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ASYMPTOTIC NORMALITY OF QUASI
MAXIMUM LIKELIHOOD ESTIMATE IN

GENERALIZED LINEAR MODELS∗∗∗

YUE Li∗ CHEN Xiru∗∗

Abstract

For the Generalized Linear Model (GLM), under some conditions including that
the specification of the expectation is correct, it is shown that the Quasi Maximum
Likelihood Estimate (QMLE) of the parameter-vector is asymptotic normal. It is also
shown that the asymptotic covariance matrix of the QMLE reaches its minimum (in the
positive-definte sense) in case that the specification of the covariance matrix is correct.
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§ 1 . Introduction and Main Results

Much studies have been made for the MLE and QMLE of the parameters of GLM (see
[1–6]), among others. Let Y1, · · · , Yn be independent observations of the q-dimensional
response vector Y , where Yi obeys an exponential distribution of the form

exp(y′θ − b(θ))dμ(y)|θ=θ(i) ,

where θ = (θ1, · · · , θq)′ and

θ(i) = ḃ−1(h(Z ′
iβ0)).

Here ḃ(θ) =
( ∂b

∂θ1
, · · · ,

∂b

∂θq

)′
, ḃ−1 is its inverse. h(t) ≡ h(t1, · · · , tq) ≡ (h1(t), · · · , hq(t))′

is the inverse of link function g, and Zi = Z(Xi) is a known p × q matrix generated by the
i-th observation Xi of independent variable X . β0 is the true value of the unknown p-vector
parametre β. With these notations, the log-likelihood equation assumes the form

n∑
i=1

ZiH(Z ′
iβ)Σ−1(Z ′

iβ)(yi − h(Z ′
iβ)) = 0, (1.1)
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where Σ(t) = b̈(ḃ−1(h(t))), b̈(θ) is the covariance matrix of the distribution exp(y′θ −
b(θ)dμ(y)) and its (j, k)-element is

∂b

∂θj∂θk
, j, k = 1, · · · , q, H(t) = (ḣ1(t), · · · , ḣq(t)).

Since Equation (1.1) only involves the expectation and covariance matrix of Y , this
suggests us to construct Equation (1.1) and try to use its root to estimate β0 in case that we
do not know the distribution of Yi but know its expectation and covariance matrix. This is
the so-called QMLE. Further investigation reveals that it is even not necessary to know the
covariance matrix of Yi, we can just replace it by a suitably-chosen matrix. Thus we may
consider a more general form of the quasi-likelihood equation as follows

Ln(β) ≡
n∑

i=1

ZiH(Z ′
iβ)Λi(β)(yi − h(Z ′

iβ)) = 0, (1.2)

where Λi(β) is a suitably-chosen positive definite q-matrix to replace Σ−1(Z ′
iβ) in (1.1).

The first problem is to confirm that there exists a root β̂n of (1.2). One method in
dealing with this problem is to construct a so-called Quasi-likelihood function U(β) such
that U̇(β) is just the right-hand side of (1.2). Then if β̂n is a local maximum point of U ,
β̂n must be a root of (1.2). Hence we need only to verify that there exists such a local
maximum point in the vicinity of the true parameter β0. This idea was first advanced in [9]
for the case q = 1. [5] extends the method for q > 1 by choosing an exponential distribution
exp(y′θ − b(θ))dμ(y), link function g = h−1 and (b̈(ḃ−1(h( · ))))−1 for Λi(β) in (1.2). This
approach has the merit in that we may borrow the method developed in case where Yi has
an exponential distribution. But in so doing we lose in some degree the freedom of choosing
Λi(β) in (1.2), and this may result in loss of efficiency of the QMLE.

To avoid this difficulty, we proposed in [7] a new method in proving the existence of a
solution of (1.2), which does not resort to constructing a quasi likelihood function, and thus
maintains completely the freedom of choice of Λi(β) in (1.2). The strong consistency was
studied in [7]. In this paper we shall prove the asymptotic normality of the solution. The
main results are formulated in the following two theorems.

Theorem 1.1. Suppose that the following conditions are satisfied:
(1) {Zi, i ≥ 1} is bounded. λn ≥ cnδ for n sufficiently large and some δ ∈ (4/5, 1], c > 0,

λn and λn are the smallest and largest eigenvalues of Sn =
n∑

i=1

ZiZ
′
i respectively.

(2) sup
i≥1

E‖Yi‖p̄ < ∞, p̄ = 17/7. COV(Yi) > cI, i ≥ 1 for some c > 0.

(3) The partial derivatives of 2-th orders of h1, · · · , hq exist and are continuous, det(H(t))
�= 0.

(4) Λi(β) > 0, the 2-th partial derivatives of each element of Λi(β) exist and are contin-
uous. The element of Λi(β), together with its 1-th and 2-th partial derivatives, is uniformly
bounded on any bounded set of β for arbitrarily i ≥ 1.

Then with probability one (1.2) has a solution β̂n for n sufficiently large, and

B−1/2
n Qn(β̂n − β0)

d→N(0, Ip), (1.3)

where

Bn =
n∑

i=1

ZiHiΛiΣiΛ′
iH

′
iZ

′
i, Qn =

n∑
i=1

ZiHiΛiH
′
iZ

′
i
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with Hi = H(Z ′
iβ0), Λi = Λi(β0), Σi = COV(yi).

From (1.3), β̂n −β0 has asymptotic covariance matrix (QnB−1
n Qn)−1, which depends on

the selection of Λi. We hope to choose Λi in such a way so that QnB−1
n Qn is maximized.

In this respect, we have the following theorem.

Theorem 1.2. When Λi = Σ−1
i , i ≥ 1, QnB−1

n Qn reaches maximum, i.e.,

QnB−1
n Qn ≤

n∑
i=1

ZiHiΣ−1
i H ′

iZ
′
i. (1.4)

(1.4) indicates that if we make a correct specification of the covariance matrix of Yi, we
obtain a QMLE of the parameters with minimum asymptotic covariance matrix, which means
greater efficiency of the estimator.

§ 2 . Proof of Theorem 1.1

Take unit vector λ. Denote

ξn = λ′B−1/2
n Ln(β0) =

n∑
i=1

ξni, ξni = λ′B−1/2
n ZiHiΛiei, 1 ≤ i ≤ n,

where ei = yi − h(Z ′
iβ0). It is easy to see that E(ξni) = 0, 1 ≤ i ≤ n, and

Var(ξn) =
n∑

i=1

Var(ξni) = λ′B−1/2
n

n∑
i=1

ZiHiΛiΣiΛiH
′
iZ

′
iB

−1/2
n λ = λ′λ = 1.

Hence in order to prove

ξn
d→N(0, 1), (2.1)

we only need to prove

gn(ε) ≡
n∑

i=1

E[|ξni|2I(|ξni| > ε)] → 0, ∀ε > 0, n → ∞.

Let
e∗i = Σ−1/2

i ei, a′
ni = λ′B−1/2

n ZiHiΛiΣ
1/2
i , 1 ≤ i ≤ n.

Then ξni = a′
nie

∗
i . Let ηni = ξni/‖ani‖. Then |ξni| ≤ ‖ani‖‖e∗i ‖. So we have

‖e∗i ‖ ≥ |ξni|/‖ani‖ = |ηni|. (2.2)

From the boundedness of Zi, we know that {Z ′
iβ0} is bounded. By the assumption (4)

there exists c > 0 such that Λi ≥ cI, i ≥ 1. Also from the boundedness of {Z ′
iβ0} and the

assumption (3), we know that there exists c > 0 such that | det(Hi)| ≥ c for i ≥ 1. Moreover,
Σi = COV(yi) ≥ cI. Combining these facts, it follows that there exits a constant c > 0 such

that HiΛiΣiΛiH
′
i ≥ cI, i ≥ 1. From this we know Bn ≥ c

n∑
i=1

ZiZ
′
i. This, together with the
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assumption (1), gives λ(Bn) ≥ cnδ. Hence λminBn → ∞. By the assumptions (1), (2) and
(4), we know that max

1≤i≤n
‖ani‖ → 0, n → ∞, and

n∑
i=1

a′
niani = λ′B−1/2

n

n∑
i=1

ZiHiΛiΣiΛiH
′
iZ

′
iB

−1/2
n λ = 1. (2.3)

Denote

gn(ε) =
n∑

i=1

E[|ξni|2I(|ξni| > ε)] =
n∑

i=1

‖ani‖2E[|ηni|2I(|ηni| > ε/‖ani‖)].

From the assumption (2), taking α = p̄ − 2 = 3/7, we have

gn(ε) ≤
n∑

i=1

‖ani‖2‖ani‖αε−αE[|ηni|p̄].

This equation and (2.2), (2.3) give

gn(ε) ≤ max ‖ani‖αε−α sup
i≥1

E‖e∗i ‖p̄ → 0

for any given ε > 0. Hence we proved (2.1). Since (2.1) holds for any unit vector, we have

B−1/2
n Ln(β0)

d→N(0, I). (2.4)

Denote Hni = H(Z ′
iβ̂n), Λni = Λi(β̂n), 1 ≤ i ≤ n. As Ln(β̂n) = 0, we have

Ln(β0) = Ln(β0) − Ln(β̂n)

=
n∑

i=1

Zi(HiΛi − HniΛni)ei +
n∑

i=1

ZiHniΛni(h(Z ′
iβ̂n) − h(Z ′

iβ0))

=
n∑

i=1

Zi(HiΛi − HniΛni)ei +
n∑

i=1

ZiHniΛniH̃
′
niZ

′
i(β̂n − β0)

=
n∑

i=1

Zi(HiΛi − HniΛni)ei +
n∑

i=1

Zi(HniΛniH̃
′
ni − HiΛiH

′
i)Z

′
i(β̂n − β0)

+
n∑

i=1

ZiHiΛiH
′
iZ

′
i(β̂n − β0) ≡ J1n + J2n + J3n, (2.5)

where H̃ni = (ḣ1(Z ′
1βn1), · · · , ḣq(Z ′

1βnq)), 1 ≤ i ≤ n, βn1, · · · , βnq lie all on the line-
segment with end-points β0 and β̂n, and J3n = Qn(β̂n − β0).

Now we proceed to show that

B−1/2
n Jkn = op(1), k = 1, 2. (2.6)

If (2.6) can be proved, then from (2.4)–(2.6) we obtain (1.3).
For a matrix A = (aij), denote max

i,j
|aij | by |A|. From the assumptions (3) and (4), we

have
|HniΛniH̃

′
ni − HiΛiH

′
i| = Op(β̂n − β0) accordingly for 1 ≤ i ≤ n.
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Hence, in view of the result β̂n − β0 = Op(n−(δ−1/2)), proved in [7], we have

J2n = nOp(‖β̂n − β0‖2) = Op(n2−2δ). (2.7)

Further, by Bn ≥ cSn and the assumption (1), we have |B−1/2
n | = O(n−δ/2). Thus from

(2.11), we get B
−1/2
n J2n = Op(n2−5δ/2). Since δ > 4/5, we get

B−1/2
n J2n = op(1). (2.8)

Now consider J1n. Take r ∈ (2/(3δ − 1), 10/7), r sufficiently near p̄ − 1. Let ēi = eiI

(‖ei‖ ≤ i1/r), i = 1, 2, · · · . Since r < p̄ − 1 < p̄, we have

∞∑
i=1

P (ēi �= ei) =
∞∑

i=1

P (‖ei‖ > i1/r) ≤ sup
i≥1

E(‖ei‖p̄)
∞∑

i=1

i−p̄/r < ∞.

Hence from Borel-Cantelli lemma, we have ēn = en with probability one for n large enough.
So instead of J1n we need only to consider

J1n(β̂n) ≡
n∑

i=1

Zi(HiΛi − Hi(β̂n)Λi(β̂n))ēi. (2.9)

Since ‖E(ēi)‖ = ‖E(ei − ēi)‖ ≤ i−(p̄−1)/rK
(
K = sup

i≥1
E‖ei‖p̄

)
, we have

∥∥∥
n∑

i=1

Zi(HiΛi − Hi(β̂n)Λi(β̂n))Eēi

∥∥∥ ≤ c
∞∑

i=1

Ki−(p̄−1)/r < ∞.

Hence instead of J1n(β̂n), we need only to consider

J̃1n(β̂n) ≡
n∑

i=1

Zi(HiΛi − Hi(β̂n)Λi(β̂n))ẽi, (2.10)

where ẽi = ēi − Eēi. We have E(ẽi) = 0, sup
i≥1

E‖ẽi‖p̄ < ∞, and sup
1≤i≤n

|ẽi| ≤ 2n1/r.

Taking a ≥ 3/10, we find that M = [npa] points to the sphere S ≡ {γ : ‖γ − β0‖ ≤
cn−(δ−1/2)}. For any γ ∈ S, we can find j such that ‖γj − γ‖ ≤ cn−d, d = δ − 1/2 + a.
Denote

J̃1nj ≡
n∑

i=1

Zi(HiΛi − Hi(γj)Λi(γj))ẽi ≡
n∑

i=1

eij . (2.11)

Consider its l-th element, denoted by J̃ l
1nj ≡

n∑
i=1

el
ij .

Now we make use of Bernstein inequality: Suppose that Xi, · · · , Xn are independent
random variables, EXi = 0, 1 ≤ i ≤ n, and there exists a finite constant b such that
|Xi| ≤ b, 1 ≤ i ≤ n. Then for any given ε > 0, we have

P
(∣∣∣

n∑
i=1

Xi/n
∣∣∣ ≥ ε

)
≤ 2 exp(−nε2/(2bε + 2σ̄2)), σ̄2 =

n∑
i=1

Var(Xi)/n.
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Since

P (|J̃ l
1nj | ≥ ε0n

δ/2) = P
(∣∣∣ 1

n

n∑
i=1

el
ij

∣∣∣ ≥ ε0n
δ/2−1

)
, (2.12)

we employ Bernstein inequality to the right-hand side of (2.12). Note that here we have
b = cn−(δ−1/2)+1/r, σ̄2 ≤ cn−(2δ−1), ε = ε0n

δ/2−1, bε = cn−(δ/2−1/2)+1/r, nε2 = cnδ−1,
where c > 0 is a constant which may assume different values in each of its appearance. From
the choice of variable r, we have (δ−1)−(−(δ/2+1/2)+1/r) > 0. Also, (δ−1)−(−(2δ−1)) =
3δ − 2 > 0. From these facts we see that for (2.12), nε2

2(bε+σ̄2) ≥ cnα for some c > 0, α > 0,
where c and α do not depend on j = 1, · · · , M and l = 1, · · · , q. This gives

P
(

max
1≤j≤M

‖J̃1nj‖ ≥ √
qε0n

δ/2
)
≤ npa exp(−cnα). (2.13)

Since
∞∑

n=1

npa exp(−cnα) < ∞, by Borel-Cantelli lemma, we conclude max
1≤i≤M

‖J̃1nj‖ =

o(nδ/2), a.s.
Now take arbitrarily γ ∈ S. Find j such that ‖γj − γ‖ ≤ cn−d. Denoting γ̃ = γj , we

have

‖J̃1n(β̂n)‖ ≤ max
1≤l≤M

‖J̃1nl‖ +
n∑

i=1

‖Zi‖ sup
γ

‖Hi(γ)Λi(γ) − Hi(γ̃)Λi(γ̃)‖‖ẽi‖

≡ K1 + K2. (2.14)

Earlier we proved K1 = op(nδ/2). Also, K2 ≤ cn−d
n∑

i=1

‖ẽi‖ ≤ cn1−d+1/r. In view of the

choice of a, we have 1 − d ≤ δ/2. So K2 = op(nδ/2). Combining these two results, we
conclude J̃1n(β̃n) = op(nδ/2). As noticed earlier, this deduces J1n = op(nδ/2). Hence

B−1/2
n J1n = op(1). (2.15)

Combining (2.8) and (2.15), we prove (2.6). As stated earlier, this completes the proof of
Theorem 1.1.

§ 3 . Proof of Theorem 1.2

Denote Wi = H ′
iZ

′
i. Then (1.4) can be written as

( n∑
i=1

W ′
iΛiWi

)( n∑
i=1

W ′
iΛiΣiΛiWi

)−1( n∑
i=1

W ′
i ΛiWi

)
≤

n∑
i=1

W ′
iΣ

−1
i Wi. (3.1)

Let Di = Σ1/2
i ΛiΣ

1/2
i . Then (3.1) reduces to

( n∑
i=1

W ′
iΣ

−1/2
i DiΣ

−1/2
i Wi

)( n∑
i=1

W ′
iΣ

−1/2
i D2

i Σ
−1/2
i Wi

)( n∑
i=1

W ′
i Σ

−1/2
i DiΣ

−1/2
i Wi

)

≤
n∑

i=1

W ′
iΣ

−1
i Wi. (3.2)
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Letting Ui = Σ−1/2
i Wi

( n∑
i=1

W ′
iΣ

−1
i Wi

)−1/2

, we have

n∑
i=1

U ′
iUi = I. (3.3)

Then (3.2) reduces to

( n∑
i=1

U ′
iDiUi

)2

≤
n∑

i=1

U ′
iD

2
i Ui. (3.4)

In fact, denote Tn =
n∑

i=1

W ′
iΣ

−1
i Wi. Then (3.2) can be written as

T 1/2
n

n∑
i=1

U ′
iDiUiT

1/2
n

(
T 1/2

n

n∑
i=1

U ′
iD

2
i UiT

1/2
n

)−1

T 1/2
n

n∑
i=1

U ′
iDiUiT

1/2
n ≤ Tn.

Obviously, this is equivalent to (3.4).
In order to prove (3.4), we take unit vector λ, denote ai = Uiλ, and proceed to show

that
n∑

i=1

a′
iD

2
i ai ≥

∥∥∥
n∑

i=1

a′
iDiUi

∥∥∥2

. (3.5)

Denote μi = Diai, 1 ≤ i ≤ n. Then (3.5) can be written as

n∑
i=1

μ′
iμi ≥

∥∥∥
n∑

i=1

μ′
iUi

∥∥∥2

. (3.6)

Denote μ′ = (μ′
1, · · · , μ′

n), V ′ = (U ′
1, · · · , U ′

n). Then the right-hand side of (3.6) equals
‖μ′V ‖2. Since V ′V = I, the rows of V are mutually orthogonal unit vectors. Hence

‖μ′V ‖2 ≤ ‖μ‖2 =
n∑

i=1

μ′
iμi. This gives (3.6), hence (3.4). As noted ealier, it ends the

proof of Theorem 1.2.

Remark 3.1. To make (1.4) an equality, one choice is, as we just show,

Λi = Σ−1
i . (3.7)

The problem is whether or not (3.7) is the only choice. We may easily give an example, in
which the answer is in the negative. For example, in the case of q ≥ p and Z1 = Z2, we can
take Λ1 = Σ−1

2 , Λ2 = Σ−1
1 , Λi = Σ−1

i , i ≥ 3. Is it possible to construct an example other
than such trivial cases? We cannot yet give a definite answer for this problem. However, we
can deduce formally a necessary and sufficient condition ensuring the equality in (1.4).

Obviously, to make (1.4), or (3.6), an equality, it is necessary and sufficient that μ ∈
M(V ), where M(V ) is the linear subspace spanned by the columns of V . That is to say,
for any given unit q-vector, there must exist a q-vector b such that

μi = DiUiλ = Uib, 1 ≤ i ≤ n. (3.8)
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Denote T =
n∑

i=1

ZiHiΣ−1
i H ′

iZ
′
i. Then (3.8) can be written as

DiΣ
−1/2
i H ′

iZ
′
iT

−1/2λ = Uib, 1 ≤ i ≤ n. (3.9)

Since T > 0, from (3.9) we see that for any q-vector λ∗(= T−1/2λ), there exists a q-vector
b, such that

DiΣ
−1/2
i H ′

iZ
′
iλ

∗ = Uib, 1 ≤ i ≤ n. (3.10)

From (3.10), it follows that there exists a q × p matrix A such that

DiΣ
−1/2
i H ′

iZ
′
i = UiA, 1 ≤ i ≤ n. (3.11)

From (3.3) and (3.11), we have

A =
n∑

i=1

U ′
iDiΣ

−1/2
i H ′

iZ
′
i = T−1/2

n∑
i=1

ZiHiΛiH
′
iZ

′
i ≡ T−1/2T ∗, T ∗ =

n∑
i=1

ZiHiΛiH
′
iZ

′
i.

Hence

Σ1/2
i ΛiH

′
iZ

′
i = Σ−1/2

i H ′
iZ

′
iT

−1/2T−1/2T ∗ = Σ−1/2
i H ′

iZ
′
iT

−1T ∗, 1 ≤ i ≤ n. (3.12)

This is the necessary and sufficient condition that {Λi} must satisfy in order to make (1.4)
an equality. But the involved form of this condition makes it difficult in applying it to
specific cases.
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