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OSCILLATION AND GLOBAL ATTRACTIVITY OF
IMPULSIVE PERIODIC DELAY RESPIRATORY
DYNAMICS MODEL

S. H. SAKER*

Abstract

This paper studies the nonlinear delay impulsive respiratory dynamics model. The
model describes the sudden changes of the concentration of CO2 in the blood of the
mammal. It is proved that the model has a unique positive periodic solution. Some
sufficient conditions for oscillation of all positive solutions about the positive periodic
solution are established and also some sufficient conditions for the global attractivity
of the periodic solution are obtained.
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8§1. Introduction

The nonlinear delay differential equation,

Y1) = y(t)| ~xy(t)] (1.1)

- r
q+yr(t—r7)
was proposed by Mackey and Glass [10] for a “Dynamic Disease” involving respiratory
disorders, where ﬁ denotes the arterial COy concentration of a mammal, p, ¢, A and 7
are positive constants such that A is the COs production rate, and 7 is the time between
oxygenation of blood in lungs and stimulation of chemoreceptors in the brainstem. The
oscillation and stability of (1.1) has been studied by Kubiaczyk and Saker [9].

The variation of the environment plays an important role in many biological and eco-
logical dynamical systems. In particular, the effects of a periodically varying environment
are important for evolutionary theory as the selective forces on systems in a fluctuating
environment differ from those in a stable environment. Thus, the assumption of periodicity
of the parameters in the system (in a way) incorporates the periodicity of the environment
(e.g., seasonal effects of weather, food supplies, mating habits, etc.).

In fact, any periodic change of climate tends to impose its period upon oscillations of
internal origin or to cause such oscillations to have a harmonic relation to periodic climatic
changes. In view of this it is realistic to assume that the parameters in the models are
periodic functions of period w.

Also, many evolution processes in nature are characterized by the fact that at certain
moments of time they experience an abrupt changes of state. The phenomena exhibit
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impulsive behavior are the biological processes and the electrical circuits, for examples we
refer to the articles [1, 2, 8]. The solutions of such models exhibit sudden changes or jumps
which are called impulses.

Thus, the modification of (1.1) according to the environmental variation and sudden
changes is the nonautonomous impulsive delay differential equation

p(t)
q(t) + y™(t — mw)

y'(t) =y(t) —ABy®)|,  tF# bk, (1.2a)

where

(b

0 <ty <ty <tsz<--- are fixed impulsive points with hm tr = 00;

k—oo

1)
2) p(t), q(t), A(t) € ([0,00), (0,00)) are locally summable functions;
3) {bx} is a real sequence and b, > -1,k =1,2,-

1) p(t), q(t), A(t) and J] (1+4byx) are positive perlodlc functions with common period
O<tp<t
w > 0 and m is nonnegative integer.

For biological significance, we consider solutions of (1.2) with initial conditions of the
form

(h
(h
(h

y(t) = é(t) for —mw <t <0,¢ € L([—mw,0],[0,00)) and ¢(0) > 0, (1.3)

where L([—mw, 0], [0,00)) denotes the set of Lebsegue measurable functions on [—muw, 0].

The mathematical theory of the impulsive differential equations is much more compli-
cated in comparison with the corresponding theory of the impulsive ordinary differential
equations without delay and the theory of differential equations without impulses. In the
last few years, the oscillation and global attractivity of impulsive delay differential equations
have been studied by many authors, for some contributions we refer the reader to the papers
[3-6, 12, 13] and the reference cited therein.

Definition 1.1. A function y € ([—mw,o0), (0,00)) is said to be a solution of the
equation (1.2) on [—mw, c0) if

(1) y(t) is absolutely continuous on each interval (0,t1] and (tg,tgs1], k=1,2,---;

(H) fOT any tka k= ]-7 2; ) y(t;)v y(t;) exist and y(t];) = y(tk)a

(iii) y(t) satisfies (1.2a) for almost everywhere in [0,00)\{tx} and satisfies (1.2b) for
every t = t.

Definition 1.2. A function y(t) of (1.2) is said to oscillate about g(t) if (y(t) — y(¢))
has arbitrarily large zeros. Otherwise, y(t) is called nonoscillatory. When §(t) = 0, we say
y(t) oscillates about zero or simply oscillates.

Definition 1.3. Suppose that y(t) and g(t) are two positive solutions of (1.2) on [t —
mw, 00). The solution §(t) is said to be asymptotically attractive to y(t) provided tlim [y(t) —
—00

g(t)] = 0. Further, g(t) is called globally attractive if g(t) is asymptotically attractive to all
positive solutions of (1.2).

Our aim in this paper is to prove that (1.2) has a unique positive periodic solution
g(t) of period w. Next, we establish some sufficient conditions for oscillation of all positive
solutions of (1.2) about g(t), which are the sufficient conditions for the prevalence of a
dynamic disease that insure the existence of the change of the concentration of CO5 in the
blood around the positive periodic solution. Also, we establish some sufficient conditions
for the global attractivity of (t), which are the sufficient conditions for the nonexistence of
dynamic diseases.



OSCILLATION AND GLOBAL ATTRACTIVITY OF DYNAMICS MODEL 513
8§ 2. Main Results

In this section, first we prove that the equation (1.2) has a positive periodic solution
y(t). Next, we give an oscillation comparison theorem which enables us to establish some
sufficient conditions for oscillation of all positive solutions of the equation (1.2) about ()
and establish some sufficient conditions for global attractivity.

Under the above hypothesis (hy)—(hy) we consider the nonlinear delay differential equa-
tion P1)
/

20 =20 e )

with the initial condition

- A(t)z(t)}, t>0, (2.1)

z(t) = (1) for —mw <t <0, ¢ € L([-mw,0],[0,00)) and ¢(0) > 0, (2.2)

P = — e 00— A0 =0 T1oew

0<tp<t—mw O<tp<t—mw

By a solution z(t) of (2.1) and (2.2) we mean an absolutely continuous function z(t) defined
on [—mw, co) satisfies (2.1) for all ¢ > 0 and z(t) = ¢(¢) on [—mw, 0].
Here and in the sequel we assume that a product equals unit if the number of factors is
equal to zero and for a periodic function g of period w, we shall denote by
* = t d * — i t .
g Orgtfgwg( ) and g Ogltlgwg( )
Further, each functional inequality we will write holds for all sufficiently large ¢.
The following lemma will be used in the proof of our main result for existence of periodic
positive solution of (1.2). The proof is similar to that of Theorem 1 established by Luo [12]
and will be omitted.

Lemma 2.1. Assume that (hy)—(hy) hold. Then
(1) if 2(t) is a solution of (2.1) on [—mw, o), then y(t) = [] (1+0bk)z(t) is a solution
O<tr<t
of (1.2) on [—mw, 00).

(ii) if y(t) is a solution of (1.2) on [—mw,0), then z(t) = [I (1 +br)"ty(t) is a
O<tr<t
solution of (2.1) on [—mw, 00).

Lemma 2.2. Assume that (hi)—(hy) hold. Then the solutions of (1.2) and (2.1) are
defined on [—mw,00) and are positive on [0,00).

Proof. From (2.1) and (2.2) it is clear that z(t) is defined and positive for any ¢ € L.
Then, by Lemma 1.1, we see that the solution of (1.2) and (1.3) is also defined and positive
on [—mw, 00). The proof is complete.

Now, we shall consider the nondelay case, i.e.,

(0 =0 [ -], (230)

y(t;r) - y(ﬁ;;) = bky(tl;)v k=1,2,3,--- (2'3b)
and

() = (1) 5 (ﬂpﬂn Ol A=), =0 (2.4)
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where P(t), Q(t) and A(t) are positive periodic functions of period w. In the following
theorem by applying the method used in [14], we prove that (2.3) has a unique positive
periodic solution g (t) and shows that 7(t) is in fact a global attractor of all other positive
solutions.

Theorem 2.1. Assume that (hy)—(hy) hold. Then
(a) there exists a unique w-periodic positive solution y(t) of (2.3), and
(b) for every other positive solution y(t) of (2.3) the limit

lim [y () — ()] = 0.

t—oo

Proof. To prove the theorem, we prove that (2.4) has a unique w-periodic positive
solution Z(t). Consider the function

P
Q-+

f(z)= — Az, z €10, 00),
where A, P and @ are positive constants. Clearly, f(0) = P/Q, f(c0) = —oo and f(z)
is monotonically decreasing. Thus, the equation f(z) = 0 has a unique positive root zg €
(0,00). Further, f(z) >0, z € [0,20) and f(z) <0, z € (z9,00).

To prove (a), we define the functions

P, P

m — A*Z and fQ(Z) = m — A*Z (25)

fi(z) =

It is clear that fi1(z) and fa(z) have positive zeros z; and zq, respectively, i.e., fi(z1) =0
and fa(z2) = 0. Noting (2.5) we have z3 > z1 > 0. Now, suppose z(t) = z(t,0, z9) where
zo > 0 is the unique solution of (2.4) through (0, zp). We claim that if zy € [z1, 23], then
z(t) € [#1,22] for all ¢ > 0. Otherwise, let t* = inf{t > 0 | 2(t) > 22}. Then, there exists
t > t* such that 2(¢) > 22 and 2/(f) > 0. However, from (2.4) and the fact that z(f) > 22,
we have

*

(0 =0 g L =~ AD:0)] < 0[5

which is a contradiction. Therefore, z(t) < z2. By a similar argument, we can show that
z(t) > z for all t > 0. Hence, in particular, z, = z(w, 0, z0) € [21, 22].

Now we define a mapping F : [z1, 2z2] — [21, 22] as follows: for each zg € [21, 22|, F(20) =
2z, Since the solution z(t,0,2¢) of the equation (2.4) depends continuously on the initial
value Zp, it follows that F' is continuous and maps the interval [z1, z2] into itself. Therefore,
F has a fixed point Zy by Brouwer’s fixed point theorem. In view of the periodicity of P, @
and A it follows that the unique solution z(t) = z(¢,0, Zp) of (2.4) through the initial point

(0, zp) is a positive periodic solution of period w. Let §(¢t) = [] (1 + bx)z(t). Then, by
O<trp<t
Lemma 2.1 and (hy), §(t) is the w-periodic solution of (2.3). The proof of (a) is complete.

= Azz} =0,

Now we shall prove (b). Let () be a periodic positive solution of (2.3). Thus, by Lemma

1.1, 2(t) = TI (1 +bx)~'y(t) is the periodic solution of (2.4). Assume that y(t) > y(t)
O<trp<t

for ¢ sufficiently large, then z(t) > Z(¢) (the proof when y(t) < g(t) is similar and will be

omitted). Set
2(t) = z(t)e™®), (2.6)
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Then, x(t) > 0 for ¢ sufficiently large, and from (2.4) we have

/ (ot P(t)z"(t) (e -1
O+ AOXOCT =D+ G ) @ T e me)
However, since 0 < (e*®) — 1) for ¢ sufficiently large, it follows that
/ P(t)z"(t) (en* —1)
"0 Q) + 20 @0 + e = 27
and hence B o
() < — P{t)z"(¢) (e L) < 0. (2.8)

Q@) +2"(1)) (Q(t) + 2" (t)en* ™)
Thus, x(t) is decreasing, and therefore tlggo z(t) = a € [0, 00). Now we shall prove that o = 0.
If o > 0, then there exist € > 0 and T. > 0 such that for t > T,, 0 <a—e<z(t) < a+e.
However, then from (2.8), we find

P (en@=9) _1)
(@ + (2)") (Q* + (z7)nen(ate))’

But, now an integration of (2.9) from T to oo immediately gives a contradiction. Hence,
a = 0. Thus tlim x(t) = 0, that is,
—00

T'(t) < — t>T.. (2.9)

Jim (y(t) — (1) = lim (1+br)(2(t) — 2(1))
0<tp<t
= lim z(t) JJ 1+ -1)=0.

0<trp<t

Hence
lim (y(t) — 5(t)) = 0.

t—o0

This completes the proof.

Remark 2.1. It is clear that in the proof of Theorem 2.1 (b) instead of (2.7) the
inequality
2 (8) + A)z(t)(e* —1) <0 (2.10)

can be used to get the same conclusion that z(¢) — 0 as t — oo.

In the following we study the existence of positive periodic solution of the delay differen-
tial equation (1.2), establish some sufficient conditions for oscillation of all positive solution
about it and give sufficient condition for global attractivity.

Theorem 2.2. Assume that (hi)—(hy) hold. Then, there exists a unique w-periodic
positive solution g(t) of (1.2).

Proof. By Theorem 2.1, the equation (2.4) has a unique w-positive periodic solution
Z(t). Noting that Z(t) = Z(t — mw) we see that Z(¢) is also an w-periodic positive solution of

(2.1). Thus by Lemma 2.1 and (hy), g(t) = [ (1+0bk)Z(t) is w-periodic positive solution
O<tp<t
of the equation (1.2). On the other hand, if §(¢) is a periodic positive solution of (1.2), it

is easy to see that () is also a positive periodic solution of (2.3). In view of Theorem 2.1,
the periodic positive solution of the equation (1.2) is unique. The proof is complete.
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Remark 2.2. From the proof of Theorem 2.1, it follows that the unique w-periodic

positive solution g(¢) of (2.3) satisfies z; < T[] (14 bx)"'%(¢) < 22. Thus, an interval for
0<ty<t
the location of §(t) is readily available and this proves that the periodic positive solution

g(t) of (1.2) is permanent.

In the nondelay case, we have seen in Theorem 2.1(b) that every positive solution of
(1.2) converges to the unique positive w-periodic solution g(t). In our final result Theorem
2.9 we shall show that the same behavior holds in the case of small delays. To show this,
first we shall prove that every positive solution of (1.2) which does not oscillate about (t)
converges to g(t).

Theorem 2.3. Assume that (hy)(hq) hold. Let y(t) be a positive solution of (1.2) which
does not oscillate about §(t). Then
lim [y(¢) — g(t)] = 0. (2.11)

t—o00

Proof. To prove (2.11), it suffices to show that

lim [z(t) — z(¢)] = 0,

t—o0
where Z(t) is the unique w-periodic positive solution of (2.1), and z(t) is any other positive
solution of (2.1) which does not oscillate about Z(t). Assume that z(¢) > z(t) for ¢ suffi-
ciently large (the proof for the case z(t) < Z(t) is similar and hence omitted). Using the
transformation (2.6), we again have z(t) > 0 for ¢ sufficiently large, and z(t) satisfies the
equation

R (3 NN Ciclci it N
() + A()z(t)( 1) + Q) 1 57(0) (00 T Het-ma = (2.12)
Again, since 0 < (e*(Y) — 1) for ¢ sufficiently large, the equation (2.12) gives
, Q(t)gn(t) (enx(t—mw) _ 1)
and hence
(1) < - LB (I 1) (2.14)

T Q@) +2m(1) (Q) + z (penlizme))
Thus, z(¢) is decreasing, and therefore tlim x(t) = a € [0,00). We need to show that a = 0.
— 00

If @ > 0, then there exist € > 0 and 7. > 0 such that for t > T, 0 < a—¢ < z(t) <
z(t — mw) < a+ e. Then, from (2.14), again we obtain (2.9). The rest of the proof is the
same as that of Theorem 2.1(b) and hence omitted.

Remark 2.3. As in Remark 2.1 in the proof of Theorem 2.3 instead of (2.13) the
inequality (2.10) can be used to get the same conclusion that z(t) — 0 as t — cc.

In the following, we prove that the oscillation of all solutions of (1.2) is equivalent to the
oscillation of all solutions of the equation (2.1).

Theorem 2.4. Assume that (hy)—(hy) hold. Then every solution of (1.2) oscillates if
and only if every solution of the equation (2.1) oscillates.
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Proof. Suppose that z(t) is a solution of (2.1) on [0,00). Let y(¢t) = [ (14 bx)z(2).
0<tr <t

From Lemma 2.1, y(t) is a solution of (1.2) on [0,00). Since [] (14 bx) >0, ¢ > 0, y(¢)
0<tr<t
is oscillatory if and only if z(¢) is oscillatory.
Conversely, suppose that y(t) is a solution of (1.2) on [0,00). Let z(t) = [[ (1 +
O<tp<t

bi) " ly(t). Thus, from Lemma 2.1, 2() is a solution of (2.1) on [0, 00) and from the fact that

[T (A1+bk)~t>0,¢t>0,2(t) is oscillatory if and only if y(t) is oscillatory. The proof is
0<tr<t
complete.

From Theorem 2.4, we have the following oscillation criteria of (1.2).

Theorem 2.5. Assume that (hy)—(hy) hold and every solution of the delay differential
equation
(1 —e)P(t)z"(t)
Q@) +z7())
oscillates, where € > 0 is arbitrarily small. Then, every solution of (1.2) oscillates about
y(®)-

Proof. Set

W' (t) + exp ((1 —€) /ttmw A(S)Z(s)ds) r Wt —mw)=0 (2.15)

2(t) = Z(t)e™ ™). (2.16)

Then it is clear that a solution z(t) of (2.1) oscillates about z(t) if and only if z(¢) oscillates
about zero. Assume for the sake of contradiction that (2.1) has a solution z(t) which does not
oscillate about z(t). Without loss of generality we assume that z(t) > z(t), so that z(¢) > 0.
(The proof for the case z(t) < Z(t), i.e., when z(¢) < 0 is similar and hence omitted.) The
transformation (2.16) transforms (2.1) to the equation

nP(t)z"(t) S fala(t — mw)) =0, (2.17)

2(t) + A2t f1 (2 (1)) + Qi1 0))

where 0 (0 )
4z ent
fl (’LL) e and f2 (’LL) n Q 4 zn (t)enu
Note that
ufi(u) >0 foru#0 and 1imM:17
um0 U (2.18)
- fa(u)
ufo(u) >0 foru#0 and hr% = 1.

From (2.18) it follows that for any given arbitrarily small € > 0 there exists a § > 0 such that
forall0 <u <4, fi(u) > (1—e)uand fo(u) > (1—¢e)u (forall =6 <u <0, fi(u) < (1—¢e)u
and fo(u) < (1 — &)u). Since in view of Theorem 2.3, x(t) — 0 as t — oo, for sufficiently
large ¢ we can use these estimates in (2.17), to conclude that eventually x(t) is a positive
solution of the differential inequality

(1— e)nP(t)z"(t)

o (0) + ADE(O(L ~ )alt) + o

z(t —mw) < 0. (2.19)

Now, using the transformation
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in (2.19) implies that X (¢) is also an eventually positive solution of the differential inequality

A(s)Z(s)ds) (1 —e)nP(t)z"(t)

Q1) + ()2 X(t —mw) <0. (2.20)
But, then by Corollary 3.2.2 in [7] there exists an eventually positive solution of the delay dif-
ferential equation (2.15) which satisfies that W (t) > X (¢). This contradicts our assumption
that every solution of (2.15) is oscillatory. Hence, every positive solution of (2.1) oscillates
about Z(t). Then Theorem 2.4 implies that every solution of (1.2) oscillates about g(t) if
every solution of (2.15) oscillates. The proof is complete.

X'(t) + exp ((1 - 5)/

t—mw

Remark 2.4. For the oscillation of the delay differential equation (2.15) several known
criteria can be employed. For example, the results given in [7] when applied to (2.15) lead
to the following corollary.

Corollary 2.1. Assume that (hy)—(hy) hold. Then

(1—-¢) htrgiogf /t_ % exp ((1 —€) /i A(n)i(n)dn) ds > %, (2.21)

or

(1 —¢)limsup

t—oo

/t_ % exp ((1 —9) /i A(n)i(n)dn) ds>1, (2.22)

implies that every solution of (2.15) is oscillatory.

Remark 2.5. Clearly, if the strict inequalities hold in (2.21) and (2.22) for € = 0, then
the same must be true for all sufficiently small € > 0 also. Thus, we can restate Corollary
2.1 as follows:

Corollary 2.2. Assume that (hy)—(hy) hold. Then

litrgiorgf /ttmw % exp (/:mw A(n)é(n)dn) ds > é, (2.23)

~/ttmw % exp ((1-2) /:mw A(m)z(n)dn)ds > 1, (2.24)

implies that every solution of (2.15) is oscillatory.

or

Ty = limsup

t—o00

From Theorem 2.4, Theorem 2.5 and Corollary 2.2 the following oscillation criterion for
(1.2) is immediate.

Theorem 2.6. Assume that (hy)—(hy) hold. Then

t

lim inf A(s) exp (/

t—o0 t

A ( TT Q4007 gm)dn)ds > =, (225)

—mw s—mw 0<tr<n
or
t s
limsup/ A(s) exp (/ A(n)( H (1+ bk)_ly(n)) dn)ds > 1, (2.26)
t—oo  Jt—mw s—mw 0<tr<n
where

nP(s) O<1J<t(1+bk)—1g(s>)"

A(s) = —5, (2.27)
(@) +( I a+b)5(s)) )

0<trp<s
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implies that every solution of (1.2) oscillates about g(t).

To show that g(t) is a global attractor of (1.2), we need to prove that Z(t) is a global
attractor of the equation (2.1). To prove this we need to find some upper and lower bounds
for solutions of (2.1) which oscillate about z(t).

Theorem 2.7. Assume that (hy)—(hy) hold, and let z(t) be a positive solution of (2.1)
which oscillates about Z(t). Then, there exists a T such that for all t > T,

P, Prmw
71 = z1€x ([7—A*Z}mw)<zt <zex( ):Z. 2.28
= new (g — A ame) <:0) < new (5 ) =2 @29)
Proof. First we shall show the upper bound in (2.28). For this, let mw < t1 < t2 <
-+ <t < --- be asequence of zeros of z(t) — Z(t) with llim t; = oo. Our strategy is to show

that the upper bound holds in each interval (¢;,¢;11). For this, let {; € (¢;,t1+1) be a point
where z(t) attends its maximum in (¢;,%;41). Then, it suffices to show that

2(¢1) < zpexp (P%mw) = 7. (2.29)

We can assume that there exists a ¢ where z({;) > 22, otherwise there is nothing to prove.
Since 2/((;) = 0, it follows that

P*
Q« + (y(G — mw))

0=2'(¢) < Z(Q)[ — = A2(Q)|

and hence
0< -
Qs + (2(G — mw))
Thus, if z(t) attends its maximum at (;, then it follows (cf. see the proof of Theorem 2.1)

that z(( — mw) < 2. Now, since z({;) > 22 and z({; — mw) < 22, we can let ; to be the
first zero of z(t) — z2 in (¢ — mw, (1), i.e., 2(¢;) = z2. Integrating (2.1) from ¢; to (;, we get

() B G P() ) ]
. 2(G) /cl <Q(t) + (z(t = mw))» A(t) (t))dt

) —P(t)dt</g D g < £
¢

w A*ZQ.

Zl Q(t) 1 —mw Q* Q*
Hence, there exists a Ty such that z(t) < zgexp (P*Q’:W) for all t > T3.

Now, we shall show the lower bound in (2.28) for ¢t > T} + mw. For this, following as
above let y; € (t;,t;+1) be a point where z(t) attends its minimum in (¢;,¢;41). Then, it
suffices to show that

p* *
— " 7 < . .
Z1 = z1exp ({ - v A 2] mw) z(pr) (2.30)
Since, Zs > z9 > z; it follows that
P,
— —AN*Z 0. 2.31
{Q* +Z3 2} = ( )

Thus, Z1 < z1. Now, assume that there exists a p; > T1 + mw where z(y;) < 21, otherwise
there is nothing to prove. Since z'(y;) = 0, we have

P,
Q* + (2(m —mw))

0=2"(u) > z(uz)[ - —A*Z(Mz)}
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and hence
P,

0>
Q* + (2( — mw))"
Thus, it is necessary that z(u; — mw) > z1. Hence, there exists a fi; € (u; — mw, ;) where
z(fi) = z1. Integrating (2.1) from fi; to p, and using z(¢) < Z3 and (2.31), we get

2(m) ™ P(t)
. z(ﬂi) N /m (Q(t) ¥ (2t —mw)" A(t)z(t))dt

Hi P* i P*
> ——— — A" 75| dt > / ———— — A" 75| dt,
L ezl oz

*

—A Z1.

which immediately leads to (2.30).

From Theorem 2.7 and Lemma 2.1, we have the following permanent theorem for every
solution of (1.2) about ().

Theorem 2.8. Assume that (h1)—(hg) hold, and let y(t) be a positive solution of (1.1)
which oscillates about §(t). Then, there exists a T such that for allt > T,

21 H (14 by)exp ([L - A*Zg}mw) <y(t) < 2 H (14 bg)exp (P*mw)

* Z’n
0<trp<t Q"+ 2 0<tp<t

where Zs be as defined in Theorem 2.7.

*

The following result provides sufficient conditions for the global attractivity of F(t).
Theorem 2.9. Assume that (hy)—(hy) hold, and

¢ nP(s)(Z2)" s ™

li _BEVNZ2) Z Aw)du)ds < =, 2.32
i [ @ (7 A < (2.52)

where Z1 and Zy are as in (2.28). Then (2.11) holds for any positive solution y(t) of (1.2).

Proof. Clearly from Lemma 2.1, it suffices to prove that

lim [z(¢) — 2z(¢)] = 0. (2.33)
t—o0
where z(t) = [] (1 + bx)"12(¢) is the unique w-periodic positive solution of (2.1), and
0<tr<t
2(t) = J] (1+bk)"ty(t) is any other positive solution of (2.1). In the nondelay case, we

0<tr<t

have established (2.33) in Theorem 2.1(b), and for the positive solutions of (2.1) which are
nonoscillatory about Z(¢) we have shown (2.33) in Theorem 2.3. Thus, it remains to prove
(2.33) for the positive solutions of (2.1) which oscillate about Z(¢). The transformation (2.6)
transforms (2.1) to the equation (2.12), which can be written as

, ] PO
0+ MO A0 + o D fo(alt = ) = 0 (2:34)
where w1
filuy=e*—1 and folu) = 0O T e
Let .
Gr(tw) = ADZOA () and Galtou) = D gy,



OSCILLATION AND GLOBAL ATTRACTIVITY OF DYNAMICS MODEL 521

Then, we have

oG (t,u) o w 0Gs(t,u)  nP(t)z"(t)e™
Taa S MO0 and —HR = e
The equation (2.34) is the same as
z'(t) + Gi(t, z(t)) — G1(t,0) + Ga(t, z(t — mw)) — Ga(t,0) = 0. (2.35)

Clearly, by the mean value theorem (2.35) can be written as

' (t) + Fi(t)z(t) + Fa(t)z(t — mw) = 0, (2.36)
where
R = Z| A@E0e® = A o)
Ay = 982w _ P M aP) ()"
’ ou lu=em  (Q) + 2" (1)ene®)2 — (Q(F) + (ma(t)™)?

where 71 (t) lies between z(¢) and z(t), and 72(t) lies between z(t) and z(t — mw). Let

x(t) = X (t) exp ( - /Ot Fl(s)ds).

Then, (2.36) can be written as

X'(t) + Fa(t) exp ( /t imw Fl(s)ds)X(t — mw) = 0. (2.37)

From Theorem 2.8, we find

and hence in view of (2.32), we have

t ¢
lim F5(t) exp (/ Fl(s)ds) <Z
t—mw 2

t—o00 t—mw

But, now by the well-known result in [11] every solution of (2.37) satisfies lim X () = 0,

t—o0

and hence tlim [2(t) — Z(t)] = 0. The proof is complete.

8§ 3. Conclusion

We conclude with some remarks related to the literature on mathematical model sys-
tems with delays in production component of models and dynamical diseases. Many human
diseases are characterized by changes in the qualitative behavior of physiological control
mechanism. Systems which normally and regularly oscillate can stop oscillating or systems
which do not normally oscillate can start oscillating. Such changes in the qualitative dy-
namics can be sudden and one of the mechanisms used to describe such onset of changes is
by means of bifurcations. One of the necessary conditions for dynamical systems to have
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potential for complicated behavior, is that the system is oscillatory. A major part of the
literature deals with either a linear analysis of systems or computer simulations, we have
however carried out a full nonlinear analysis and our conclusions are valid beyond the local
approximations based on linearizations. While the existence of periodic solutions in delay
differential equations has been established by means of mechanism of a Hopf bifurcation,
the stability of the bifurcating periodic solution has been rarely investigated.

Our emphasis in this paper has been on a different aspect dealing with the dynamics of
the respiratory dynamics model with periodic coefficients and impulsive effect. In Theorem
2.6, we have derived some sufficient conditions for the prevalence of a dynamic disease,
which insure the existence of the change of the concentration of CO; in the blood around
the positive periodic solution which is equivalent to the minimum capacity in the autonomous
case. In Theorem 2.8, we have established the maximum and the minimum concentration of
COs in the blood. In Theorem 2.9, we have derived sufficient conditions for the nonexistence
of dynamic diseases, which are the conditions for the global attractivity of the positive
periodic solution for all the solutions.
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