, 2)/O(n − 1, 1) ×

O(n − 1, 1).
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§ 1 . Introduction

Recently Ferus and Pedit [1], and Terng et al [2, 3] established a beautiful relation
between integrable systems and submanifold geometry. They found that submanifolds in
certain symmetric space whose Gauss-Codazzi-Ricci equations are given by a nonlinear first
order system, the U/K-system, which is putting the n first flows of ZS-AKNS together. This
means to find submanifolds M in certain symmetric space whose Gauss-Codazzi-Ricci equa-
tions are equivalent to U/K-systems. The direct approach may provide ways to find Lax
pairs for submanifolds M . Terng et al [2, 3] carried out the project for the real Grassman-
nian manifolds of space-like m-dimensional linear subspaces in Rm+n and in Rm+n,1. For
instance, they proved that solutions of the G0,0

m,n(m ≥ n)- and the G0,1
m,n(m ≥ n+1)-system I

correspond to local isometric immersion of Nn(c) into Nn+m(c), the G0,0
m,n(m > n)- and the

G0,1
m,n(m > n + 1)-system II give rise to n-tuple in Rm of type O(n) and (n + 1)-tuple in Rm

of type O(n, 1) respectively. In [4–6], we obtained some space-like and time-like immersions
associated with the Gp,q

m,n-system, where Gp,q
m,n = O(m + n, p + q)/O(m, p) × O(n, q).

The aim of this paper is to study geometric transformations for flat time-like n-submani-
folds with flat, non-degenerate normal bundle in anti-de Sitter space H2n−1

1 (−1) by using
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the G1,1
n−1,n−1-system. This paper is organized as follows. In Section 2, we consider the

geometry associated with the G1,1
n−1,n−1-system. In Section 3, we construct a dressing action

with a simple pole, and show that gives rise to Bäcklund transformations (BTs in brief)
for flat time-like n-submanifolds in H2n−1

1 (−1). In Section 4, we construct another dressing
action with two simple poles, and prove that gives rise to Rabaucour transformations (RTs
in brief) for flat time-like n-submanifolds in H2n−1

1 (−1).

§ 2 . The Geometry Associated with the G1,1
n−1,n−1-System

In this section, we review some known facts about the G1,1
n−1,n−1-system and give a

relation between flat time-like n-submanifolds in H2n−1
1 (−1) and the G1,1

n−1,n−1-system.

2.1. The general case of the G1,1
n−1,n−1-system

Below we give a short review of some known facts about the G1,1
n−1,n−1-system, see [2, 3,

6] for details. In this paper, we use the following notations

Ip,q =

(
Ip 0
0 −Iq

)
, J̃ =

(
J 0
0 J

)
,

J = In−1,1 = diag(ε1, · · · , εn),

o(2n − 2, 2) = {X ∈ gl(2n) | XtJ̃ + J̃X = 0},
o(n − 1, 1) = {X ∈ gl(n) | XtJ + JX = 0},
G1,1

n−1,n−1 = O(2n − 2, 2)/O(n − 1, 1) × O(n − 1, 1),

gl(n)∗ = {(fij) ∈ gl(n) | fii = 0, i = 1, · · · , n}.

The G1,1
n−1,n−1-system, according to the terminology of [3], is the following PDE for

F = (fij) : Rn → gl(n)∗ such that

θλ =

(
JδF tJ − Fδ λδ

−λδ δF − JF tδJ

)
(2.1)

is a family of flat connections on Rn for all λ ∈ C, i.e.,

dθλ + θλ ∧ θλ = 0, (2.2)

where δ = diag(dx1, · · · , dxn). Hence there exists a smooth map E : Rn ×C → O(2n− 2, 2)
such that E−1dE = θλ and E(0, λ) = I. Here E is often called the frame of θλ. The
G1,1

n−1,n−1-reality condition is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(λ̄) = g(λ),

In,ng(λ)In,n = g(−λ),

g(λ)

(
J 0
0 J

)
g(λ)t =

(
J 0
0 J

)
.

(2.3)
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Let g =
(
B 0
0 A

)
∈ O(n − 1, 1) × O(n − 1, 1) be a solution of g−1dg = θ0. Take the gauge

transformation of θλ by

h =
(

In 0
0 A

)
.

The resulting connection 1-form Ωλ is

Ωλ = hθλh−1 − dhh−1 =

(
JδF tJ − Fδ JδAtJλ

−Aδλ 0

)
, (2.4)

which is also a family of flat connections on Rn for all λ ∈ C, i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
εi(fij)xi + εj(fji)xj +

n∑
k=1

εkfkifkj = 0, if i �= j,

(fij)xk
= fikfkj , if i, j, k are distinct,

(aij)xk
= aikfkj , if j �= k,

(2.5)

where A = (aij), F = (fij). Note that Eh−1 is the frame of Ωλ. We call (2.5) the G1,1
n−1,n−1-

II system.

2.2. Flat time-like n-submanifolds in H2n−1
1 (−1)

In [13, Theorem 3.3], we have obtained

Lemma 2.1. Let f be a flat time-like n-submanifold in H2n−1
1 (−1) and satisfy (i) the

second fundamental form is orthogonally diagonalizable, and (ii) there exists a point p of M

where the principal normal curvatures are different from 1. Then on an open contractible
region U of p, there exist a Chebyshev coordinate system {x1, · · · , xn} and A = (aij) ∈
O(n − 1, 1) such that the two fundamental forms are

I =
n∑

i=1

εia
2
nidx2

i ,

II =
n∑

i=1

n−1∑
l=1

εianialidx2
i en+l,

(2.6)

where {en+1, · · · , e2n−1} are local parallel normal frame fields.

By a direct verification, the Gauss-Codazzi-Ricci equations of M are the G1,1
n−1,n−1-II

system (2.5), which is gauge equivalent to the G1,1
n−1,n−1-system (2.2). Hence the immersion

f has a Lax pair

E−1dE = θλ =

(
JδF tJ − Fδ δλ

−δλ δF − JF tδJ

)
. (2.7)

Suppose f = e2n, ek = fxk

ank
for 1 ≤ k ≤ n, and g = (e1, · · · , e2n). Then we have

g−1dg = Ωλ

∣∣
λ=1

=

(
JδF tJ − Fδ JδAtJ

−Aδ 0

)
. (2.8)
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By using the fundamental theorem of pseudo-Riemannian geometry and Lemma 2.1, we
get

Corollary 2.1. Let (A, F ) be a solution of the G1,1
n−1,n−1-II system (2.5). Then (2.8) is

solvable. Let g be a solution of (2.8) and f the 2n-th volume of g. If all entries of the last
row of A are non-zero, then f is a local isometric immersion of a flat time-like n-submanifold
in H2n−1

1 (−1) with flat, non-degenerate normal bundle such that the two fundamental forms
are as in (2.6), where A = (aij).

§ 3 . Dressing Actions and BTs for Flat Time-Like
n-Submanifolds in H2n−1

1 (−1)

In this section we shall construct a dressing action with a simple pole, and show that
the dressing action on the space of solutions of the G1,1

n−1,n−1-system (2.2) gives rise to BTs
for flat time-like n-submanifolds in H2n−1

1 (−1), which is constructed in [13].
Define a rational map with only a simple pole

Ks,β(λ) =
1

λ − is

(
sβ λIn

−λIn sJβtJ

)
, (3.1)

where s ∈ R is a non-zero constant and β ∈ O(n − 1, 1) is a constant matrix. It is easily
verified that gs,β(λ) = λ−is√

λ2+s2 Ks,β satisfies the G1,1
n−1,n−1-reality condition (2.3). We call

Ks,β(λ) a simple element of the G1,1
n−1,n−1-system (2.2) according to the terminology of [7,

8].
Let F be a solution of the G1,1

n−1,n−1-system (2.2) and E the corresponding frame of
F . It follows from the result of Terng and Uhlenbeck in [8] that Ks,βE can be factored as

ẼKs,β̃(x) for some functions Ẽ and Ks,β̃(x). Write E(x,−is) =
(

η1 η2

η3 η4

)
with ηi ∈ gl(n)

and set

β̃ = (iη4 − βη2)−1(iβη1 + η3), Ẽ = Ks,βE(x, λ)K−1

s,β̃(x)
(λ). (3.2)

Note that

Res(Ẽ,−is) =
is

2

(
β −iIn

iIn JβtJ

)(
η1 η2

η3 η4

)(
Jβ̃tJ iIn

−iIn β̃

)
.

It follows from (3.2) and β ∈ O(n − 1, 1) that Res(Ẽ,−is) = 0. Since E(x,−is) = E(x, is),
similarly we can show that Res(Ẽ, is) = 0. Hence Ẽ(x, λ) is holomorphic in λ ∈ C. Let
θ̃λ = Ẽ−1dẼ. Then θ̃λ is holomorphic for λ ∈ C. By using θλ = E−1dE and (3.2), we get
Ks,β θ̃λ = Ks,β̃θλ−dKs,β̃ . Comparing the coefficient of λj (j = 0, 1, 2), we have the following
lemma.

Lemma 3.1. Let F be a solution of the G1,1
n−1,n−1-system (2.2) and E a frame of F. Then

F̃ = Ks,β#F = JF tJ + sβ̃∗ is a solution of the G1,1
n−1,n−1-system (2.2) and Ẽ is a frame of

F̃ , where β̃∗ is the matrix whose ij-th entry is β̃ij for i �= j and is 0 for i = j.
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Let s1, s2 be two unequal nonzero real constants, and β1, β2 ∈ O(n − 1, 1) are two
constant matrices. If φ = s1β1 − s2β2 is non-singular, βt

1Jβ2 �= s2
s1

J and βt
2Jβ1 �= s1

s2
J , we

may set

α1 = (s1In − s2Jβt
2Jβ1)φ−1, α2 = (s1Jβt

1Jβ2 − s2In)φ−1. (3.3)

It is easily verified that αi ∈ O(n − 1, 1) for i = 1, 2 and Ks1,α1 ◦ Ks2,β2 = Ks2,α2 ◦ Ks1,β1 .
Moreover if Ks1,α1 ◦Ks2,β2 = Ks2,α2 ◦Ks1,β1 , then β1, β2 and α1, α2 are related as in (3.3).
By using this observation, we have the following permutability formula.

Lemma 3.2. Let si, βi, αi for i = 1, 2 as above, F be a solution of the G1,1
n−1,n−1-system

(2.2) and Fi = Ksi,βi#F = JF tJ + siβ̃i∗ for i = 1, 2 as given in Lemma 3.1. Then the
permutability formula is

F3 = (Ks1,α1 ◦ Ks2,β2)#F = JF tJ + s1α̃1∗ + s2β̃2∗

= (Ks2,α2 ◦ Ks1,β1)#F = JF tJ + s2α̃2∗ + s1β̃1∗. (3.4)

According to Corollary 2.1, we know that Lemmas 3.1 and 3.2 give a method of con-
structing a new flat time-like n-submanifold in H2n−1

1 (−1) from a given one. Geometrically,
this gives the geometric transformation which is the BT and the analogue of the classical
Bianchi theorem obtained in [13].

Theorem 3.1. Let F, E, Ks,β, β̃, Ẽ, F̃ be as in Lemma 3.1. Write

E(x, 0) =

(
B(x) 0

0 A(x)

)
, Ẽ(x, 0) =

(
B̃(x) 0

0 Ã(x)

)
. (3.5)

Let

N(x) = EII(x, 1) = E(x, 1)

(
In 0
0 A−1(x)

)
,

Ñ(x) = g−1
s,β(1)Ẽ(x, 1)

(
In 0

0 (Aβ̃)−1(x)

)
(3.6)

= N(x)

(
cos τJβ̃tJ − sin τ(Aβ̃)−1

sin τA cos τIn

)
,

where τ = arctan
1
s
. Let ei and ẽi for 1 ≤ i ≤ 2n denote the i-th column of N(x) and

Ñ(x) respectively. Then L : e2n(x) → ẽ2n(x) is a BT for flat time-like n-submanifolds with
constant τ in H2n−1

1 (−1) and the line congruence is time-like.

Proof. It follows from β ∈ O(n − 1, 1) that
(
JβtJ 0

0 β

)
Ẽ(x, 0) is also a frame of

θ̃λ as in the form of (2.1) for F̃ at λ = 0. By using (2.4), (3.6) and Theorem 3.1, we
know that (A, F ) and (Ã, F̃ ) are solutions of the G1,1

n−1,n−1-II system (2.5) and N, Ñ are
the corresponding frames at λ = 1 respectively. By using Corollary 2.1, e2n, ẽ2n are flat
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time-like n-submanifolds with flat, non-degenerate normal bundle in H2n−1
1 (−1), where

{en+1, · · · , e2n−1} and {ẽn+1, · · · , ẽ2n−1} are parallel normal frames for e2n and ẽ2n respec-
tively. Let

NA = N

(
(Aβ̃)−1 0

0 In

)
, ÑA = Ñ

(
A−1 0
0 In

)
.

Then we have

ÑA = N

(
cos τJβ̃tJ − sin τ(Aβ̃)−1

sin τA cos τIn

)(
A−1 0
0 In

)

= NA

(
cos τIn − sin τIn

sin τIn cos τIn

)
. (3.7)

The last n column vectors of N and NA, Ñ and ÑA are the same and they are normal
frames. Geometrically, (3.7) is the BT for flat time-like n-submanifolds in H2n−1

1 (−1).
By using Lemma 3.2 and Theorem 3.1, we get the following analogue of the classical

Bianchi theorem.

Theorem 3.2. Let Li : M → Mi be BTs for flat time-like n-submanifolds in H2n−1
1

corresponding to the solution of Ksi,βi for i = 1, 2 as in Theorem 3.1. If s1, s2 are two
unequal nonzero real constants, β1, β2 ∈ O(n − 1, 1) are constant matrices and s1β1 − s2β2

is non-singular, βt
1Jβ2 �= s2

s1
J and βt

2Jβ1 �= s1

s2
J , then there exists a unique flat time-

like n-submanifold M3 in H2n−1
1 and BTs L̃1 : M2 → M3, L̃2 : M1 → M3 such that

L̃1 ◦ L2 = L̃2 ◦ L1.

§ 4 . Dressing Actions and RTs for Flat Time-Like
n-Submanifolds in H2n−1

1 (−1)

In [6], we have obtained an explicit construction of the dressing action of a rational map
with two simple poles of solutions of the general Gp,q

m,n-system. Hence we only state our
results here.

Let C2n be equipped with the bi-linear form

〈u, v〉1 = −
n−1∑
i=1

ūivi + ūnvn −
2n−1∑

i=n+1

ūivi + ū2nv2n.

Let W and Z be two unit space-like constant vectors in R1,n−1 respectively, and π the

orthogonal projection onto the space of C
(

W
iZ

)
with respect to 〈 , 〉1. Let 0 �= s ∈ R, and

define

gs,π =
(
π +

λ − is

λ + is
(I − π)

)(
π̄ +

λ + is

λ − is
(I − π̄)

)
. (4.1)
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Lemma 4.1. Let F : Rn → gl∗(n) be a solution of the G1,1
n−1,n−1-system (2.2), and

E(x, λ) a frame of F such that E(x, λ) is holomorphic for λ ∈ C and E(0, λ) = I. Let gs,π

be as in (4.1) and (
W̃

iZ̃

)
(x) = E(x,−is)−1

(
W

iZ

)
, (4.2)

and π̃ be the orthogonal projection onto the space of C
(

W̃

iZ̃

)
with respect to 〈 , 〉1. Then

F̃ = gs,π�F = F + 2s(Ŵ ẐtJ)∗ is a new solution of (2.2), and Ẽ = Eg−1
s,π̃ is a frame for F̃ ,

where Ŵ =
W̃

‖W‖R1,n−1
and Ẑ =

Z̃

‖Z‖R1,n−1
.

Note that both E and Ẽ satisfy the G1,1
n−1,n−1-reality condition (2.3) which implies that

E(x, 0) and Ẽ(x, 0) are in O(n − 1, 1) × O(n − 1, 1). Write

E(x, 0) =

(
B(x) 0

0 A(x)

)
, Ẽ(x, 0) =

(
B̃(x) 0

0 Ã(x)

)

for some A, B, Ã and B̃. Hence we have{
Ã = A(I + 2ẐẐtJ),

B̃ = B(I + 2ŴŴ tJ).

Note that (A, F ) and (Ã, F̃ ) are solutions of the G1,1
n−1,n−1-II system (2.5), the corresponding

frames are EII(x, λ) and ẼII(x, λ), where

EII(x, λ) = E(x, λ)

(
Im 0
0 A−1

)
, ẼII(x, λ) = Ẽ(x, λ)

(
Im 0

0 Ã−1

)
.

It follows from Lemma 4.1 that

ẼII(x, λ) = EII(x, λ)

(
I − 2

s2 + λ2

(
sW̃

−λAZ̃

)
(sW̃ tJ,−λZ̃tAtJ)

)
. (4.3)

In the following, we use the notation

(Ã, F̃ , ẼII) = gs,π�(A, F, EII).

Analogous to the discussion of Lemma 3.2 (or see [3, 8]), we may also obtain the following
permutability formula.

Lemma 4.2. Let F be a solution of the G1,1
n−1,n−1-system (2.2), and E the frame of F

such that E(0, λ) = I. Let Wk and Zk be two unit space-like vectors in R1,n−1, vk =
(Wk

iZk

)
and πk the orthogonal projection onto vk with respect to 〈 , 〉1 for k = 1, 2. Let s1, s2 ∈ R

be constants such that s1
2 �= s2

2 and s1s2 �= 0. Let uk denote the unit space-like direction
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of gsj ,sk
(−isk)(vk) for j �= k, and τk the orthogonal projection onto uk with respect to 〈 , 〉1

for k = 1, 2. Then

F3 = (gs2,τ2gs1,π1)�ξ = (gs1,τ1gs2,π2)�ξ

is a new solution of the G1,1
n−1,n−1-system (2.2).

RTs for surfaces in R3 have been studied by [11, 12] and references therein. Natural
generalizations of RTs for holonomic submanifolds with arbitrary dimension and codimen-
sion, that is, Riemannian submanifolds with flat normal bundle admitting a global system
of principal coordinates, in (pseudo-) Riemannian space forms Nm

p (c) (p ≥ 0) are given in
[10]. In [6] we generalize it to time-like submanifolds in pseudo-Riemannian space forms
Nm+p

m (c). In the following we shall give the geometric interpretation of the dressing action
of gs,π on the solution of the G1,1

n−1,n−1-system (2.2).

Theorem 4.1. Let EII be a frame of the solution (A, F ) of the G1,1
n−1,n−1-II system (2.5),

gs,π given by (4.1) and (Ã, F̃ , ẼII) = gs,π�(A, F, EII). Write

EII(x, 1) = (e1, · · · , e2n−1, X), ẼII(x, 1) = (ẽ1, · · · , ẽ2n−1, X̃). (4.4)

Then
( i ) X and X̃ are local isometric immersions of flat time-like n-dimensional sub-manifolds

in anti-de Sitter space H2n−1
1 (−1) with flat, non-degenerate normal bundle, {x1, · · · , xn}

line of curvature coordinates, {en+k}n−1
k=1 and {ẽn+k}n−1

k=1 are parallel normal frames for X

and X̃ respectively.
(ii) The bundle morphism P : ϑ(X) → ϑ(X̃) defined by P (en+k(x)) = ẽn+k(R(x)) for

1 ≤ k ≤ n − 1 is an RT covering the map R : X(x) → X̃(x).

Proof. (i) follows from Corollary 2.1 and Lemma 4.1.
(ii) We first show that if (A, F ) is a solution of the G1,1

n−1,n−1-II system (2.5), then F is
a solution of the G1,1

n−1,n−1-system (2.2). Take a gauge transformation on Ωλ by

h1 =

(
In 0
0 A−1

)
,

then the resulting 1-form is

h1 ∗ Ωλ = h1Ωλh−1
1 − dh1h

−1
1 =

(
JδF tJ − FCt

i δλ

−δλ A−1
1 dA1

)
.

Since (2.5), we have

A−1Axi − (Ct
i F − JF tCiJ) = Y Ci, 1 ≤ i ≤ n, (4.5)

where Y : Rn :→ gl(n). By using (4.5) and A ∈ O(n − 1, 1), we get

Y CiJ + (Y CiJ)t = 0
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for all 1 ≤ i ≤ n which implies that Y = 0. Hence F is a solution of the G1,1
n−1,n−1-system

(2.2).
By using Lemma 2.1, we know that (A, F ) and (Ã, F̃ ) are solutions of the G1,1

n−1,n−1-II
system (2.5) corresponding to X and X̃. Let Ŵ , Ẑ be given as in Lemma 4.1. Let

γ = (γ1, · · · , γ2n−1, γ2n) = (cos τŴ t, sin τẐtAt),

where cos τ = s√
1+s2 and sin τ = 1√

1+s2 . Substituting λ = 1 into (4.3), we get

ẼII(x, 1) = EII(x, 1)(I − 2γtγ)

(
J 0
0 J

)
. (4.6)

Substituting (4.4) into (4.6), we have

ẽk = ek − 2εkγk

2n∑
j=1

γjej , k = 1, · · · , 2n,

where εk = εn+k for 1 ≤ k ≤ n. Since X = e2n and X̃ = ẽ2n, we obtain

εkγkX + γ2nek = εkγkX̃ + γ2nẽk, k = 1, · · · , 2n− 1. (4.7)

Let

Γk =

⎧⎪⎪⎨⎪⎪⎩
arctan

γ2n

γn
, k = n,

arctanh
γ2n

γk
, k �= n,

where 1 ≤ k ≤ 2n− 1. Then (4.7) becomes

coshΓkX + sinh Γkek = coshΓkX̃ + sinh Γkẽk, k �= n,

cos ΓnX − sin Γnen = cosΓnX̃ − sin Γnẽn.
(4.8)

Geometrically, (4.8) means that the geodesic of H2n−1
1 (−1) at X(x) in the direction ek(x)

intersects the geodesic of H2n−1
1 (−1) at X̃(x) in the direction ẽk(x) at a point equidistant

to X(x) and X̃(x). Hence the bundle morphism P : ϑ(X) → ϑ(X̃) is an RT.
As a consequence of Lemma 4.2 and Theorem 4.1, we get the following permutability

theorem.

Theorem 4.2. Let Pi : ϑ(X) → ϑ(Xi) be RTs for flat time-like n-submanifolds in anti-
de Sitter space H2n−1

1 (−1) corresponding to the action gsi,πi for i = 1, 2. If s1
2 �= s2

2 and
s1s2 �= 0, then there exist a unique flat time-like n-submanifold X3 in H2n−1

1 (−1) and RTs
P̃1 : ϑ(X2) → ϑ(X3), P̃2 : ϑ(X1) → ϑ(X3) such that P̃1 ◦ P2 = P̃2 ◦ P1.

Acknowledgement. The first author thanks Professor Zhang Youjin for helpful com-
ments and constant encouragement.



466 ZUO, D. F., CHEN, Q. & CHENG, Y.

References

[ 1 ] Ferus, D. & Pedit, F., Curved flats in symmetric spaces, Manuscripta Math., 91(1996), 445–454.

[ 2 ] Terng, C. L., Soliton equations and differential geometry, J. Diff. Geom., 45(1997), 407–455.

[ 3 ] Brück, M., Du, X., Park, J. S. & Terng, C. L., The submanifold geometry associated to Grassmannian
system, Mem. Amer. Math. Soc., 155:735(2002), 1–95.

[ 4 ] Zuo, D., Chen, Q. & Cheng, Y., Flat time-like submanifolds in S2n−1
2q (1), J. Phys. A, 47(2002),

10197–10204.

[ 5 ] Zuo, D., Chen, Q. & Cheng, Y., Darboux transformations for space-like isothermic surfaces in Rm,1,
Commun. Theor. Phys., 41(2004), 816–820.

[ 6 ] Zuo, D., Chen, Q. & Cheng, Y., Gp,q
m,n-II systems and diagonalizable time-like immersions in Rp,m,

Inverse Problems, 20(2004), 319–329.

[ 7 ] Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom.,
30(1989), 1–50.
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