FLAT TIME-LIKE SUBMANIFOLDS IN ANTI-DE SITTER SPACE $H_1^{2n-1}(-1)^{****}$

ZUO DAFENG* CHEN QING** CHENG YI***

Abstract

By using dressing actions of the $G_{n-1,n-1}^{1,1}$ -system, the authors study geometric transformations for flat time-like *n*-submanifolds with flat, non-degenerate normal bundle in anti-de Sitter space $H_1^{2n-1}(-1)$, where $G_{n-1,n-1}^{1,1} = O(2n-2,2)/O(n-1,1) \times O(n-1,1)$.

Keywords Dressing action, $G_{n-1,n-1}^{1,1}$ -System, Flat time-like submanifold 2000 MR Subject Classification 53A05, 35Q51

§1. Introduction

Recently Ferus and Pedit [1], and Terng et al [2, 3] established a beautiful relation between integrable systems and submanifold geometry. They found that submanifolds in certain symmetric space whose Gauss-Codazzi-Ricci equations are given by a nonlinear first order system, the U/K-system, which is putting the *n* first flows of ZS-AKNS together. This means to find submanifolds *M* in certain symmetric space whose Gauss-Codazzi-Ricci equations are equivalent to U/K-systems. The direct approach may provide ways to find Lax pairs for submanifolds *M*. Terng et al [2, 3] carried out the project for the real Grassmannian manifolds of space-like *m*-dimensional linear subspaces in R^{m+n} and in $R^{m+n,1}$. For instance, they proved that solutions of the $G_{m,n}^{0,0}(m \ge n)$ - and the $G_{m,n}^{0,1}(m \ge n+1)$ -system I correspond to local isometric immersion of $N^n(c)$ into $N^{n+m}(c)$, the $G_{m,n}^{0,0}(m > n)$ - and the $G_{m,n}^{0,1}(m > n + 1)$ -system II give rise to *n*-tuple in R^m of type O(n) and (n + 1)-tuple in R^m of type O(n, 1) respectively. In [4–6], we obtained some space-like and time-like immersions associated with the $G_{m,n}^{p,q}$ -system, where $G_{m,n}^{p,q} = O(m + n, p + q)/O(m, p) \times O(n, q)$.

The aim of this paper is to study geometric transformations for flat time-like *n*-submanifolds with flat, non-degenerate normal bundle in anti-de Sitter space $H_1^{2n-1}(-1)$ by using

Manuscript received October 31, 2003.

^{*}Department of Mathematics, University of Science and Technology of China, Hefei 230026, China; Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.

E-mail: dfzuo@ustc.edu.cn **Department of Mathematics, University of Science and Technology of China, Hefei 230026, China.

E-mail: qchen@ustc.edu.cn

^{***}Department of Mathematics, University of Science and Technology of China, Hefei 230026, China. **E-mail:** chengy@ustc.edu.cn

^{****}Project supported supported by the 973 Project of the Ministry of Science and Technology of China and the National Natural Science Foundation of China (No.10301030).

the $G_{n-1,n-1}^{1,1}$ -system. This paper is organized as follows. In Section 2, we consider the geometry associated with the $G_{n-1,n-1}^{1,1}$ -system. In Section 3, we construct a dressing action with a simple pole, and show that gives rise to Bäcklund transformations (BTs in brief) for flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$. In Section 4, we construct another dressing action with two simple poles, and prove that gives rise to Rabaucour transformations (RTs in brief) for flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$.

§2. The Geometry Associated with the $G_{n-1,n-1}^{1,1}$ -System

In this section, we review some known facts about the $G_{n-1,n-1}^{1,1}$ -system and give a relation between flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$ and the $G_{n-1,n-1}^{1,1}$ -system.

2.1. The general case of the $G_{n-1,n-1}^{1,1}$ -system

Below we give a short review of some known facts about the $G_{n-1,n-1}^{1,1}$ -system, see [2, 3, 6] for details. In this paper, we use the following notations

$$\begin{split} I_{p,q} &= \begin{pmatrix} I_p & 0\\ 0 & -I_q \end{pmatrix}, \quad \widetilde{J} = \begin{pmatrix} J & 0\\ 0 & J \end{pmatrix}, \\ J &= I_{n-1,1} = \text{diag}(\epsilon_1, \cdots, \epsilon_n), \\ o(2n-2,2) &= \{X \in \text{gl}(2n) \mid X^t \widetilde{J} + \widetilde{J}X = 0\}, \\ o(n-1,1) &= \{X \in \text{gl}(n) \mid X^t J + JX = 0\}, \\ G_{n-1,n-1}^{1,1} &= O(2n-2,2)/O(n-1,1) \times O(n-1,1), \\ \text{gl}(n)_* &= \{(f_{ij}) \in \text{gl}(n) \mid f_{ii} = 0, \ i = 1, \cdots, n\}. \end{split}$$

The $G_{n-1,n-1}^{1,1}$ -system, according to the terminology of [3], is the following PDE for $F = (f_{ij}) : \mathbb{R}^n \to \mathrm{gl}(n)_*$ such that

$$\theta_{\lambda} = \begin{pmatrix} J\delta F^{t}J - F\delta & \lambda\delta \\ -\lambda\delta & \delta F - JF^{t}\delta J \end{pmatrix}$$
(2.1)

is a family of flat connections on \mathbb{R}^n for all $\lambda \in \mathbf{C}$, i.e.,

$$d\theta_{\lambda} + \theta_{\lambda} \wedge \theta_{\lambda} = 0, \qquad (2.2)$$

where $\delta = \text{diag}(dx_1, \dots, dx_n)$. Hence there exists a smooth map $E: \mathbb{R}^n \times \mathbb{C} \to O(2n-2,2)$ such that $E^{-1}dE = \theta_{\lambda}$ and $E(0,\lambda) = I$. Here E is often called the frame of θ_{λ} . The $G_{n-1,n-1}^{1,1}$ -reality condition is

$$\begin{cases} g(\bar{\lambda}) = g(\lambda), \\ I_{n,n}g(\lambda)I_{n,n} = g(-\lambda), \\ g(\lambda) \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix} g(\lambda)^t = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix}. \end{cases}$$
(2.3)

Let $g = \begin{pmatrix} B & 0 \\ 0 & A \end{pmatrix} \in O(n-1,1) \times O(n-1,1)$ be a solution of $g^{-1}dg = \theta_0$. Take the gauge transformation of θ_{λ} by

$$h = \begin{pmatrix} I_n & 0\\ 0 & A \end{pmatrix}.$$

The resulting connection 1-form Ω_{λ} is

$$\Omega_{\lambda} = h\theta_{\lambda}h^{-1} - dhh^{-1} = \begin{pmatrix} J\delta F^{t}J - F\delta & J\delta A^{t}J\lambda \\ -A\delta\lambda & 0 \end{pmatrix}, \qquad (2.4)$$

which is also a family of flat connections on \mathbb{R}^n for all $\lambda \in \mathbf{C}$, i.e.,

$$\begin{cases} \epsilon_i(f_{ij})_{x_i} + \epsilon_j(f_{ji})_{x_j} + \sum_{k=1}^n \epsilon_k f_{ki} f_{kj} = 0, & \text{if } i \neq j, \\ (f_{ij})_{x_k} = f_{ik} f_{kj}, & \text{if } i, j, k \text{ are distinct}, \\ (a_{ij})_{x_k} = a_{ik} f_{kj}, & \text{if } j \neq k, \end{cases}$$

$$(2.5)$$

where $A = (a_{ij})$, $F = (f_{ij})$. Note that Eh^{-1} is the frame of Ω_{λ} . We call (2.5) the $G_{n-1,n-1}^{1,1}$ -II system.

2.2. Flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$

In [13, Theorem 3.3], we have obtained

Lemma 2.1. Let f be a flat time-like n-submanifold in $H_1^{2n-1}(-1)$ and satisfy (i) the second fundamental form is orthogonally diagonalizable, and (ii) there exists a point p of M where the principal normal curvatures are different from 1. Then on an open contractible region U of p, there exist a Chebyshev coordinate system $\{x_1, \dots, x_n\}$ and $A = (a_{ij}) \in O(n-1,1)$ such that the two fundamental forms are

$$I = \sum_{i=1}^{n} \epsilon_{i} a_{ni}^{2} dx_{i}^{2},$$

$$II = \sum_{i=1}^{n} \sum_{l=1}^{n-1} \epsilon_{i} a_{ni} a_{li} dx_{i}^{2} e_{n+l},$$
(2.6)

where $\{e_{n+1}, \cdots, e_{2n-1}\}$ are local parallel normal frame fields.

By a direct verification, the Gauss-Codazzi-Ricci equations of M are the $G_{n-1,n-1}^{1,1}$ -II system (2.5), which is gauge equivalent to the $G_{n-1,n-1}^{1,1}$ -system (2.2). Hence the immersion f has a Lax pair

$$E^{-1}dE = \theta_{\lambda} = \begin{pmatrix} J\delta F^{t}J - F\delta & \delta\lambda \\ -\delta\lambda & \delta F - JF^{t}\delta J \end{pmatrix}.$$
 (2.7)

Suppose $f = e_{2n}$, $e_k = \frac{f_{x_k}}{a_{nk}}$ for $1 \le k \le n$, and $g = (e_1, \cdots, e_{2n})$. Then we have

$$g^{-1}dg = \Omega_{\lambda}\big|_{\lambda=1} = \begin{pmatrix} J\delta F^{t}J - F\delta & J\delta A^{t}J \\ -A\delta & 0 \end{pmatrix}.$$
 (2.8)

By using the fundamental theorem of pseudo-Riemannian geometry and Lemma 2.1, we get

Corollary 2.1. Let (A, F) be a solution of the $G_{n-1,n-1}^{1,1}$ -II system (2.5). Then (2.8) is solvable. Let g be a solution of (2.8) and f the 2n-th volume of g. If all entries of the last row of A are non-zero, then f is a local isometric immersion of a flat time-like n-submanifold in $H_1^{2n-1}(-1)$ with flat, non-degenerate normal bundle such that the two fundamental forms are as in (2.6), where $A = (a_{ij})$.

§3. Dressing Actions and BTs for Flat Time-Like *n*-Submanifolds in $H_1^{2n-1}(-1)$

In this section we shall construct a dressing action with a simple pole, and show that the dressing action on the space of solutions of the $G_{n-1,n-1}^{1,1}$ -system (2.2) gives rise to BTs for flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$, which is constructed in [13].

Define a rational map with only a simple pole

$$K_{s,\beta}(\lambda) = \frac{1}{\lambda - is} \begin{pmatrix} s\beta & \lambda I_n \\ -\lambda I_n & sJ\beta^t J \end{pmatrix},$$
(3.1)

where $s \in R$ is a non-zero constant and $\beta \in O(n-1,1)$ is a constant matrix. It is easily verified that $g_{s,\beta}(\lambda) = \frac{\lambda - is}{\sqrt{\lambda^2 + s^2}} K_{s,\beta}$ satisfies the $G_{n-1,n-1}^{1,1}$ -reality condition (2.3). We call $K_{s,\beta}(\lambda)$ a simple element of the $G_{n-1,n-1}^{1,1}$ -system (2.2) according to the terminology of [7, 8].

Let F be a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2) and E the corresponding frame of F. It follows from the result of Terng and Uhlenbeck in [8] that $K_{s,\beta}E$ can be factored as $\widetilde{E}K_{s,\widetilde{\beta}(x)}$ for some functions \widetilde{E} and $K_{s,\widetilde{\beta}(x)}$. Write $E(x, -is) = \begin{pmatrix} \eta_1 & \eta_2 \\ \eta_3 & \eta_4 \end{pmatrix}$ with $\eta_i \in gl(n)$ and set

$$\tilde{\beta} = (i\eta_4 - \beta\eta_2)^{-1}(i\beta\eta_1 + \eta_3), \qquad \tilde{E} = K_{s,\beta}E(x,\lambda)K_{s,\tilde{\beta}(x)}^{-1}(\lambda).$$
(3.2)

Note that

$$\operatorname{Res}(\widetilde{E},-is) = \frac{is}{2} \begin{pmatrix} \beta & -iI_n \\ iI_n & J\beta^t J \end{pmatrix} \begin{pmatrix} \eta_1 & \eta_2 \\ \eta_3 & \eta_4 \end{pmatrix} \begin{pmatrix} J\widetilde{\beta}^t J & iI_n \\ -iI_n & \widetilde{\beta} \end{pmatrix}.$$

It follows from (3.2) and $\beta \in O(n-1,1)$ that $\operatorname{Res}(\widetilde{E},-is) = 0$. Since $\overline{E(x,-is)} = E(x,is)$, similarly we can show that $\operatorname{Res}(\widetilde{E},is) = 0$. Hence $\widetilde{E}(x,\lambda)$ is holomorphic in $\lambda \in C$. Let $\widetilde{\theta}_{\lambda} = \widetilde{E}^{-1}d\widetilde{E}$. Then $\widetilde{\theta}_{\lambda}$ is holomorphic for $\lambda \in C$. By using $\theta_{\lambda} = E^{-1}dE$ and (3.2), we get $K_{s,\beta}\widetilde{\theta}_{\lambda} = K_{s,\beta}\theta_{\lambda} - dK_{s,\beta}$. Comparing the coefficient of λ^{j} (j = 0, 1, 2), we have the following lemma.

Lemma 3.1. Let F be a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2) and E a frame of F. Then $\widetilde{F} = K_{s,\beta} \# F = JF^t J + s\widetilde{\beta}_*$ is a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2) and \widetilde{E} is a frame of \widetilde{F} , where $\widetilde{\beta}_*$ is the matrix whose ij-th entry is $\widetilde{\beta}_{ij}$ for $i \neq j$ and is 0 for i = j.

Let s_1 , s_2 be two unequal nonzero real constants, and $\beta_1, \beta_2 \in O(n-1,1)$ are two constant matrices. If $\phi = s_1\beta_1 - s_2\beta_2$ is non-singular, $\beta_1^t J\beta_2 \neq \frac{s_2}{s_1}J$ and $\beta_2^t J\beta_1 \neq \frac{s_1}{s_2}J$, we may set

$$\alpha_1 = (s_1 I_n - s_2 J \beta_2^t J \beta_1) \phi^{-1}, \qquad \alpha_2 = (s_1 J \beta_1^t J \beta_2 - s_2 I_n) \phi^{-1}.$$
(3.3)

It is easily verified that $\alpha_i \in O(n-1,1)$ for i = 1, 2 and $K_{s_1,\alpha_1} \circ K_{s_2,\beta_2} = K_{s_2,\alpha_2} \circ K_{s_1,\beta_1}$. Moreover if $K_{s_1,\alpha_1} \circ K_{s_2,\beta_2} = K_{s_2,\alpha_2} \circ K_{s_1,\beta_1}$, then β_1 , β_2 and α_1 , α_2 are related as in (3.3). By using this observation, we have the following permutability formula.

Lemma 3.2. Let s_i , β_i , α_i for i = 1, 2 as above, F be a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2) and $F_i = K_{s_i,\beta_i} \# F = JF^t J + s_i \tilde{\beta}_{i*}$ for i = 1, 2 as given in Lemma 3.1. Then the permutability formula is

$$F_{3} = (K_{s_{1},\alpha_{1}} \circ K_{s_{2},\beta_{2}}) \#F = JF^{t}J + s_{1}\tilde{\alpha}_{1*} + s_{2}\tilde{\beta}_{2*}$$
$$= (K_{s_{2},\alpha_{2}} \circ K_{s_{1},\beta_{1}}) \#F = JF^{t}J + s_{2}\tilde{\alpha}_{2*} + s_{1}\tilde{\beta}_{1*}.$$
(3.4)

According to Corollary 2.1, we know that Lemmas 3.1 and 3.2 give a method of constructing a new flat time-like *n*-submanifold in $H_1^{2n-1}(-1)$ from a given one. Geometrically, this gives the geometric transformation which is the BT and the analogue of the classical Bianchi theorem obtained in [13].

Theorem 3.1. Let $F, E, K_{s,\beta}, \tilde{\beta}, \tilde{E}, \tilde{F}$ be as in Lemma 3.1. Write

$$E(x,0) = \begin{pmatrix} B(x) & 0\\ 0 & A(x) \end{pmatrix}, \qquad \widetilde{E}(x,0) = \begin{pmatrix} \widetilde{B}(x) & 0\\ 0 & \widetilde{A}(x) \end{pmatrix}.$$
(3.5)

Let

$$N(x) = E^{\mathrm{II}}(x,1) = E(x,1) \begin{pmatrix} I_n & 0\\ 0 & A^{-1}(x) \end{pmatrix},$$

$$\widetilde{N}(x) = g_{s,\beta}^{-1}(1)\widetilde{E}(x,1) \begin{pmatrix} I_n & 0\\ 0 & (A\tilde{\beta})^{-1}(x) \end{pmatrix}$$

$$= N(x) \begin{pmatrix} \cos\tau J\tilde{\beta}^t J & -\sin\tau (A\tilde{\beta})^{-1}\\ \sin\tau A & \cos\tau I_n \end{pmatrix},$$
(3.6)

where $\tau = \arctan \frac{1}{s}$. Let e_i and \tilde{e}_i for $1 \leq i \leq 2n$ denote the *i*-th column of N(x) and $\tilde{N}(x)$ respectively. Then $\mathcal{L}: e_{2n}(x) \to \tilde{e}_{2n}(x)$ is a BT for flat time-like *n*-submanifolds with constant τ in $H_1^{2n-1}(-1)$ and the line congruence is time-like.

Proof. It follows from $\beta \in O(n-1,1)$ that $\begin{pmatrix} J\beta^t J & 0\\ 0 & \beta \end{pmatrix} \widetilde{E}(x,0)$ is also a frame of $\widetilde{\theta}_{\lambda}$ as in the form of (2.1) for \widetilde{F} at $\lambda = 0$. By using (2.4), (3.6) and Theorem 3.1, we know that (A, F) and $(\widetilde{A}, \widetilde{F})$ are solutions of the $G_{n-1,n-1}^{1,1}$ -II system (2.5) and N, \widetilde{N} are the corresponding frames at $\lambda = 1$ respectively. By using Corollary 2.1, $e_{2n}, \widetilde{e}_{2n}$ are flat

time-like *n*-submanifolds with flat, non-degenerate normal bundle in $H_1^{2n-1}(-1)$, where $\{e_{n+1}, \dots, e_{2n-1}\}$ and $\{\tilde{e}_{n+1}, \dots, \tilde{e}_{2n-1}\}$ are parallel normal frames for e_{2n} and \tilde{e}_{2n} respectively. Let

$$N_A = N \begin{pmatrix} (A\tilde{\beta})^{-1} & 0\\ 0 & I_n \end{pmatrix}, \qquad \widetilde{N}_A = \widetilde{N} \begin{pmatrix} A^{-1} & 0\\ 0 & I_n \end{pmatrix}$$

Then we have

$$\widetilde{N}_{A} = N \begin{pmatrix} \cos \tau J \widetilde{\beta}^{t} J & -\sin \tau (A \widetilde{\beta})^{-1} \\ \sin \tau A & \cos \tau I_{n} \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & I_{n} \end{pmatrix}$$
$$= N_{A} \begin{pmatrix} \cos \tau I_{n} & -\sin \tau I_{n} \\ \sin \tau I_{n} & \cos \tau I_{n} \end{pmatrix}.$$
(3.7)

The last *n* column vectors of *N* and N_A , \tilde{N} and \tilde{N}_A are the same and they are normal frames. Geometrically, (3.7) is the BT for flat time-like *n*-submanifolds in $H_1^{2n-1}(-1)$.

By using Lemma 3.2 and Theorem 3.1, we get the following analogue of the classical Bianchi theorem.

Theorem 3.2. Let $\mathcal{L}^i: M \to M_i$ be BTs for flat time-like n-submanifolds in H_1^{2n-1} corresponding to the solution of K_{s_i,β_i} for i = 1, 2 as in Theorem 3.1. If s_1, s_2 are two unequal nonzero real constants, $\beta_1, \beta_2 \in O(n-1,1)$ are constant matrices and $s_1\beta_1 - s_2\beta_2$ is non-singular, $\beta_1^t J\beta_2 \neq \frac{s_2}{s_1}J$ and $\beta_2^t J\beta_1 \neq \frac{s_1}{s_2}J$, then there exists a unique flat time-like n-submanifold M_3 in H_1^{2n-1} and BTs $\tilde{\mathcal{L}}^1: M_2 \to M_3, \tilde{\mathcal{L}}^2: M_1 \to M_3$ such that $\tilde{\mathcal{L}}^1 \circ \mathcal{L}^2 = \tilde{\mathcal{L}}^2 \circ \mathcal{L}^1$.

§4. Dressing Actions and RTs for Flat Time-Like *n*-Submanifolds in $H_1^{2n-1}(-1)$

In [6], we have obtained an explicit construction of the dressing action of a rational map with two simple poles of solutions of the general $G_{m,n}^{p,q}$ -system. Hence we only state our results here.

Let C^{2n} be equipped with the bi-linear form

$$\langle u, v \rangle_1 = -\sum_{i=1}^{n-1} \bar{u}_i v_i + \bar{u}_n v_n - \sum_{i=n+1}^{2n-1} \bar{u}_i v_i + \bar{u}_{2n} v_{2n}.$$

Let W and Z be two unit space-like constant vectors in $\mathbb{R}^{1,n-1}$ respectively, and π the orthogonal projection onto the space of $\mathbf{C}\binom{W}{iZ}$ with respect to \langle , \rangle_1 . Let $0 \neq s \in \mathbb{R}$, and define

$$g_{s,\pi} = \left(\pi + \frac{\lambda - is}{\lambda + is}(I - \pi)\right) \left(\bar{\pi} + \frac{\lambda + is}{\lambda - is}(I - \bar{\pi})\right).$$
(4.1)

Lemma 4.1. Let $F : \mathbb{R}^n \to \mathrm{gl}_*(n)$ be a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2), and $E(x,\lambda)$ a frame of F such that $E(x,\lambda)$ is holomorphic for $\lambda \in \mathbb{C}$ and $E(0,\lambda) = I$. Let $g_{s,\pi}$ be as in (4.1) and

$$\begin{pmatrix} \widetilde{W} \\ i\widetilde{Z} \end{pmatrix} (x) = E(x, -is)^{-1} \begin{pmatrix} W \\ iZ \end{pmatrix},$$
(4.2)

and $\tilde{\pi}$ be the orthogonal projection onto the space of $\mathbf{C}\left(\frac{\widetilde{W}}{i\widetilde{Z}}\right)$ with respect to \langle , \rangle_1 . Then $\widetilde{F} = g_{s,\pi} \sharp F = F + 2s(\widehat{W}\widehat{Z}^tJ)_*$ is a new solution of (2.2), and $\widetilde{E} = Eg_{s,\tilde{\pi}}^{-1}$ is a frame for \widetilde{F} , where $\widehat{W} = \frac{\widetilde{W}}{\|W\|_{R^{1,n-1}}}$ and $\widehat{Z} = \frac{\widetilde{Z}}{\|Z\|_{R^{1,n-1}}}$.

Note that both E and \tilde{E} satisfy the $G_{n-1,n-1}^{1,1}$ -reality condition (2.3) which implies that E(x,0) and $\tilde{E}(x,0)$ are in $O(n-1,1) \times O(n-1,1)$. Write

$$E(x,0) = \begin{pmatrix} B(x) & 0\\ 0 & A(x) \end{pmatrix}, \qquad \widetilde{E}(x,0) = \begin{pmatrix} \widetilde{B}(x) & 0\\ 0 & \widetilde{A}(x) \end{pmatrix}$$

for some A, B, \widetilde{A} and \widetilde{B} . Hence we have

$$\begin{cases} \widetilde{A} = A(I + 2\widehat{Z}\widehat{Z}^tJ), \\ \widetilde{B} = B(I + 2\widehat{W}\widehat{W}^tJ) \end{cases}$$

Note that (A, F) and (\tilde{A}, \tilde{F}) are solutions of the $G_{n-1,n-1}^{1,1}$ -II system (2.5), the corresponding frames are $E^{II}(x, \lambda)$ and $\tilde{E}^{II}(x, \lambda)$, where

$$E^{\mathrm{II}}(x,\lambda) = E(x,\lambda) \begin{pmatrix} I_m & 0\\ 0 & A^{-1} \end{pmatrix}, \quad \widetilde{E}^{\mathrm{II}}(x,\lambda) = \widetilde{E}(x,\lambda) \begin{pmatrix} I_m & 0\\ 0 & \widetilde{A}^{-1} \end{pmatrix}$$

It follows from Lemma 4.1 that

$$\widetilde{E}^{\mathrm{II}}(x,\lambda) = E^{\mathrm{II}}(x,\lambda) \left(I - \frac{2}{s^2 + \lambda^2} \begin{pmatrix} s\widetilde{W} \\ -\lambda A\widetilde{Z} \end{pmatrix} (s\widetilde{W}^t J, -\lambda \widetilde{Z}^t A^t J) \right).$$
(4.3)

In the following, we use the notation

$$(\widetilde{A}, \widetilde{F}, \widetilde{E}^{\mathrm{II}}) = g_{s,\pi} \sharp (A, F, E^{\mathrm{II}}).$$

Analogous to the discussion of Lemma 3.2 (or see [3, 8]), we may also obtain the following permutability formula.

Lemma 4.2. Let F be a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2), and E the frame of F such that $E(0, \lambda) = I$. Let W_k and Z_k be two unit space-like vectors in $\mathbb{R}^{1,n-1}$, $v_k = \begin{pmatrix} W_k \\ iZ_k \end{pmatrix}$ and π_k the orthogonal projection onto v_k with respect to \langle , \rangle_1 for k = 1, 2. Let $s_1, s_2 \in \mathbb{R}$ be constants such that $s_1^2 \neq s_2^2$ and $s_1s_2 \neq 0$. Let u_k denote the unit space-like direction

of $g_{s_j,s_k}(-is_k)(v_k)$ for $j \neq k$, and τ_k the orthogonal projection onto u_k with respect to \langle , \rangle_1 for k = 1, 2. Then

$$F_3 = (g_{s_2,\tau_2}g_{s_1,\pi_1}) \sharp \xi = (g_{s_1,\tau_1}g_{s_2,\pi_2}) \sharp \xi$$

is a new solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2).

RTs for surfaces in \mathbb{R}^3 have been studied by [11, 12] and references therein. Natural generalizations of RTs for holonomic submanifolds with arbitrary dimension and codimension, that is, Riemannian submanifolds with flat normal bundle admitting a global system of principal coordinates, in (pseudo-) Riemannian space forms $N_p^m(c)$ ($p \ge 0$) are given in [10]. In [6] we generalize it to time-like submanifolds in pseudo-Riemannian space forms $N_m^{m+p}(c)$. In the following we shall give the geometric interpretation of the dressing action of $g_{s,\pi}$ on the solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2).

Theorem 4.1. Let E^{II} be a frame of the solution (A, F) of the $G_{n-1,n-1}^{1,1}$ -II system (2.5), $g_{s,\pi}$ given by (4.1) and $(\widetilde{A}, \widetilde{F}, \widetilde{E}^{\text{II}}) = g_{s,\pi} \sharp (A, F, E^{\text{II}})$. Write

$$E^{\text{II}}(x,1) = (e_1, \cdots, e_{2n-1}, X), \qquad \widetilde{E}^{\text{II}}(x,1) = (\widetilde{e}_1, \cdots, \widetilde{e}_{2n-1}, \widetilde{X}).$$
(4.4)

Then

(i) X and \widetilde{X} are local isometric immersions of flat time-like n-dimensional sub-manifolds in anti-de Sitter space $H_1^{2n-1}(-1)$ with flat, non-degenerate normal bundle, $\{x_1, \dots, x_n\}$ line of curvature coordinates, $\{e_{n+k}\}_{k=1}^{n-1}$ and $\{\tilde{e}_{n+k}\}_{k=1}^{n-1}$ are parallel normal frames for X and \widetilde{X} respectively.

(ii) The bundle morphism $P : \vartheta(X) \to \vartheta(\widetilde{X})$ defined by $P(e_{n+k}(x)) = \tilde{e}_{n+k}(\mathcal{R}(x))$ for $1 \le k \le n-1$ is an RT covering the map $\mathcal{R} : X(x) \to \widetilde{X}(x)$.

Proof. (i) follows from Corollary 2.1 and Lemma 4.1.

(ii) We first show that if (A, F) is a solution of the $G_{n-1,n-1}^{1,1}$ -II system (2.5), then F is a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2). Take a gauge transformation on Ω_{λ} by

$$h_1 = \begin{pmatrix} I_n & 0\\ 0 & A^{-1} \end{pmatrix},$$

then the resulting 1-form is

$$h_1 * \Omega_{\lambda} = h_1 \Omega_{\lambda} h_1^{-1} - dh_1 h_1^{-1} = \begin{pmatrix} J \delta F^t J - F C_i^t & \delta \lambda \\ -\delta \lambda & A_1^{-1} dA_1 \end{pmatrix}$$

Since (2.5), we have

$$A^{-1}A_{x_i} - (C_i^t F - JF^t C_i J) = YC_i, \qquad 1 \le i \le n,$$
(4.5)

where $Y: \mathbb{R}^n :\to \mathrm{gl}(n)$. By using (4.5) and $A \in O(n-1,1)$, we get

$$YC_iJ + (YC_iJ)^t = 0$$

for all $1 \leq i \leq n$ which implies that Y = 0. Hence F is a solution of the $G_{n-1,n-1}^{1,1}$ -system (2.2).

By using Lemma 2.1, we know that (A, F) and $(\widetilde{A}, \widetilde{F})$ are solutions of the $G_{n-1,n-1}^{1,1}$ -II system (2.5) corresponding to X and \widetilde{X} . Let \widehat{W}, \widehat{Z} be given as in Lemma 4.1. Let

$$\gamma = (\gamma_1, \cdots, \gamma_{2n-1}, \gamma_{2n}) = (\cos \tau \widehat{W}^t, \sin \tau \widehat{Z}^t A^t)$$

where $\cos \tau = \frac{s}{\sqrt{1+s^2}}$ and $\sin \tau = \frac{1}{\sqrt{1+s^2}}$. Substituting $\lambda = 1$ into (4.3), we get

$$\widetilde{E}^{\mathrm{II}}(x,1) = E^{\mathrm{II}}(x,1)(I-2\gamma^{t}\gamma) \begin{pmatrix} J & 0\\ 0 & J \end{pmatrix}.$$
(4.6)

Substituting (4.4) into (4.6), we have

$$\tilde{e}_k = e_k - 2\epsilon_k \gamma_k \sum_{j=1}^{2n} \gamma_j e_j, \qquad k = 1, \cdots, 2n,$$

where $\epsilon_k = \epsilon_{n+k}$ for $1 \le k \le n$. Since $X = e_{2n}$ and $\widetilde{X} = \tilde{e}_{2n}$, we obtain

$$\epsilon_k \gamma_k X + \gamma_{2n} e_k = \epsilon_k \gamma_k \widetilde{X} + \gamma_{2n} \widetilde{e}_k, \qquad k = 1, \cdots, 2n - 1.$$
(4.7)

Let

$$\Gamma_k = \begin{cases} \arctan \frac{\gamma_{2n}}{\gamma_n}, & k = n, \\ \arctan \frac{\gamma_{2n}}{\gamma_k}, & k \neq n, \end{cases}$$

where $1 \le k \le 2n - 1$. Then (4.7) becomes

$$\cosh \Gamma_k X + \sinh \Gamma_k e_k = \cosh \Gamma_k \widetilde{X} + \sinh \Gamma_k \widetilde{e}_k, \qquad k \neq n,$$

$$\cos \Gamma_n X - \sin \Gamma_n e_n = \cos \Gamma_n \widetilde{X} - \sin \Gamma_n \widetilde{e}_n.$$
(4.8)

Geometrically, (4.8) means that the geodesic of $H_1^{2n-1}(-1)$ at X(x) in the direction $e_k(x)$ intersects the geodesic of $H_1^{2n-1}(-1)$ at $\widetilde{X}(x)$ in the direction $\tilde{e}_k(x)$ at a point equidistant to X(x) and $\widetilde{X}(x)$. Hence the bundle morphism $P: \vartheta(X) \to \vartheta(\widetilde{X})$ is an RT.

As a consequence of Lemma 4.2 and Theorem 4.1, we get the following permutability theorem.

Theorem 4.2. Let $P_i: \vartheta(X) \to \vartheta(X_i)$ be RTs for flat time-like n-submanifolds in antide Sitter space $H_1^{2n-1}(-1)$ corresponding to the action g_{s_i,π_i} for i = 1, 2. If $s_1^2 \neq s_2^2$ and $s_1s_2 \neq 0$, then there exist a unique flat time-like n-submanifold X_3 in $H_1^{2n-1}(-1)$ and RTs $\widetilde{P}_1: \vartheta(X_2) \to \vartheta(X_3), \widetilde{P}_2: \vartheta(X_1) \to \vartheta(X_3)$ such that $\widetilde{P}_1 \circ P_2 = \widetilde{P}_2 \circ P_1$.

Acknowledgement. The first author thanks Professor Zhang Youjin for helpful comments and constant encouragement.

References

- [1] Ferus, D. & Pedit, F., Curved flats in symmetric spaces, Manuscripta Math., 91(1996), 445-454.
- [2] Terng, C. L., Soliton equations and differential geometry, J. Diff. Geom., 45(1997), 407-455.
- [3] Brück, M., Du, X., Park, J. S. & Terng, C. L., The submanifold geometry associated to Grassmannian system, Mem. Amer. Math. Soc., 155:735(2002), 1–95.
- [4] Zuo, D., Chen, Q. & Cheng, Y., Flat time-like submanifolds in $S_{2q}^{2n-1}(1)$, J. Phys. A, 47(2002), 10197–10204.
- [5] Zuo, D., Chen, Q. & Cheng, Y., Darboux transformations for space-like isothermic surfaces in R^{m,1}, Commun. Theor. Phys., 41(2004), 816–820.
- [6] Zuo, D., Chen, Q. & Cheng, Y., G^{p,q}_{m,n}-II systems and diagonalizable time-like immersions in R^{p,m}, Inverse Problems, 20(2004), 319–329.
- Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom., 30(1989), 1–50.
- [8] Terng, C. L. & Uhlenbeck, K., Bäcklund transformations and loop groups, Comm. Pure. Appl. Math., 53(2000), 1–75.
- [9] Zhou, Z. X., Darboux transformations for the twisted so(p, q)-system and local isometric immersions of space forms, *Inverse Problem*, 14(1998), 1353–1370.
- [10] Dajczer, M. & Tojeiro, R., An extension of the classical Ribaucour transformation, Proc. London Math. Soc., 85:3(2002), 211–232.
- [11] Darboux, G., Lecon Sur La Théorie Générale Des Surfaces, 3rd edition, Chelsea, 1972.
- [12] Tenenblat, K., On the Ribaucour transformations and applications to linear weigarten surfaces, Annals of Brazilian Academy of Sciences, 74:4(2002), 559–575.
- [13] Chen, Q., Zuo, D. & Cheng, Y., Isometric immersions of pseudo-Riemannian space forms, J. of Geom. and Phys., 52:3(2004), 241–262.