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OPTIMIZATION∗∗∗∗
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Abstract

A general monotonization method is proposed for converting a constrained pro-
gramming problem with non-monotone objective function and monotone constraint
functions into a monotone programming problem. An equivalent monotone program-
ming problem with only inequality constraints is obtained via this monotonization
method. Then the existing convexification and concavefication methods can be used
to convert the monotone programming problem into an equivalent better-structured
optimization problem.
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§ 1 . Introduction

We consider a global optimization problem of the following form:

min f(x),

s.t. gi(x) = 0, i = 1, · · · , m,

gi(x) ≤ 0, i = m + 1, · · · , m0,

x ∈ Rn,

(1.1)

where f : Rn → R, gi : Rn → R, i = 1, 2, · · · , m0.

It is well known that when both the objective function and the constraint set are con-
vex, then any local minimizer of the problem (1.1) is the global minimizer. Many efficient
algorithms can be used to obtain a local minimizer (see [1, 3]). When the objective function
or the constraint set fails to be convex, a local minimizer may not be a global one. Up to
now, the global optimization techniques for general nonconvex programming problem are not
well developed (see [9]). Fortunately, many nonconvex programming problems encountered
in real life possess some kind of convexity, and can be formulated into concave minimiza-
tion problem or reverse convex programming problem, or more general, D. C. programming
problem. Some prominent features in these nonconvex programming problems lead to the
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development of various implementable global optimal algorithms for solving these program-
ming problems (see, e.g., [2, 4–6, 8, 11]). Thus, if a programming problem can be converted
into an equivalent concave minimization problem or reverse convex programming problem
or D. C. programming problem, then its global optimal solution can be obtained by using
the existing algorithms.

Recently, some convexification and concavification transformations have been proposed
to convert a strictly monotone programming problem into an equivalent concave minimiza-
tion problem or reverse convex programming problem or canonical D. C. programming
problem (see, e.g., [7, 10, 12, 13]). Thus the global optimal solution of a strictly monotone
programming problem can be obtained by solving the converted better structured program-
ming problem via the existing algorithms. In [7], the authors established a special mono-
tonization transformation to convert a non-monotone objective function with a single linear
constraint into a strictly monotone objective function and showed that a non-monotone pro-
gramming problem with a single linear constraint can be converted into an equivalent strictly
monotone programming problem. In [13], the authors gave another special monotonization
transformation for a programming problem with multiple linear constraints, but they did not
give the proof for the equivalence between the primal problem and the converted monotone
programming problem.

In this paper, we propose a monotonization transformation to convert a non-monotone
programming problem with general monotone constraints into an equivalent monotone pro-
gramming problem. The rigorous proof for the equivalence between the primal problem and
the converted monotone programming problem is given.

The rest of this paper is organized as follows. In Section 2, we present a general mono-
tonization transformation to convert a non-monotone objective function into a monotone
one. The equivalence between the primal problem and the converted monotone program-
ming problem is established in Section 3.

§ 2 . Monotonization Transformation

To begin with, we give the following definitions.

Definition 2.1. A function h : Rn → R is called an increasing (decreasing) function in
a set D ⊂ Rn if for any x, y ∈ D with xi ≤ yi, i = 1, · · · , n, we have h(x) ≤ (≥)h(y).

Definition 2.2. A function h : Rn → R is called a strictly increasing (decreasing)
function in a set D ⊂ Rn if for any x, y ∈ D with xi ≤ yi, i = 1, · · · , n, and x �= y, we have
h(x) < (>)h(y).

Definition 2.3. A programming problem is called a monotone programming problem
if each of the objective function and the constraint functions is monotone (increasing or
decreasing) on the feasible set. A programming problem is called a strictly monotone pro-
gramming problem if each of the objective function and the constraint functions is strictly
monotone (strictly increasing or strictly decreasing) on the feasible set.

Let

S0 = {x ∈ Rn | gi(x) = 0, i = 1, · · · , m; gi(x) ≤ 0, i = m + 1, · · · , m0}.
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We make the following assumptions.

Assumption 2.1. S0 is a compact set or f(x) satisfies the following coercive condition:

lim
||x||→∞

f(x) = +∞.

Then there exists a box

X = {x ∈ Rn | ci ≤ xi ≤ di, i = 1, · · · , n}, (2.1)

such that

G(1.1) ⊂ int(X), (2.2)

where ci, di ∈ R, ci ≤ di, i = 1, · · · , n, G(1.1) is the set of global minima of the problem
(1.1) and int(X) denotes the interior of X . Then the problem (1.1) is equivalent to the
following problem as far as the global minima are concerned:

min f(x),

s.t. gi(x) = 0, i = 1, · · · , m

gi(x) ≤ 0, i = m + 1, · · · , m0,

x ∈ X,

(2.3)

i.e., G(1.1) = G(2.3), where G(2.3) is the set of global minima of the problem (2.3).

S = {x ∈ X | gi(x) = 0, i = 1, · · · , m; gi(x) ≤ 0, i = m + 1, · · · , m0}. (2.4)

Assumption 2.2. Each of the equality constraints gi(x), i = 1, · · · , m, is monotone on
X. Furthermore, there exists a positive number δ0 > 0, such that∑

i∈I

∂gi(x)
∂xk

−
∑
j∈Ī

∂gj(x)
∂xk

≥ δ0, ∀x ∈ X, k = 1, · · · , n, (2.5)

where

I = {i ∈ {1, · · · , m} | gi(x) is increasing},

Ī = {1, · · · , m} \ I = {i ∈ {1, · · · , m} | gi(x) is decreasing}.
(2.6)

Note that here we just require that the equality constraints are monotone and satisfy
(2.5). In some cases, in order to assure that the condition (2.5) holds, we should introduce
some relaxation variables to convert some monotone inequality constraints into equality
constraints. Throughout the rest of this paper, we suppose that f(x) > 0 for all x ∈ X .
Otherwise, we can add a very large positive number M to f(x) to make f(x)+M be positive
on X .

Let

φq(x) = T (r1,q(g1(x)), r2,q(g2(x)), · · · , rm,q(gm(x)), f(x)), (2.7)

X̃ = {x ∈ X | gi(x) ≥ 0, i ∈ I; gi(x) ≤ 0, i ∈ Ī} (2.8)

0 < m0 ≤ min
x∈X

f(x) (2.9)

R̂m+1
+ = {x ∈ Rm+1 | xi ≥ 0, i = 1, · · · , m; xm+1 ≥ m0}, (2.10)
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where T : A → R, ri,q : Bi → R, A ⊂ Rm+1, Bi ⊂ R, i = 1, 2, · · · , m, and q is a parameter.
The following theorem shows that φq(x) is strictly increasing on X̃ under some conditions.

Theorem 2.1. Suppose that
( i ) f, gi, i = 1, 2, · · · , m, are continuously differentiable on X;
( ii ) Assumption 2.2 holds;
(iii) T is continuously differentiable and strictly increasing on R̂m+1

+ , furthermore, there
exists an ε0 > 0, such that

∂T (z)
∂zi

≥ ε0 for any z ∈ R̂m+1
+ and any i = 1, · · · , m,

and an M0 > 0, such that

0 <
∂T (z)
∂zm+1

≤ M0 for any z ∈ R̂m+1
+ ,

where R̂m+1
+ is given in (2.10);

(iv) for any i ∈ I, ri,q is continuously differentiable and strictly increasing on R+ and
satisfies

ri,q(0) ≥ 0,

r′i,q(t) ⇒ +∞ (q → +∞) for all t ∈ R+;
(2.11)

for any i ∈ Ī , ri,q is continuously differentiable and strictly decreasing on R− and satisfies

ri,q(0) ≥ 0,

r′i,q(t) ⇒ −∞ (q → +∞) for all t ∈ R−,
(2.12)

where R+ = {t | t ≥ 0, t ∈ R}, R− = {t | t ≤ 0, t ∈ R}, “⇒” represents the uniform
convergence.

Then, for any given ε1 > 0, there exists a q0 > 0, such that for all q > q0,

∂φq(x)
∂xk

≥ ε1, ∀x ∈ X̃, k = 1, 2, · · · , n,

where X̃ is defined by (2.8).

Proof. Let zi = ri,q(gi(x)), i = 1, · · · , m, zm+1 = f(x), z = (z1, · · · , zm+1). Thus, for
any x ∈ X̃, we have z ∈ R̂m+1

+ . By (2.7), for any x ∈ X̃, k = 1, · · · , n, we have

∂φq(x)
∂xk

=
m∑

i=1

∂T (z)
∂zi

r′i,q(gi(x))
∂gi(x)
∂xk

+
∂T (z)
∂zm+1

∂f(x)
∂xk

=
∑
i∈I

∂T (z)
∂zi

r′i,q(gi(x))
∂gi(x)
∂xk

+
∑
i∈Ī

∂T (z)
∂zi

r′i,q(gi(x))
∂gi(x)
∂xk

+
∂T (z)
∂zm+1

∂f(x)
∂xk

.

(2.13)

Let λ0 ≤ min
k=1,··· ,n

min
x∈X

∂f(x)
∂xk

.
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Then
∂f(x)
∂xk

≥ λ0 ≥ −|λ0|, ∀x ∈ X, k = 1, · · · , n.

For a given positive number ε1 > 0, for ε2 = ε1+|λ0|M0
ε0δ0

> 0, by the condition (2.11),
there exists a q′0 > 0, such that, when q > q′0,

r′i,q(t) > ε2, ∀ t ∈ R+, ∀i ∈ I;

by the condition (2.12), there exists a q′′0 > 0, such that, when q > q′′0 ,

r′i,q(t) < −ε2, ∀t ∈ R−, ∀i ∈ Ī ,

where ε0 and M0 are given in the condition (iii). Let q0 = max{q′0, q′′0 }. By (2.13), we have

∂φq(x)
∂xk

>
∑
i∈I

ε0ε2
∂gi(x)
∂xk

+
∑
i∈Ī

ε0(−ε2)
∂gi(x)
∂xk

− M0|λ0|

= ε0ε2

[∑
i∈I

∂gi(x)
∂xk

−
∑
i∈Ī

∂gi(x)
∂xk

]
− |λ0|M0

≥ ε0δ0
ε1 + |λ0|M0

ε0δ0
− |λ0|M0 = ε1

for any x ∈ X̃, any k = 1, · · · , n, and any q > q0.

Let

X̂ = {x ∈ Rn | gi(x) ≤ 0 for all i ∈ I; gi(x) ≥ 0 for all i ∈ Ī}. (2.14)

φp(x) can also be strictly decreasing on X̂ if we replace the condition (iv) of Theorem 2.1
by the corresponding one.

Theorem 2.2. Suppose that the conditions (i), (ii) and (iii) of Theorem 2.1 hold. More-
over, suppose that (iv) for any i ∈ I, ri,q is continuously differentiable and strictly decreasing
on R− and satisfies

ri,q(0) ≥ 0,

r′i,q(t) ⇒ −∞ (q → +∞) for all t ∈ R−;

for any i ∈ Ī , ri,q is continuously differentiable and strictly increasing on R+ and satisfies

ri,q(0) ≥ 0,

r′i,q(t) ⇒ +∞ (q → +∞) for all t ∈ R+,

where R+ = {t | t ≥ 0, t ∈ R}, R− = {t | t ≤ 0, t ∈ R}.
Then, for any given ε1 > 0, there exists a q0 > 0, such that for all q > q0,

∂φq(x)
∂xk

≤ −ε1, ∀x ∈ X̂, k = 1, 2, · · · , n,

where X̂ is defined by (2.14).
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Proof. The proof can be readily obtained from the proof of Theorem 2.1.

Note that f(x) ≥ m0 for any x ∈ X, where m0 is given in (2.9). Let

R̃m+1 = {z ∈ Rm+1 | zi ∈ R for all i = 1, · · · , m; zm+1 ≥ m0}. (2.15)

If we use stronger conditions than those in Theorem 2.1 or Theorem 2.2, then φq(x) can
be strictly monotone on X as the following corollary shows.

Corollary 2.1. Suppose that the conditions (i) and (ii) of Theorem 2.1 hold, and
(iii)′ the condition (iii) of Theorem 2.1 holds on R̃m+1 (i.e., R̂m+1

+ is replaced by R̃m+1).
Furthermore, if

(iv)′(a) the condition (iv) of Theorem 2.1 holds on R (i.e., R+ and R− are replaced by
R), then for any given ε1 > 0, there exists a positive number q0 > 0, such that when q > q0,

∂φq(x)
∂xk

≥ ε1, ∀x ∈ X, k = 1, 2, · · · , n.

Otherwise, if
(iv)′(b) the condition (iv) of Theorem 2.2 holds on R (i.e., R+ and R− are replaced by

R), then for any given ε1 > 0, there exists a positive number q0 > 0, such that when q > q0,

∂φq(x)
∂xk

≤ −ε1, ∀x ∈ X, k = 1, 2, · · · , n.

Proof. The proof can be readily obtained from the proof of Theorem 2.1.

For any z ∈ R̃m+1, let

T1(z) =
m+1∑
i=1

zi, T2(z) =
m∑

i=1

zi + ln(1 + zm+1).

Then T1(z) and T2(z) satisfy the condition (iii)′ of Corollary 2.1. Let

r1
i,q(t) =

{
qt for any i ∈ I,

−qt for any i ∈ Ī .

Then r1
i,q(t) satisfies the condition (iv)′(a) of Corollary 2.1. On the other hand, let

r2
i,q(t) =

{
−qt for any i ∈ I,

qt for any i ∈ Ī .

Then r2
i,q(t) satisfies the condition (iv)′(b) of Corollary 2.1.

For any z ∈ R̃m+1, let

T3(z) = exp
( m∑

i=1

zi

)
+ zm+1, T4(z) =

m∑
i=1

(zi + z2
i ) + zm+1, T5(z) =

m∑
i=1

exp(zi) + zm+1.

Then Ti(z), i = 3, 4, 5, satisfy the condition (iii) of Theorem 2.1, but they do not satisfy the
condition (iii)′ of Corollary 2.1.
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Let

r3
i,q(t) =

⎧⎨⎩t2 + qt for any i ∈ I,

t2 − qt for any i ∈ Ī ,

r4
i,q(t) =

⎧⎨⎩exp(qt) for any i ∈ I,

exp(−qt) for any i ∈ Ī ,
r
�4
i,q(t) =

⎧⎨⎩exp(qt) for any i ∈ I,

exp(−qt) for any i ∈ Ī ,

r5
i,q(t) =

⎧⎨⎩ln(1 + exp(qt)) for any i ∈ I,

ln(1 + exp(−qt)) for any i ∈ Ī .
r
�5
i,q(t) =

⎧⎨⎩ln(1 + exp(−qt)) for any i ∈ I,

ln(1 + exp(qt)) for any i ∈ Ī .

Then rj
i,q(t), j = 3, 4, 5, satisfy the condition (iv) of Theorem 2.1, but they do not satisfy

the condition (iv)′(a) of Corollary 2.1, and r
�j
i,q(t), j = 4, 5, satisfy the condition (iv) of

Theorem 2.2, but they do not satisfy the condition (iv)′(b) of Corollary 2.1.

§ 3 . Equivalence

In this section, the equivalence between the problem (1.1) and its transformed monotone
programming problems is established in Theorem 3.3 (Theorem 3.4). It is shown that under
some conditions, the primal problem (1.1) can be transformed into an equivalent monotone
programming problem with only inequality constraints.

Let

ϕq(x) = T (r1,q(b1(x)), r2,q(b2(x)), · · · , rm,q(bm(x)), f(x)) + q

m0∑
i=m+1

bi(x), (3.1)

where

bi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|gi(x)|, i ∈ I,

−|gi(x)|, i ∈ Ī ,

max{0, gi(x)}, i ∈ {m + 1, · · · , m0}.
(3.2)

Note the definitions of T, ri,q, i = 1, · · · , m, and we can regard ϕq(x) as a modified penalty
function.

Throughout the paper, the pair (x∗, λ∗) is said to satisfy the second order sufficiency
condition (see [1, p.169]) if

∇xL(x∗, λ∗) = 0,

gi(x∗) = 0, i = 1, · · · , m,

gi(x∗) ≤ 0, i = m + 1, · · · , m0,

λ∗
i ≥ 0, i = m + 1, · · · , m0,

λ∗
i gi(x∗) = 0, i = m + 1, · · · , m0,

yT∇2
xxL(x∗, λ∗)y > 0, ∀y ∈ V (x∗),

(3.3)
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where L(x, λ) = f(x) +
m0∑
i=1

λigi(x) and

V (x∗) =

⎧⎪⎪⎨⎪⎪⎩y ∈ Rn

∣∣∣∣∣∣∣∣
∇T gi(x∗)y = 0, i = 1, · · · , m

∇T gi(x∗)y = 0, i ∈ A(x∗)

∇T gi(x∗)y ≤ 0, i ∈ B(x∗)

⎫⎪⎪⎬⎪⎪⎭ ,

A(x∗) = {i ∈ {m + 1, · · · , m0} | gi(x∗) = 0, λ∗
i > 0},

B(x∗) = {i ∈ {m + 1, · · · , m0} | gi(x∗) = 0, λ∗
i = 0}.

It is well known that the second order sufficiency condition implies strictly local exact
penalization of the l1 penalty function. The following theorem shows that under some
conditions, the second order sufficiency condition also implies strictly local exact penalization
of the function ϕq(x).

Theorem 3.1. Suppose that
(i) f(x) and gi(x), i = 1, · · · , m0, are twice continuously differentiable on X, T (z)

satisfies the condition (iii) of Theorem 2.1 and ri,q, i = 1, · · · , m, satisfy the condition (iv)
of Theorem 2.1;

(ii) the pair (x∗, λ∗) with x∗ ∈ int(X) satisfies the second order sufficiency condition
(3.3).

Then, there exists a positive number q0, such that when q > q0, x∗ is a strict local
minimizer of ϕq(x).

Proof. Since ri,q(t), i = 1, · · · , m, satisfy the condition (iv) of Theorem 2.1, for

q̄ =
M0

ε0
max

1≤i≤m0
(|λ∗

i | + 1),

there exists a q0 > M0 max
1≤i≤m0

(|λ∗
i | + 1) > 0, such that

r′i,q(t) > q̄ for any t ∈ R+, i ∈ I,

r′i,q(t) < −q̄ for any t ∈ R−, i ∈ Ī ,
(3.4)

for all q > q0, where ε0 and M0 are given in the condition (iii) of Theorem 2.1. Then, we
conclude that when q > q0, x∗ is a strict local minimizer of ϕq(x) on Rn.

In fact, by contradiction, suppose that there exists a q > q0, such that x∗ is not a strict
local minimizer of ϕq(x) on Rn. Then there exists a sequence {xn} converging to x∗, such
that xn �= x∗ for any n = 1, 2, · · · , and

ϕq(xn) ≤ ϕq(x∗).

Since for any i ∈ I, n = 1, 2, · · · , we have bi(xn) ≥ 0; for any i ∈ Ī, n = 1, 2, · · · , we have
bi(xn) ≤ 0 and since ri,q , i = 1, · · · , m, satisfy the condition (iv) of Theorem 2.1, for any
n = 1, 2, · · · we have

ri,q(bi(xn)) ≥ 0, i = 1, · · · , m.
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Since ri,q(bi(x∗)) = 0, i = 1, · · · , m, for any n = 1, 2, · · · we have ri,q(bi(xn)) ≥
ri,q(bi(x∗)), i = 1, · · · , m. Since T is strictly increasing, and for any i ∈ {m + 1, · · · , m0},
bi(xn) ≥ 0 = bi(x∗); for any n = 1, 2, · · · , ϕq(xn) ≤ ϕq(x∗), we have

f(xn) ≤ f(x∗).

Since
{

xn−x∗
‖xn−x∗‖

}
is a bounded sequence, there exists a subsequence {nk} of {n}, such

that
{ xnk

−x∗

‖xnk
−x∗‖

}
converges to a vector s with unit norm, i.e., ‖s‖ = 1.

Without loss of generality, we suppose that the subsequence {nk} is just {n}, i.e.,

s = lim
n→+∞

xn − x∗

‖xn − x∗‖ .

Let

yi
n = ri,q(bi(xn)), i = 1, · · · , m, ym+1

n = f(xn),

Zn = (y1
n, · · · , ym

n , ym+1
n ), Z∗ = (r1,q(0), · · · , rm,q(0), f(x∗)).

Then, there exist 0 < θ < 1, 0 < θi < 1, i = 1, · · · , m, such that

ϕq(xn) − ϕq(x∗)

= T (Zn) − T (Z∗) + q

m0∑
i=m+1

bi(xn)

=
m∑

i=1

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))bi(xn)

+
∂T (θZn + (1 − θ)Z∗)

∂ym+1
(f(xn) − f(x∗)) + q

m0∑
i=m+1

bi(xn)

=
∑
i∈I

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))|∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)|

−
∑
i∈Ī

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))|∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)|

+
∂T (θZn + (1 − θ)Z∗)

∂ym+1
(∇T f(x∗)(xn − x∗) + o(‖xn − x∗‖))

+ q

m0∑
i=m+1

max{0, gi(x∗) + ∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)}.

(3.5)

Since for any n = 1, 2, · · · , ϕq(xn) ≤ ϕq(x∗), we have that for any n = 1, 2, · · · ,∑
i∈I

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))|∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)|

−
∑
i∈Ī

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))|∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)|

+
∂T (θZn + (1 − θ)Z∗)

∂ym+1
(∇T f(x∗)(xn − x∗) + o(‖xn − x∗‖))
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+ q

m0∑
i=m+1

max{0,∇T gi(x∗)(xn − x∗) + o(‖xn − x∗‖)} ≤ 0.

Therefore∑
i∈I

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))
∣∣∣∇T gi(x∗)

(xn − x∗)
‖xn − x∗‖ +

o(‖xn − x∗‖)
‖xn − x∗‖

∣∣∣
−

∑
i∈Ī

∂T (θZn + (1 − θ)Z∗)
∂yi

r′i,q(θibi(xn))
∣∣∣∇T gi(x∗)

(xn − x∗)
‖xn − x∗‖ +

o(‖xn − x∗‖)
‖xn − x∗‖

∣∣∣
+

∂T (θZn + (1 − θ)Z∗)
∂ym+1

(
∇T f(x∗)

(xn − x∗)
‖xn − x∗‖ +

o(‖xn − x∗‖)
‖xn − x∗‖

)
+ q

m0∑
i=m+1

max
{
0,∇T gi(x∗)

(xn − x∗)
‖xn − x∗‖ +

o(‖xn − x∗‖)
‖xn − x∗‖

}
≤ 0.

By taking limit on the both sides, we have∑
i∈I

∂T (Z∗)
∂yi

r′i,q(0)|∇T gi(x∗)s| −
∑
i∈Ī

∂T (Z∗)
∂yi

r′i,q(0)|∇T gi(x∗)s|

+
∂T (Z∗)
∂ym+1

∇T f(x∗)s + q

m0∑
i=m+1

max{0,∇T gi(x∗)s} ≤ 0.

(3.6)

Thus, it implies that ∇T f(x∗)s ≤ 0. By (3.4) and the condition (iii) of Theorem 2.1 and
since q > q0, we have∑

i∈I

∂T (Z∗)
∂yi

r′i,q(0)|∇T gi(x∗)s| −
∑
i∈Ī

∂T (Z∗)
∂yi

r′i,q(0)|∇T gi(x∗)s|

+
∂T (Z∗)
∂ym+1

∇T f(x∗)s + q

m0∑
i=m+1

max{0,∇T gi(x∗)s}

≥ M0

{[
max

1≤i≤m0
(|λ∗

i | + 1)
] m∑

i=1

|∇T gi(x∗)s|

+
[

max
1≤i≤m0

(|λ∗
i | + 1)

] m0∑
i=m+1

max{0,∇T gi(x∗)s} + ∇T f(x∗)s
}

.

Thus, we have[
max

1≤i≤m0
(|λ∗

i | + 1)
] ∑

1≤i≤m

|∇T gi(x∗)s|

+
[

max
1≤i≤m0

(|λ∗
i | + 1)

] m0∑
i=m+1

max{0,∇T gi(x∗)s} + ∇T f(x∗)s ≤ 0.

By the condition (3.3), we have

∇T f(x∗)s +
m0∑
i=1

λ∗
i ∇T gi(x∗)s = 0.
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Therefore, we have
m0∑

i=m+1

[[
max

1≤i≤m0
(|λ∗

i | + 1)
]
max{0,∇T gi(x∗)s} − λ∗

i ∇T gi(x∗)s
]

+
m∑

i=1

[[
max

1≤i≤m0
(|λ∗

i | + 1)
]
|∇T gi(x∗)s| − λ∗

i∇T gi(x∗)s
]
≤ 0.

Since for any i = m + 1, · · · , m0, max
1≤i≤m0

(|λ∗
i | + 1)max{0,∇T gi(x∗)s} − λ∗

i∇T gi(x∗)s ≥ 0;

and for any i = 1, · · · , m, max
1≤i≤m0

(|λ∗
i | + 1)|∇T gi(x∗)s| − λ∗

i ∇T gi(x∗)s ≥ 0, we have

max
1≤i≤m0

(|λ∗
i | + 1)max{0,∇T gi(x∗)s} − λ∗

i∇T gi(x∗)s = 0, i = m + 1, · · · , m0,

max
1≤i≤m0

(|λ∗
i | + 1)|∇T gi(x∗)s| − λ∗

i∇T gi(x∗)s = 0, i = 1, · · · , m.

Thus we have

∇T gi(x∗)s

⎧⎪⎪⎨⎪⎪⎩
= 0, i = 1, · · · , m,

= 0, i ∈ A(x∗),

≤ 0, i ∈ B(x∗),

i.e., s ∈ V (x∗). By (3.3), we have

sT∇2
xxL(x∗, λ∗)s > 0.

Therefore, when n is large enough, we have

f(xn) +
m0∑
i=1

λ∗
i gi(xn) > f(x∗).

By (3.4), (3.5) and the condition (iii) of Theorem 2.1, since q > q0, we have

ϕq(xn) − ϕq(x∗)

≥ M0

[∑
i∈I

[
max

1≤i≤m0
(|λ∗

i | + 1)
]
bi(xn) −

∑
i∈Ī

[
max

1≤i≤m0
(|λ∗

i | + 1)
]
bi(xn)

+
m0∑

i=m+1

[
max

1≤i≤m0
(|λ∗

i | + 1)
]
bi(xn) + f(xn) − f(x∗)

]
= M0

[ m∑
i=1

[
max

1≤i≤m0
(|λ∗

i | + 1)
]
|gi(xn)|

+
m0∑

i=m+1

[
max

1≤i≤m0
(|λ∗

i | + 1)
]
max{0, gi(xn)} + f(xn) − f(x∗)

]
≥ M0

( m∑
i=1

|λ∗
i ||gi(xn)| +

m0∑
i=m+1

λ∗
i max{0, gi(xn)} + f(xn) − f(x∗)

)
≥ M0

( m0∑
i=1

λ∗
i gi(xn) + f(xn) − f(x∗)

)
.
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Thus, when n is large enough, we have

ϕq(xn) − ϕq(x∗) ≥ M0

( m0∑
i=1

λ∗
i gi(xn) + f(xn) − f(x∗)

)
> 0,

which contradicts ϕq(xn) ≤ ϕq(x∗) for all n = 1, 2, · · · . We complete the proof.

Consider the following simply constrained programming problem:

min
x∈X

ϕq(x). (3.7)

The set of global minima of the problem (3.7) is denoted by G(3.7).
In order to obtain the relationship for global minima between the original problem (1.1)

and the simply constrained problem (3.7), we need the following assumptions.

Assumption 3.1. The set of global minima of the problem (1.1) is a finite set.

Assumption 3.2. For any x∗ ∈ G(1.1), there exists a vector λ∗ such that the pair
(x∗, λ∗) satisfies the second order sufficiency condition (3.3), where G(1.1) is the set of
global minima of the problem (1.1).

The following theorem shows the global exact penalization of ϕq(x).

Theorem 3.2. Suppose that
(i) f(x) and gi(x), i = 1, · · · , m0, are twice continuously differentiable functions, T

satisfies the condition (iii) of Theorem 2.1 and ri,q, i = 1, · · · , m, satisfy the condition (iv)
of Theorem 2.1;

(ii) Assumption 2.1, Assumption 3.1 and Assumption 3.2 hold.
Then there exists a q∗ > 0, such that when q > q∗, G(3.7) = G(1.1).

Proof. By Assumption 3.1, we know that G(1.1) is a finite set. Let

G(1.1) = {x∗
1, · · · , x∗

k0
}. (3.8)

By Theorem 3.1, for any i = 1, · · · , k0, there exists a positive number qi,0, such that when
q > qi,0, x∗

i is a strict local minimizer of function ϕq(x). Let q0 = max
1≤i≤k0

qi,0. Thus,

when q > q0, for any i = 1, · · · , k0, there exists a positive number δx∗
i
, such that for any

x ∈ N(x∗
i , δx∗

i
) \ {x∗

i }, i = 1, · · · , k0, we have

ϕq(x) > ϕq(x∗
i ),

where N(x∗
i , δx∗

i
) = {x ∈ Rn | ‖x−x∗

i ‖ < δx∗
i
}. For any x ∈ S\G(1.1), we have f(x) > f(x∗

i ),
where S is defined in (2.4). Thus, for any x ∈ S \ G(1.1), there exists a positive number
δx, such that for any y ∈ N(x, δx) and for any i = 1, · · · , k0, we have f(y) > f(x∗

i ). Thus,
for any y ∈ ⋃

x∈S\G(1.1)

N(x, δx), for any i = 1, · · · , k0, we have f(y) > f(x∗
i ). Thus, for any

y ∈ ⋃
x∈S\G(1.1)

N(x, δx), i = 1, · · · , k0, since ri,q(bi(y)) ≥ 0, we have

ϕq(y) = T (r1,q(b1(y)), · · · , rm,q(bm(y)), f(y)) + q

m0∑
i=m+1

bi(y)

≥ T (0, · · · , 0, f(y)) > T (0, · · · , 0, f(x∗
i )) = ϕq(x∗

i ).
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Therefore, for any y ∈
( ⋃

x∈S

N(x, δx)
)∖

G(1.1), i = 1, · · · , k0, we have

ϕq(y) > ϕq(x∗
i ).

Since S is a compact set, there exists a positive number δ0, such that (S + δ0N(0, 1)) ⊂⋃
x∈S

N(x, δx), thus, for any x ∈ (S + δ0N(0, 1)) \ G(1.1), i = 1, · · · , k0, we have ϕq(x) >

ϕq(x∗
i ). Since X \ (S + δ0N(0, 1)) is a compact set, and for any x ∈ X \ (S + δ0N(0, 1)),∑

i∈I

bi(x) − ∑
i∈Ī

bi(x) +
m0∑

i=m+1

bi(x) > 0, there exists a positive number θ0, such that for any

x ∈ X \ (S + δ0N(0, 1)) we have∑
i∈I

bi(x) −
∑
i∈Ī

bi(x) +
m0∑

i=m+1

bi(x) ≥ θ0 > 0.

Let q̄′0 =
M0(f−f)

ε0θ0
. By the condition (iv) of Theorem 2.1, there exists a positive number

q′0 >
M0(f−f)

θ0
, such that when q > q′0, we have

r′i,q(t) > q̄′0 for any t ∈ R+, i ∈ I,

r′i,q(t) < −q̄′0 for any t ∈ R−, i ∈ Ī ,

where f ≥ max
x∈X

f(x), f ≤ min
x∈X

f(x), ε0 and M0 are given in the condition (iii) of Theorem

2.1. Let

yi = ri,q(bi(x)), i = 1, · · · , m, ym+1 = f(x),

Z = (y1, · · · , ym, ym+1), Z∗
i = (r1,q(0), · · · , rm,q(0), f(x∗

i )).

Then, for any x ∈ X \ (S + δ0N(0, 1)), i = 1, · · · , k0, q > q′0, we have

ϕq(x) = ϕq(x∗
i ) +

m∑
k=1

∂T (θiZ + (1 − θi)Z∗
i )

∂yk
r′k,q(αi,kbk(x))bk(x)

+ q

m0∑
i=m+1

bi(x) +
∂T (θiZ + (1 − θi)Z∗

i )
∂ym+1

(f(x) − f(x∗
i ))

> ϕq(x∗
i ) +

M0(f − f)
θ0

( ∑
i∈I

bi(x) −
∑
i∈Ī

bi(x) +
m0∑

i=m+1

bi(x)
)

+ M0(f − f(x∗
i ))

≥ ϕq(x∗
i ),

where 0 < θi < 1, i = 1, · · · , k0; 0 < αi,k < 1, k = 1, · · · , m, i = 1, · · · , k0.
Let q∗ = max{q0, q

′
0}. When q > q∗, for any x ∈ X \ G(1.1), i, j = 1, · · · , k0, we have

ϕq(x) > ϕq(x∗
i ) = ϕq(x∗

j ). Thus, we have G(3.7) = G(1.1).

Note that ϕq(x) is not necessarily monotone. Moreover, it is not differentiable. Consider
the following programming problem

min φq(x) = T (r1,q(g1(x)), · · · , rm,q(gm(x)), f(x)),

s.t. gi(x) ≥ 0, i ∈ I,

gi(x) ≤ 0, i ∈ Ī ,
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gi(x) ≤ 0, i ∈ {m + 1, · · · , m0},
x ∈ X. (3.9)

Denote the set of global minima of the problem (3.9) by G(3.9). The objective function φq(x)
is continuously differentiable under the conditions of Theorem 3.2. The following theorem
shows that under some conditions the primal problem (1.1) is equivalent to the problem
(3.9) and the problem (3.9) is a monotone programming problem with strictly increasing
objective function.

Theorem 3.3. If the conditions of Theorem 3.2 hold, furthermore, if Assumption 2.2
holds, and for any i = m+1, · · · , m0, gi(x) is monotone, then there exists a q1 > 0, such that
when q > q1, G(3.9) = G(1.1), and the problem (3.9) is a monotone programming problem
with strictly increasing objective function.

Proof. Let

S2 =

⎧⎪⎨⎪⎩x ∈ X

∣∣∣∣∣∣∣
gi(x) ≥ 0, i ∈ I,

gi(x) ≤ 0, i ∈ Ī ,

gi(x) ≤ 0, i ∈ {m + 1, · · · , m0}

⎫⎪⎬⎪⎭ .

For any x ∈ S2, we have

bi(x) =

⎧⎪⎪⎨⎪⎪⎩
|gi(x)| = gi(x), i ∈ I,

−|gi(x)| = gi(x), i ∈ Ī ,

max{0, gi(x)} = 0, i ∈ {m + 1, · · · , m0}.

Thus, for any x ∈ S2, we have

ϕq(x) = T (r1,q(b1(x)), · · · , rm,q(bm(x)), f(x)) + q

m0∑
i=m+1

bi(x)

= T (r1,q(g1(x)), · · · , rm,q(gm(x)), f(x)) = φq(x).

By G(1.1) ⊂ S2 and Theorem 3.2, when q > q∗, for any x∗ ∈ G(1.1) and x ∈ S2 \ G(1.1),
we have φq(x) = ϕq(x) > ϕq(x∗) = φq(x∗), where q∗ is given in Theorem 3.2. Thus, when
q > q∗, we have G(1.1) = G(3.9). Furthermore, by Theorem 2.1, we know that there exists
a positive number q0, such that when q > q0, function φq(x) is strictly increasing on X̃,
where X̃ is defined in (2.8). Let q1 = max{q∗, q0}. Thus, when q > q1, G(1.1) = G(3.9) and
the problem (3.9) is a monotone problem.

Consider another programming problem

min φq(x) = T (r1,q(g1(x)), · · · , rm,q(gm(x)), f(x)),

s.t. gi(x) ≤ 0, i ∈ I,

gi(x) ≥ 0, i ∈ Ī ,

gi(x) ≤ 0, i ∈ {m + 1, · · · , m0},
x ∈ X.

(3.10)
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Similarly, we can obtain that under some conditions the original problem (1.1) is equiv-
alent to the problem (3.10) and the problem (3.10) is a monotone programming problem
with strictly decreasing objective function.

Theorem 3.4. Suppose that
( i ) f(x) and gi(x), i = 1, · · · , m0 are twice continuously differentiable functions, T and

ri,q, i = 1, · · · , m satisfy the conditions (iii) and (iv) of Theorem 2.2 respectively;
( ii ) Assumptions 2.1, 2.2, 3.1 and 3.2 hold;
(iii) for any i = m + 1, · · · , m0, gi(x) is monotone.
Then there exists a positive number q2, such that when q > q2, G(3.10) = G(1.1) and

the problem (3.10) is a monotone programming problem with strictly decreasing objective
function.

Proof. The proof can be readily obtained from Theorem 2.2 and Theorems 3.1–3.3.

We know that if the conditions of Theorem 2.1 hold, then φq(x) is an increasing function
when q is sufficiently large; if the conditions of Theorem 2.2 hold, then φq(x) is a decreasing
function when q is sufficiently large. In addition, in order to assure the equivalence of
the original problem and the converted monotone problem, we need Assumption 3.1 and
Assumption 3.2. The following theorem shows that when m = m0 = 1, we can assure the
equivalence without Assumption 3.1 and Assumption 3.2.

Theorem 3.5. Suppose that
( i ) m = m0 = 1;
( ii ) the conditions of Theorem 2.1 (Theorem 2.2) hold;
(iii) the problem (2.4) has at least one feasible solution.
Then there exists a positive number q0, such that when q > q0, the problem (3.9) (problem

(3.10)) is a monotone programming problem and G(1.1) = G(3.9) (G(1.1) = G(3.10)).

Proof. Assume that g1(x) is strictly increasing on X . Let X = {x ∈ X | g1(x) ≥ 0},
S = {x ∈ X | g1(x) = 0}. By Theorem 2.1, there exists a positive number q0, such that
when q > q0, φq(x) is a strictly increasing function on X. Thus, the problem (3.9) is a
monotone programming problem on X.

By the condition (iii), S is not empty. We firstly prove that when q > q0, G(3.9) ⊂ S.
By contradiction, suppose that there exist a q > q0 and a x∗

q ∈ G(3.9), such that x∗
q �∈ S.

Then we have

g1(x∗
q) > 0. (3.11)

By the continuity of g1(x), there exists a positive number ε > 0, such that for any x ∈ X

with |xi − x∗
q,i| ≤ ε, i = 1, 2, · · · , n, it holds that g1(x) > 0, where x = (x1, · · · , xn), x∗

q =
(x∗

q,1, · · · , x∗
q,n).

If for any i, x∗
q,i = ci, then we have x∗

q,i ≤ x◦
i , i = 1, · · · , n, where x◦ = (x◦

1, · · · , x◦
n) ∈ S.

Since g1(x) is strictly increasing on X, we have g1(x∗
q) ≤ g1(x◦) = 0. This contradicts (3.11).

Thus, there exists an i0 (1 ≤ i0 ≤ n), such that x∗
q,i0

> ci0 . Let ε0 = min{ε, x∗
q,i0

− ci0},
u∗ = (x∗

q,1, x
∗
q,2, · · · , x∗

q,i0−1, x
∗
q,i0 − ε0, x

∗
q,i0+1, · · · , x∗

q,n). Then, u∗ ∈ X and g1(u∗) > 0.
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Thus, u∗ ∈ X and

φq(u∗) ≥ φq(x∗
q). (3.12)

On the other hand, since φq(x) is strictly increasing on X and u∗ < x∗
q , we have φq(u∗) <

φq(x∗
q), which contradicts (3.12). Thus, we must have G(3.9) ⊂ S.

Thus, for any x∗ ∈ G(3.9) and y∗ ∈ G(1.1), we have

φq(y∗) ≥ φq(x∗) = T (r1,q(0), f(x∗)) ≥ T (r1,q(0), f(y∗)) = φq(y∗).

Thus, we have φq(y∗) = φq(x∗) and f(x∗) = f(y∗) = φq(y∗), which imply x∗ ∈ G(1.1) and
y∗ ∈ G(3.9). Therefore, it holds that G(3.9) = G(1.1).

Similarly, we can prove the corresponding result in other cases.

A research topic that needs further pursuing in the future is to identify the lower bound
of q which guarantees the success of the monotonization and the equivalence.
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