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Abstract

This gives some identities of associative Lie superalgebras and some properties of
modular Lie superalgebras. Furthermore, the primary decomposition theorem of mod-
ular Lie superalgebras is shown. It is well known that the primary decomposition
theorem of modular Lie algebras has played an important role in the classification of
the finite-dimensional simple modular Lie algebras (see [5, 6]). Analogously, the pri-
mary decomposition theorem of modular Lie superalgebras may play an important role
in the open classification of the finite dimensional simple modular Lie superalgebras.
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§ 1 . Introduction

L = L0̄

⊕
L1̄ is called a superalgebra by physicists if [a, b] ∈ Lα+β for any a ∈ Lα,

b ∈ Lβ, α, β ∈ Z2 = {0̄, 1̄}. L is called a Lie superalgebra if L is a superalgebra with the
operation [ , ] satisfying the following axioms:

(1) [a, b] = −(−1)αβ [b, a] (graded skew-symmetry),
(2) [a, [b, c]] = [[a, b], c] + (−1)αβ [b, [a, c]] (graded Jacobi identity),

for all a ∈ Lα, b ∈ Lβ, c ∈ L, α, β ∈ Z2 = {0̄, 1̄}.
Lie superalgebras are frequently called Z2-graded Lie algebras by physicists (see [3, 11]).

L1̄ is an L0̄-module. L0̄ is an ordinary Lie algebra. Generally speaking, Lie superalgebras
are not Lie algebras. Moreover, many important features of Lie algebras are not necessarily
true for Lie superalgebras (see [3]). For instance, Lie’s theorem and Levi’s theorem of Lie
algebras are not true, in general, for Lie superalgebras. In addition, it is well known that a
semisimple Lie algebra is a direct sum of simple ones, but this is by no means true for Lie
superalgebras.

In the 1950s A. Nijenhuis gave an example of Lie superalgebras. As a natural generaliza-
tion of Lie algebras, Lie superalgebras become an efficient tools for analyzing the properties
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of physical systems (see [13, 15]), shortly after they are defined in an abstract way. Con-
crete applications comprise the formulation of supersymmetries of Hamiltonian systems, the
description of atomic, molecular and nuclear spectra, particle physics, unified field theory
and many others. Lie superalgebras are also interesting from a purely mathmatical point of
view, and their enveloping algebras provide various rich classes of associative algebras.

During the last fifty years, the theory of Lie superalgebras has undergone a remarkable
evolution in mathmatics. The study of Lie superalgebras mainly contains classifications,
structures and representations. At present the most important results in the theory seem
to be the classification by V. G. Kac and S. J. Cheng of finite-dimensional and infinite-
dimensional simple Lie superalgebras over an algebraically closed field of characteristic zero
(see [2, 3, 9, 10]), the Classification by V. G. Kac and M. Wakimoto of modular invariant
representations of affine superalgebras (see [4]) and the classification by V. G. Kac of infinite-
dimensional simple linearly compact Lie superalgebras (see [8]).

In last ten years, many important results of modular Lie superalgebras also have been
obtained (see [19–23]). Now the complete classification of the finite-dimensional modular
simple Lie superalgebras remains an open problem. It is well known that the primary decom-
position theorem of modular Lie algebras has played an important role in the classification
of the finite-dimensional simple modular Lie algebras (see [5, 6]). In the present paper,
we give some identities of associative Lie superalgebras and some properties of modular
Lie superalgebras. Furthermore, we obtain the primary decomposition theorem of modu-
lar Lie superalgebras, which may play an important role in the open classification of the
finite-dimensional simple modular Lie superalgebras.

Throughout this thesis, let all spaces and all algebras be finite-dimensional over a field
F of positive characteristic p ≥ 3. Our notation and terminology are standard as may be
found in [3, 11] .

§ 2 . Main Results

Let A = A0̄

⊕
A1̄ be an associative Lie superalgebra over F, and define a multiplication

on A by [a, b] := ab− (−1)αβba, where a ∈ Aα, b ∈ Aβ , α, β ∈ Z2 = {0̄, 1̄}. The product [a, b]
is referred to as the commutator of a and b and the Lie superalgebra (A, [ , ]) is denoted by
A−. We always let α, β, γ ∈ Z2 = {0̄, 1̄}.

Lemma 2.1. Let A = A0̄

⊕
A1̄ be an associative Lie superalgebra over F. Then the

following identities hold in A−.
(1) [xy, z] = (−1)βγ [x, z]y + x[y, z], ∀x ∈ Aα, ∀ y ∈ Aβ , ∀ z ∈ Aγ ;
(2) [x2, y] = (adx2)(y) = (adx)2(y), ∀x ∈ A1̄, ∀ y ∈ Aβ ;

(3) [xm, y] =
m−1∑
i=0

(−1)αβ(m+i−1)xi[x, y]xm−1−i, ∀x ∈ Aα, ∀ y ∈ Aβ .

Proof. (1) We have [xy, z] = xyz − (−1)γ(α+β)zxy and

(−1)βγ [x, z]y + x[y, z] = (−1)βγxzy − (−1)(βγ+αγ)zxy + xyz − (−1)βγxzy

= xyz − (−1)γ(α+β)zxy.
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So [xy, z] = (−1)βγ [x, z]y + x[y, z].
(2) For ∀x ∈ A1̄, ∀ y ∈ Aβ , by Lemma 2.1(1) we have

[x2, y] = x[x, y] + (−1)β [x, y]x = [x, [x, y]] = (adx)2(y).

(3) It will be proved by induction on m.
For the case m = 1, we have

1−1∑
i=0

(−1)αβ(1+i−1)xi[x, y]x1−1−i = [x, y],

i.e., the identity is true for m = 1.
Suppose that the identity is true for the case m, i.e.,

[xm, y] =
m−1∑
i=0

(−1)αβ(m+i−1)xi[x, y]xm−1−i.

For the case m + 1, by Lemma 2.1(1) we obtain

[xm+1, y] = xm[x, y] + (−1)αβ[xm, y]x

= xm[x, y] + (−1)αβ
( m−1∑

i=0

(−1)αβ(m+i−1)xi[x, y]xm−1−i
)
x

= (−1)αβ(m+m)xm[x, y] +
m−1∑
i=0

(−1)αβ(m+i)xi[x, y]xm−i

=
m∑

i=0

(−1)αβ(m+i)xi[x, y]xm−i.

Hence the identity holds for every m ∈ N .

Lemma 2.2. Let A = A0̄

⊕
A1̄ be an associative Lie superalgebra over F. Then the

following identities hold in A−.

(1) yxk =
k∑

i=0

(−1)k−iCi
kxi(adx)k−i(y), ∀x ∈ A0̄, y ∈ Aβ ;

(2) xky =
k∑

i=0

Ci
k(adx)i(y)xk−i, ∀x ∈ A0̄, y ∈ Aβ ;

(3) yx2k =
k∑

i=0

(−1)iCi
kx2k−2i(adx)2i(y), ∀x ∈ A1̄, ∀ y ∈ Aβ ;

(4) x2ky =
k∑

i=0

Ci
k(adx)2k−2i(y)x2i, ∀x ∈ A1̄, ∀ y ∈ Aβ.

Proof. (1) and (2) can be proved by induction on k.
(3) If x ∈ A1̄, then x2 ∈ A0̄. By Lemma 2.1(2) and Lemma 2.2(1), we have

yx2k = y(x2)k =
k∑

i=0

(−1)k−iCi
k(x2)i(adx2)k−i(y)
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=
k∑

i=0

(−1)k−iCi
kx2i(adx)2k−2i(y) =

k∑
i=0

(−1)iCi
kx2k−2i(adx)2i(y).

Hence yx2k =
k∑

i=0

(−1)iCi
kx2k−2i(adx)2i(y), ∀x ∈ A1̄, ∀ y ∈ Aβ .

(4) If x ∈ A1̄, then x2 ∈ A0̄. By Lemma 2.1(2) and Lemma 2.2(2), we have

x2ky = (x2)ky =
k∑

i=0

Ci
k(adx2)i(y)(x2)k−i

=
k∑

i=0

Ci
k(adx)2i(y)x2k−2i =

k∑
i=0

Ci
k(adx)2k−2i(y)x2i.

Hence x2ky =
k∑

i=0

Ci
k(adx)2k−2i(y)x2i, ∀x ∈ A1̄, ∀ y ∈ Aβ .

Lemma 2.3. (see [21]) Let A = A0̄

⊕
A1̄ be an associative Lie superalgebra over F.

Then the following identities hold in A−.

(1) (adx)k(y) =
k∑

i=0

(−1)k−iCi
kxiyxk−i, ∀x ∈ A0̄, ∀ y ∈ Aβ ;

(2) (adx)2k(y) =
k∑

i=0

(−1)k−iCi
kx2iyx2k−2i, ∀x ∈ A1̄, ∀ y ∈ Aβ ;

(3) (adx)2k−1(y) =
2k−1∑
i=0

(−1)tiC
[i/2]
k−1 xiyx2k−1−i, ∀x ∈ A1̄, ∀ y ∈ Aβ ,

where ti = (1 + i)(1 + β) + (k − 1) + i(i − 1)/2, [i/2] denotes the integer part of i/2.

Theorem 2.1. Let Pl(V ) be the general linear Lie superalgebra of a finite-dimensional
Z2-graded vector space V over F. Suppose that there exist positive integers m and n such
that (adA)m(B) = 0 and An(x) = 0, where A ∈ Pl(V )α, B ∈ Pl(V )β , x ∈ V. Then
A(adA)m−1(B)An−1(x) = 0.

Proof. Case I. α = 0̄
By Lemma 2.3(1), we have

0 = (adA)m(B) =
m∑

i=0

(−1)m−iCi
mAiBAm−i = AmB +

m−1∑
i=0

(−1)m−iCi
mAiBAm−i.

Then AmB = −
m−1∑
i=0

(−1)m−iCi
mAiBAm−i.

Using Lemma 2.3(1), we obtain

A(adA)m−1(B)An−1(x) = A
( m−1∑

i=0

(−1)m−1−iCi
m−1A

iBAm−1−i
)
An−1(x)

= A
(
Am−1B +

m−2∑
i=0

(−1)m−1−iCi
m−1A

iBAm−1−i
)
An−1(x)

= (AmB)An−1(x) +
m−2∑
i=0

(−1)m−1−iCi
m−1A

i+1BAm+n−2−i(x)
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=
(
−

m−1∑
i=0

(−1)m−iCi
mAiBAm−i

)
An−1(x) +

m−2∑
i=0

(−1)m−1−iCi
m−1A

i+1BAm+n−2−i(x)

= −
m−1∑
i=0

(−1)m−iCi
mAiBAm+n−1−i(x) +

m−2∑
i=0

(−1)m−1−iCi
m−1A

i+1BAm+n−2−i(x).

Since An(x) = 0, we obtain

m−1∑
i=0

(−1)m−iCi
mAiBAm+n−1−i(x) = 0,

m−2∑
i=0

(−1)m−1−iCi
m−1A

i+1BAm+n−2−i(x) = 0.

So A(adA)m−1(B)An−1(x) = 0.

Case II. α = 1̄ and m = 2k

By Lemma 2.3(2), we have

0 = (adA)m(B) = (adA)2k(B) =
k∑

i=0

(−1)k−iCi
kA2iBA2k−2i

= A2kB +
k−1∑
i=0

(−1)k−iCi
kA2iBA2k−2i.

Then A2kB = −
k−1∑
i=0

(−1)k−iCi
kA2iBA2k−2i.

Using Lemma 2.3(3), we obtain

(adA)m−1(B) = (adA)2k−1(B) =
2k−1∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i,

where ti = (1 + i)(1 + β) + (k − 1) + i(i − 1)/2, [i/2] denotes the integer part of i/2.
Using Lemma 2.3(2), we obtain

A(adA)m−1(B)An−1(x) = A
( 2k−1∑

i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i

)
An−1(x)

= (A2kB)An−1(x) +
2k−2∑
i=0

(−1)tiC
[i/2]
k−1 Ai+1BA2k+n−2−i(x)

= −
( k−1∑

i=0

(−1)k−iCi
kA2iBA2k−2i

)
An−1(x) +

2k−2∑
i=0

(−1)tiC
[i/2]
k−1 Ai+1BA2k+n−2−i(x)

= −
k−1∑
i=0

(−1)k−iCi
kA2iBA2k+n−1−2i(x) +

2k−2∑
i=0

(−1)tiC
[i/2]
k−1 Ai+1BA2k+n−2−i(x).

Since An(x) = 0, we obtain

k−1∑
i=0

(−1)k−iCi
kA2iBA2k+n−1−2i(x) = 0,

2k−2∑
i=0

(−1)tiC
[i/2]
k−1 Ai+1BA2k+n−2−i(x) = 0.

So A(adA)m−1(B)An−1(x) = 0.



528 CHEN, L. Y. & MENG, D. J.

Case III. α = 1̄ and m = 2k − 1
By Lemma 2.3(3), we have

0 = (adA)m(B) = (adA)2k−1(B) =
2k−1∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i

= A2k−1B +
2k−2∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i,

where ti = (1 + i)(1 + β) + (k − 1) + i(i − 1)/2, [i/2] denotes the integer part of i/2.

Then A2k−1B = −
2k−2∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i.

Using Lemma 2.3(2), we obtain

(adA)m−1(B) = (adA)2k−2(B) =
k−1∑
i=0

(−1)k−1−iCi
k−1A

2iBA2k−2−2i.

Then

A(adA)m−1(B)An−1(x) = A
( k−1∑

i=0

(−1)k−1−iCi
k−1A

2iBA2k−2−2i
)
An−1(x)

= A
(
A2k−2B +

k−2∑
i=0

(−1)k−1−iCi
k−1A

2iBA2k−2−2i
)
An−1(x)

= (A2k−1B)An−1(x) +
k−2∑
i=0

(−1)k−1−iCi
k−1A

2i+1BA2k+n−3−2i(x)

=
(
−

2k−2∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i

)
An−1(x) +

k−2∑
i=0

(−1)k−1−iCi
k−1A

2i+1BA2k+n−3−2i(x).

Since An(x) = 0, we have

(
−

2k−2∑
i=0

(−1)tiC
[i/2]
k−1 AiBA2k−1−i

)
An−1(x) = 0,

k−2∑
i=0

(−1)k−1−iCi
k−1A

2i+1BA2k+n−3−2i(x) = 0.

Hence A(adA)m−1(B)An−1(x) = 0.

Theorem 2.2. Let Pl(V ) be the general linear Lie superalgebra of a finite-dimensional
Z2-graded vector space V over F. Suppose that there exists a positive integer m such that

(adA)m(B) = 0, where V0A = {x ∈ V |Ai(x) = 0, ∃i ∈ N}, V1A =
∞⋂

i=1

AiV , A ∈ Pl(V )α, B ∈
Pl(V )β. Then the Fitting components V0A, V1A of V relative to A are invariant under B.

Proof. We have V ⊇ A(V ) ⊇ A2(V ) ⊇ · · · . Then there is r such that Ar(V ) =
Ar+1(V ) = · · · = V1A since V is finite-dimensional. Let Wi = {v ∈ V | Ai(v) = 0}.
Then W1 ⊆ W2 ⊆ · · · . So there is s such that Ws+1 = Ws+2 = · · · = V0A since V is
finite-dimensional. Let t = max(r, s). Then Wt = V0A and V1A = At(V ).
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Let x ∈ V . Then At(x) = A2t(y) for some y since At(V ) = A2t(V ). Then x =
(x − At(y)) + At(y) and At(y) ∈ V1A, while At(x − At(y)) = 0, so (x − At(y)) ∈ V0A.
Hence V = V0A + V1A. Let z ∈ V0A ∩ V1A. Then there is w ∈ V such that z = At(w)
and 0 = At(z) = A2t(w). So we have w ∈ V0A = Wt and At(w) = 0. Hence z = 0 and
V0A ∩ V1A = {0}. Thus V = V0A+̇ V1A.

Case I. Let x ∈ V0A. There exists n ∈ N such that An(x) = 0, and let k = m + n − 1.
We consider three cases.

Case i. If A, B ∈ Pl(V )0̄, then we have the following identity since (adA)m(B) = 0 and
An(x) = 0 by Lemma 2.2(2):

AkB(x) =
k∑

i=0

Ci
k(adA)i(B)Ak−i(x) =

m+n−1∑
i=0

Ci
m+n−1(adA)i(B)Am+n−1−i(x)

=
m−1∑
i=0

Ci
m+n−1(adA)i(B)Am+n−1−i(x) +

m+n−1∑
i=m

Ci
m+n−1(adA)i(B)Am+n−1−i(x)

= 0.

So B(x) ∈ V0A.

Case ii. Let [i/2] denote the integer part of i/2. If A ∈ Pl(V )1̄, B ∈ Pl(V )β and k = 2k1,
then we have the following identity since (adA)m(B) = 0 and An(x) = 0 by Lemma 2.2(4):

AkBx = A2k1B(x) =
k1∑

i=0

Ci
k1

(adA)2k1−2i(B)A2i(x)

=
[(n+1)/2]−1∑

i=0

Ci
k1

(adA)2k1−2i(B)A2i(x) +
k1∑

i=[(n+1)/2]

Ci
k1

(adA)2k1−2i(B)A2i(x)

= 0.

So B(x) ∈ V0A.

Case iii. If A ∈ Pl(V )1̄, B ∈ Pl(V )β and k = 2k1 + 1 = m + n − 1, then we have the
following identity since (adA)m(B) = 0 and An(x) = 0 by Lemma 2.2(4):

AkBx = A2k1+1B(x) = A
( k1∑

i=0

Ci
k1

(adA)2k1−2i(B)A2i(x)
)

=
( k1∑

i=0

Ci
k1

A(adA)2k1−2i(B)A2i
)
(x).

Since 2k1 + 1 = m + n − 1, both m and n are odd or even.
If m and n are even, then we have

AkB(x) = A2k1+1B(x)

=
( n/2−1∑

i=0

Ci
k1

A(adA)2k1−2i(B)A2i
)
(x) +

( k1∑
i=n/2

Ci
k1

A(adA)2k1−2i(B)A2i
)
(x)

= 0.



530 CHEN, L. Y. & MENG, D. J.

If m and n are odd, then we have

AkB(x) = A2k1+1B(x)

=
( (n+1)/2−2∑

i=0

Ci
k1

A(adA)2k1−2i(B)A2i
)
(x)

+
( k1∑

i=(n+1)/2

Ci
k1

A(adA)2k1−2i(B)A2i
)
(x)

+ C
(n+1)/2−1
k1

A(adA)m−1(B)An−1(x)

= C
(n+1)/2−1
k1

A(adA)m−1(B)An−1(x).

By virtue of Theorem 2.1, we have A(adA)m−1(B)An−1(x) = 0.

Then AkB(x) = 0. So B(x) ∈ V0A.

Case II. Next let x ∈ V1A. If t is the integer used in the above proof, then we can write
x = At+m−1(y). So B(x) = BAt+m−1(y). We consider three cases.

Case i. If A, B ∈ Pl(V )0̄, then we have the following identity since (adA)m(B) = 0 by
Lemma 2.2(1):

B(x) = BAt+m−1(y)

=
t+m−1∑

i=0

(−1)t+m−1−iCi
t+m−1A

i(adA)t+m−1−i(B)(y)

=
t+m−1∑

i=t

(−1)t+m−1−iCi
t+m−1A

i(adA)t+m−1−i(B)(y) ∈ At(V ) = V1A.

Case ii. If A ∈ Pl(V )1̄, B ∈ Pl(V )β and t + m − 1 = 2k1, then we have the following
identity by Lemma 2.2(3):

B(x) = BAt+m−1(y) = BA2k1 (y) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y).

If m is an even number, then there exists k2 ∈ N such that m = 2k2. Since (adA)m(B) =
(adA)2k2(B) = 0, we have

B(x) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y) +
k1∑

i=k2

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y) ∈ At(V ) = V1A.
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If m is an odd number, then there exists k2 ∈ N such that m = 2k2 +1. Since (adA)m(B) =
(adA)2k2+1(B) = 0, we have

B(x) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y)

=
k2∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y) +
k1∑

i=k2+1

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y)

=
k2∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)(y) ∈ At(V ) = V1A.

Hence B(V1A) ⊆ V1A.

Case iii. If A ∈ Pl(V )1̄, B ∈ Pl(V )β and t+m−1 = 2k1 +1, then we have the following
identity by Lemma 2.2(3):

B(x) = BAt+m−1(y) = (BA2k1)A(y) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y).

If m is an even number, then there exists k2 ∈ N such that m = 2k2. Since (adA)m(B) =
(adA)2k2(B) = 0, we have

B(x) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) +
k1∑

i=k2

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) ∈ At(V ) = V1A.

If m is an odd number, then there exists k2 ∈ N such that m = 2k2 + 1.
Since (adA)m(B) = (adA)2k2+1(B) = 0, we have

B(x) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) + (−1)k2Ck2
k1

A2k1−2k2(adA)2k2(B)A(y)

+
k1∑

i=k2+1

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) + (−1)k2Ck2
k1

At−1(adA)m−1(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

At+(2k2−1)−2i(adA)2i(B)A(y) + (−1)k2Ck2
k1

At−1(adA)m−1(B)A(y).
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By means of Lemma 2.3(3) and (adA)m(B) = (adA)2k2+1(B) = 0, we have

0 = (adA)m(B) = (adA)2k2+1(B) =
2k2+1∑

i=0

(−1)tiC
[i/2]
k2

AiBA2k2+1−i

= (−1)1+k2+βBA2k2+1 +
2k2+1∑

i=1

(−1)tiC
[i/2]
k2

AiBA2k2+1−i,

where ti = (1 + i)(1 + β)+ k2 + i(i− 1)/2, [i/2] denotes the integer part of i/2, B ∈ Pl(V )β .
Then

BA2k2+1 =
2k2+1∑

i=1

(−1)ti+k2+βC
[i/2]
k2

AiBA2k2+1−i,

At−1BA2k2+1(y) = At−1(BA2k2+1)(y)

= At−1
( 2k2+1∑

i=1

(−1)ti+k2+βC
[i/2]
k2

AiBA2k2+1−i
)
(y)

=
2k2+1∑

i=1

(−1)ti+k2+βC
[i/2]
k2

Ai+t−1BA2k2+1−i(y)

=
2k2+1∑

i=1

(−1)ti+k2+βC
[i/2]
k2

Ai+t−1(BA2k2+1−i(y)) ∈ At(V ) = V1A.

By Lemma 2.3(2), we obtain

(−1)k2Ck2
k1

At−1(adA)m−1(B)A(y) = (−1)k2Ck2
k1

At−1((adA)2k2(B))A(y)

= (−1)k2Ck2
k1

At−1
( k2∑

i=0

(−1)k2−iCi
k2

A2iBA2k2−2i
)
A(y)

= (−1)k2Ck2
k1

At−1BA2k2A(y) + Ck2
k1

At−1
( k2∑

i=1

(−1)2k2−iCi
k2

A2iBA2k2−2iA(y)
)

= (−1)k2Ck2
k1

At−1BA2k2+1(y) +
k2∑

i=1

(−1)2k2−iCk2
k1

Ci
k2

A2i+t−1BA2k2−2iA(y)

= (−1)k2Ck2
k1

At−1
( 2k2+1∑

i=1

(−1)ti+k2+βC
[i/2]
k2

AiBA2k2+1−i
)
(y)

+
k2∑

i=1

(−1)2k2−iCk2
k1

Ci
k2

A2i+t−1BA2k2−2iA(y)

=
2k2+1∑

i=1

(−1)ti+2k2+βCk2
k1

C
[i/2]
k2

At+i−1BA2k2+1−i(y)

+
k2∑

i=1

(−1)2k2−iCk2
k1

Ci
k2

A2i+t−1BA2k2−2iA(y) ∈ At(V ) = V1A.
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Hence

B(x) =
k1∑

i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) + (−1)k2Ck2
k1

At−1(adA)m−1(B)A(y)

+
k1∑

i=k2+1

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

A2k1−2i(adA)2i(B)A(y) + (−1)k2Ck2
k1

At−1(adA)m−1(B)A(y)

=
k2−1∑
i=0

(−1)iCi
k1

At+(2k2−1)−2i(adA)2i(B)A(y)

+ (−1)k2Ck2
k1

At−1(adA)m−1(B)A(y) ∈ At(V ) = V1A.

Then B(V1A) ⊆ V1A. Thus the Fitting components V0A, V1A of V relative to A are invariant
under B.

Theorem 2.3. Let Pl(V ) be the general linear Lie superalgebra of a finite-dimensional
Z2-graded vector space V over F. Suppose that there exists a positive integer m such that
(adA)m(B) = 0, where A ∈ Pl(V )α, B ∈ Pl(V )β. Assume that P ∈ F [X ] is a polynomial.
Then V (P (A)) = {x ∈ V | ∃k ∈ N, (P (A))k(x) = 0} is invariant under B.

Proof. Note that {x ∈ V | ∃k ∈ N, (P (A))k(x) = 0} = {x ∈ V | ∃n ∈ N, (P (A))2np(x)
= 0}. It suffices to verify that V (P (A)) = {x ∈ V | ∃n ∈ N, (P (A))2np(x) = 0} is invariant
under B.

We shall use induction on m. For the case m = 1, i.e., [A, B] = 0. We have AB =
(−1)αβBA. We readily conclude that A2iB = BA2i for every i ∈ N .

Let P0(A) =
k0∑

i=0

aiA
2i, P1(A) =

k1∑
i=0

biA
2i+1, ai, bi ∈ F, k0, k1 ∈ N0. Then there exist

P0(A) and P1(A) such that P (A) = P0(A) + P1(A) for any P (A). Since F is characteristic
p, we have (P (A))2np = [P0(A) + P1(A)]2np = (P0(A))2np + (P1(A))2np.

By virtue of A2iB = BA2i for every i ∈ N , we have

P (A)2npB = (P0(A))2npB + (P1(A))2npB =
( k0∑

i=0

aiA
2i

)2np

B +
( k1∑

i=0

biA
2i+1

)2np

B

=
k0∑

i=0

a2np
i A4npiB +

k1∑
i=0

b2np
i A4npi+2npB = B

( k0∑
i=0

a2np
i A4npi

)
+ B

( k1∑
i=0

b2np
i A4npi+2np

)

= B(P0(A))2np + B(P1(A))2np = B(P (A))2np.

If x is an element of V (P (A)), then for a suitable n we obtain

(P (A))2npB(x) = B(P (A))2np(x) = 0,
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which qualifies B(x) as an element of V (P (A)).
For the case m > 1, we have

0 = (adA)m(B) = (adA)m−1(adA(B)) = (adA)m−1([A, B]).

The inductive hypothesis yields [A, B](V (P (A))) ⊆ V (P (A)).
If v ∈ V (P (A)), then (P (A))kA(v) = A(P (A))k(v) = 0.
So V (P (A)) is A-invariant. Using Lemma 2.1(3), we see that the following statement

holds for any t ∈ N :

[At, B](V (P (A))) ⊆
t−1∑
i=0

(−1)αβ(t+i−1)Ai[A, B]At−1−i(V (P (A))) ⊆ V (P (A)).

Let x ∈ V (P (A)) and (P (A))2np(x) = 0. By [At, B](V (P (A))) ⊆ V (P (A)) for any t ∈ N

and Lemma 2.1(2), we have

(P (A))2np(B(x)) = [(P (A))2np, B](x) + B((P (A))2np(x)) = [(P (A))2np, B](x) ∈ V (P (A)).

Consequently, we can choose some s ∈ N such that

0 = (P (A))2ps(P (A))2np(B(x)) = (P (A))2np+2ps(B(x)).

Thus B(x) ∈ V (P (A)) and V (P (A)) = {x ∈ V | ∃k ∈ N, (P (A))k(x) = 0} is invariant
under B.

Let H be a Lie superalgebra and V be a finite-dimensional Z2-graded vector space over F,
and let ρ : H → Pl(V ) be a graded representation of H and let π : H → F [X ], h 
−→ πh be
a mapping. Then we define Vπ := {x ∈ V | ∀h ∈ H, ∃n(h, x) ∈ N : (πh(ρ(h)))n(h,x)(x) = 0}.

Lemma 2.4. Let f be an endomorphism of a finite-dimensional Z2-graded vector space
V over F and let X be a polynomial such that X(f) = 0. Then the following statements
hold:

(1) If X = q1 · q2 and q1, q2 are relatively prime, then V decomposes into a direct sum of
f -invariant subspace V = U

⊕
W such that q1(f)(U) = q2(f)(W ) = {0}.

(2) V decomposes into a direct sum of f -invariant subspaces V = V0

⊕
V1, for which

f |V0 is nilpotent and f |V1 is invertible.

Proof. It is similar to Lemma 3.8 (see [18, p.22]).

Remark 2.1. (1) Note that in the case where V is finite-dimensional we may choose X

to be the characteristic polynomial of f . The decomposition of (2) of Lemma 2.4 is called
the Fitting decomposition with respect to f . V0 and V1 are referred to as the Fitting-0 and
Fitting-1 components of V , respectively.

(2) Let L be a finite-dimensional Lie superalgebra over F. Let A =
∞⋂

i=1

adai(L) and

B =
∞⋃

i=1

Bi where Bi = {x ∈ L | adai(x) = 0} for all a ∈ L and i ∈ N . Then A = [a, A] and

(ada)n(B) = {0} for some n ∈ N because of the finite dimensionality of L. Thus L = A
⊕

B

by Lemma 2.4.
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Theorem 2.4. (Primary Decomposition Theorem) Let H be a nilpotent Lie superalgebra
and V be a finite-dimensional Z2-graded vector space over F. Let ρ : H → Pl(V ) be a finite-
dimensional graded representation. Then there exists a finite set S ⊂ Map(H, F [X ]) such
that

(1) πh is irreducible for all π ∈ S, h ∈ H;
(2) Vπ is an H-submodule for all π ∈ S;
(3) V =

⊕
π∈S

Vπ .

Proof. We shall use induction on dimFV . If V is one-dimensional, then V = Fv.
Let ρ : H → Pl(V ), ρ(h)v = α(h)v, α(h) ∈ F. For all w = βv ∈ FV, β ∈ F, we have
ρ(h)w = ρ(h)(βv) = βρ(h)v = βα(h)v = α(h)w. So ρ(h) = α(h)idV . Define πh := X −α(h)
for all h ∈ H. Then V = Vπ holds.

Suppose that dimFV ≥ 2. For every h ∈ H , let Xh denote the characteristic polynomial
of ρ(h). If Xh is a prime power for all h ∈ H , for example, Xh = (πh)n, πh is prime,
then we obtain V = Vπ . Otherwise, there is an element h0 ∈ H such that Xh0 = q1 · q2,
where q1 and q2 are nonconstant and have the greatest common divisor 1. Lemma 2.4
yields a decomposition V = U

⊕
W such that q1(ρ(h))(U) = q2(ρ(h))(W ) = {0}. Note

that U, W �= {0}. According to Theorem 2.3, U and W are H-submodules of V and the
induction hypothesis gives rise to two finite sets S1, S2 ∈ Map(H, P [X ]) such that

U =
⊕
π∈S1

Uπ, W =
⊕
π∈S2

Wπ.

For π ∈ S1

⋃
S2, we have Vπ = Uπ

⊕
Wπ. Then V =

⊕
π∈S1

�
S2

Vπ is the desired decomposi-

tion of V .

Remark 2.2. The primary decomposition is particularly important in case the base
field F is algebraically closed. Then every function π fulfilling the condition (1) of Theorem
2.4 is of the form πh = X−γ(h), γ(h) ∈ F. It is customary to write the corresponding space
Vγ := {x ∈ V | ∃n(h, x) ∈ N : (ρ(h) − γ(h)idV )n(h,x) = 0}. The mapping γ : H → F is
called a weight and Vγ the weight space if Vγ �= 0. With this notion, we have the following
corollary.

Corollary 2.1. Let ρ : H → Pl(V ) be a finite-dimensional graded representation of
nilpotent Lie superalgebra H and let F be algebraically closed. Then V is the direct sum of
its weight spaces V =

⊕
γ

Vγ .

Theorem 2.5. Let T be a nilpotent Lie superalgebra over F. Then any T -invariant
subspace W ⊆ L decomposes W = CW (T ) + [T, W ].

Proof. The adjoint graded representation gives W the structure of a T -module. Accord-
ing to Theorem 2.4, we may write W =

⊕
π∈S

Wπ. Let π0 be the function with π0h = x, ∀h ∈ T .

Then Wπ0 ⊆ CW (T ) and [T, Wπ] = Wπ , ∀π �= π0. Hence W = CW (T ) + [T, W ].

Acknowledgement. The first author would like to take the opportunity to express his
deep gratitude to Professor Yongzheng Zhang for all of his help and encouragement.



536 CHEN, L. Y. & MENG, D. J.

References

[ 1 ] Kac, V. G., The classification of the simple Lie algebras over a field with nonzero characterisitic, Izv.
Akad. Nauk SSSR Ser. Mat., 34(1970), 385–408.

[ 2 ] Cheng, S. J. & Kac, V. G., Generalized Spencer cohomology and filtered deformations of Z2-graded
Lie superalgebras, Adv. Theor. Math. Phys., 2(1998), 1141–1182.

[ 3 ] Kac, V. G., Lie superalgebras, Adv. Math., 26(1977), 8–96.

[ 4 ] Kac, V. G. & Wakimoto, M., Classification of modular invariant representations of affine superalgebras,
in Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phy., Vol. 7, World Scientific, 1989,
138–177.

[ 5 ] Block, R. E. & Wilson, R. I., Classification of restricted simple Lie algebras, J. Algebra, 114(1988),
115–259.

[ 6 ] Strade, H., The classification of the simple modular Lie algebras, Ann. of Math., 133:2(1991), 577–604.

[ 7 ] Kac, V. G., Modular invariance in mathematics and physics, in Mathematics into the 21st Century,
AMS Centennial Publ., 1992, 337–350.

[ 8 ] Kac, V. G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math.,
139(1998), 1–55.

[ 9 ] Cheng, S. J. & Kac, V. G., Structure of some Z2-graded Lie superalgebras of vector fields, Transfor-
mation Groups, 4(1999), 219–272.

[10] Kac, V. G., Classification of supersymmetries, ICM., Vol. I, 2002, 319–344.

[11] Scheunert, M., The Theory of Lie Superalgebras, Berlin, Heidelbeg, New York, 1979, 270.

[12] Jeong, K., Crystal bases for Kac-Moody superalgebras, J. of Algebra, 237(2001), 562–590.

[13] Corwin, L., Neeman, Y. & Sternberg, S., Graded Lie algebras in mathematics and physics, Rev. Mod.
Phy., 47(1975), 573–604.

[14] Sun, H. Z. & Han, Q. Z., A survey of Lie superalgebras (in Chinese), Progress in Physics, 391(1983),
81–125.

[15] Sun, H. Z. & Han, Q. Z., Lie Algebras and Lie Superalgebras and Their Applications in Physics (in
Chinese), Peking University Press, 1999, 1–445.

[16] Jacobson, N., Lie Algebras, Interscience, New York, 1962.

[17] Seligman, G. B., Modular Lie Algebras, Springer-Verlag, Berlin, Heidelbeg, New York, 1967.

[18] Strade, H. & Farsteiner, R., Modular Lie Algebras and Their Representations, Marcel Dekker. Inc.,
New York, 1988.

[19] Zhang, Y. Z., Z-graded module of Lie superalgebras H(n) of Cartan type, Chinese Science Bulletin,
41:10(1996), 813–817.

[20] Zhang, Y. Z., Finite-dimensional Lie superalgebras of Cartan-type over field of prime characterisitic,
Chinese Science Bulletin, 42(1997), 720–724.

[21] Wang, Y. & Zhang, Y. Z., The new definition of restricted Lie superalgebras, Chinese Science Bulletin,
44(1999), 807–813.

[22] Wang, Y., Modular Lie superalgebras and representations, Dissertation, Harbin Institute of Technology
University, 1999.

[23] Zhang, Y. Z., Finite-dimensional Hamitonian Lie superalgebras, Communications in Algebra, 30(2002),
2651–2674.

[24] Jiang, C. P. & Meng, D. J., Some complete Lie algebras, J. of Algebra, 186(1996), 807–817.

[25] Jiang, C. P. & Meng, D. J., Vertex representations for v + 1-toroidal Lie algebras, J. of Algebra,
246(2001), 564–593.


