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THE DISTANCE BETWEEN DIFFERENT

COMPONENTS OF THE UNIVERSAL
TEICHMULLER SPACE∗∗
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Abstract

The model of the universal Teichmuller space by the derivatives of logarithm is the
union of infinite disconnected components. In this paper, it is proved that the distance
between different components is 0, and the distance from the center of a component to
every other component is 2.
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§ 1 . Introduction

Let Bi denote the Banach spaces of functions φ which are analytic in the unit disk Δ
with the norms

‖φ‖i = sup
z∈Δ

{(1 − |z|2)i|φ(z)|} < ∞ (i = 1, 2).

For f holomorphic in Δ, let

[f ] =
f ′′

f ′ ,

which is called the derivative of logarithm of f , and

Sf =
(f ′′

f ′
)′

− 1
2

(f ′′

f ′
)2

,

which is called the Schwarzian derivative of f .
Let T = {Sf | f is conformal in the unit disk Δ with quasiconformal extension to the

Riemann sphere C}. It is well known that T is the Bers universal Teichmuller space.
Let T1 = {[f ] | Sf ∈ T, f(0) = 0, f ′(0) = 1}. T1 is an alternative model of the universal

Teichmuller space introduced in [1, 2, 3]. Astala and Gehring [6] gave a complete description
of the closure of T1, and Zhuravlev obtained an interesting result that T1 is disconnected in
the topology induced by the norm ‖ ·‖1. He proved that T1 = L∪( ∪

θ∈[0,2π)
Lθ

)
, where L and
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Lθ are connected components of T1 with f bounded in Δ and lim
z→eiθ

f(z) = ∞ respectively,

and L ∩ (Lθ) = φ and Lθ1 ∩ Lθ2 = φ when θ1 �= θ2. Let

Hθ =
z

1 − e−iθz
.

Then [Hθ] ∈ Lθ. [Hθ] plays an important role in the description of T1 (see [1]), and is used
as the center of the component Lθ. Let id = z, [id] ∈ L is used as the center of L. Chen and
Wei [2] and Wei [3] obtained some interesting results on the components L and Lθ, such as
the distance between the centers of different components is 4, the distance from [Hθ] to L

is 2 and the distance between different components is smaller than 1.
In this paper, we prove 4 theorems in Section 2 and Section 3. Theorems 2.1 and 2.2

imply that the distance between different components of T1 is 0. And Theorems 3.1 and 3.2
imply that the distance from the center of one component to every other component is 2.

§ 2 . The Distance Between Components

First we prove

Theorem 2.1. dist(Lθ, L) = 0.

In order to prove Theorem 2.1, we need the following lemmas.

Lemma 2.1. (see [4]) f is conformal in the unit disk Δ with f(0) = 0, f ′(0) = 1. If f

satisfies Ref ′ > 0. Then [f ] ∈ cl(T1).

Lemma 2.2. (see [5]) f is a univalent holomorphic function with f(0) = 0, f ′(0) = 1.
Let ‖[f ]‖1 = 2a.

If a < 1, then f ∈ H∞.

If a > 1, then f ∈ Hp for any 0 < p < 1
a−1 .

If a = 1, then f ∈ BMOA.

Proof of Theorem 2.1. Without loss of generality, we may assume θ = 0. Let

fμ =
1
μ

(1 + z

1 − z

) μ
2 − 1

μ
(0 < μ ≤ 2). (2.1)

Then fμ(0) = 0, f ′
μ(0) = 1 and

[fμ] =
μ + 2z

1 − z2
. (2.2)

It is easy to see that fμ is analytic in Δ and lim
z→1,z∈Δ

fμ(z) = ∞.

From

Sfμ =
(f ′′

μ

f ′
μ

)′
− 1

2

(f ′′
μ

f ′
μ

)2

=
(μ + 2z

1 − z2

)′
− 1

2

(μ + 2z

1 − z2

)2

=
2 − 1

2μ2

(1 − z2)2
, (2.3)

we have
‖Sfμ‖2 = sup

z∈Δ
{(1 − |z|2)2|Sfμ |} = 2 − 1

2
μ2 < 2.
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Hence, fμ is conformal in the unit disk Δ with quasiconformal extension to the Riemann
sphere C. So we obtain [fμ] ∈ L0.

Let

f ′
ν =

1
(1 − z2)ν

(0 < ν < 1). (2.4)

Then

f ′′
ν =

2νz

(1 − z2)1+ν
, [fν ] =

f ′′
ν

f ′
ν

=
2νz

1 − z2
. (2.5)

It is easy to know that

Re f ′
ν = Re

1
(1 − z2)ν

= Re
(1 − z̄2)ν

|1 − z2|2ν
.

Let z̄2 = r(cos α + i sinα) (r > 0). Then

Re(1 − z̄2)ν = Re(1 − r(cos α + i sin α))ν

= Re
((ν

0

)
+

(ν
1

)
(−r)(cos α + i sinα) + · · · +

(ν
n

)
(−r)n(cosnα + i sinnα) + · · ·

)

=
(ν
0

)
+

(ν
1

)
(−r) cos α + · · · +

(ν
n

)
(−r)n cosnα + · · · .

From 0 < ν < 1 we have
(

ν
n

)
(−r)n < 0. Then

(ν
0

)
+

(ν
1

)
(−r) cosα + · · · +

(ν
n

)
(−r)n cosnα + · · ·

>
(ν
0

)
+

(ν
1

)
(−r) + · · · +

(ν
n

)
(−r)n + · · ·

= (1 − r)ν > 0.

So Re(1 − z̄2)ν > 0, and hence Ref ′
ν > 0.

Applying Lemma 2.1, we see that [fν ] ∈ cl(T1),

‖[fν ]‖1 = sup
z∈Δ

{∣∣∣ 2νz

1 − z2

∣∣∣(1 − |z|2)
}

= 2ν < 2.

Lemma 2.2 implies that f ∈ H∞, then [fν ] ∈ cl(L). Hence

dist(L, Lθ) = dist(L, L0) ≤ lim
ν→1,μ→0

dist([fν ], [fμ]) = lim
ν→1,μ→0

(μ + 2 − 2ν) = 0,

which completes the proof of Theorem 2.1.

Next we prove

Theorem 2.2. dist(Lθ1 , Lθ2) = 0 for θ1 �= θ2.

In order to prove Theorem 2.2, we need the following lemmas.
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Lemma 2.3. (see [2])

sup
z∈Δ

{
(1 − |z|2)

∣∣∣ 1 − e−iθ

(1 − e−iθz)(1 − z)

∣∣∣
}

= 2.

Denote

[fλ] =
f ′′

λ

f ′
λ

=
λ(1 − e−iθ) + (1 + e−iθ) − 2e−iθz

(1 − e−iθz)(1 − z)
(−1 ≤ λ < 0, 0 < λ ≤ 1). (2.6)

It is easy to know that

[fλ] =
2

1 − z
= [H0] when λ = 1,

[fλ] =
2e−iθ

1 − e−iθz
= [Hθ] when λ = −1.

Lemma 2.4. fλ(z) is analytic in Δ.

Proof. If λ > 1
2 , then

‖[fλ] − [H0]‖1 = sup
z∈Δ

{
(1 − |z|2)

∣∣∣ (1 − λ)(1 − e−iθ)
(1 − e−iθz)(1 − z)

∣∣∣
}

= 2(1 − λ) < 1. (2.7)

Hence [fλ] ∈ L0 and fλ is analytic in Δ.
If λ < − 1

2 , then ‖[fλ] − [Hθ]‖1 < 1. Hence [fλ] ∈ Lθ and fλ is analytic in Δ.
Let g′λ(z) = (1 − z)2f ′

λ(z). Then

[gλ] =
(λ − 1)(1 − e−iθ)
(1 − e−iθz)(1 − z)

.

Let gλ(z) =
∞∑

n=1
bnzn, b1 = 1. By comparing coefficient of zn−2, we obtain

n(n − 1)bn = (λ − 1)[b1(1 − e−(n−1)iθ) + 2b2(1 − e−(n−2)iθ) + · · ·(n − 1)bn−1(1 − e−iθ)].

If |λ| ≤ 1
2 , then

n(n − 1)|bn| ≤ 3
2
2(|b1| + 2|b2| + · · · + (n − 1)|bn−1|).

It follows from b1 = 1 that |bn| ≤ n. So gλ is analytic in Δ and hence fλ is analytic in Δ.
This completes the proof of Lemma 2.4.

Proof of Theorem 2.2. Without loss of generality, we may assume θ1 = 0, θ2 = θ (0 <

θ < 2π).

Sfλ
=

(f ′′
λ

f ′
λ

)′
− 1

2

(f ′′
λ

f ′
λ

)2

=
1
2

(1 − λ2)(1 − e−iθz)2

(1 − e−iθz)2(1 − z)2
. (2.8)

Then

‖Sfλ
‖2 = sup

z∈Δ
{(1 − |z|2)2|Sfλ

|} =
1
2
(1 − λ2) · 22 < 2 (−1 ≤ λ < 0, 0 < λ ≤ 1).
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Hence, fλ is conformal in the unit disk Δ with quasiconformal extension to the Riemann
sphere C. And we obtain that if 0 < λ ≤ 1 then [fλ] ∈ L0 and if −1 ≤ λ < 0 then [fλ] ∈ Lθ.
From

lim
λ→0

‖[fλ] − [f−λ]‖1 = lim
λ→0

4λ = 0,

we have dist(L0, Lθ) = 0.

This completes the proof of Theorem 2.2.

§ 3 . The Distance Between a Component and the Center
of Every Other Component

Theorem 3.1. dist([id], Lθ) = 2.

Proof. Without loss of generality, we may assume θ = 0. From the proof of Theorem
2.1 we have [fμ] ∈ L0 and

‖[fμ] − [id]‖1 = sup
z∈Δ

{
(1 − |z|2)

∣∣∣μ + 2z

1 − z2

∣∣∣
}

= 2 + μ. (3.1)

Then
lim
μ→0

‖[fμ] − [id]‖1 = 2.

Hence dist([id], L0) ≤ 2.
Wei [3] obtained dist([id], L0) ≥ 2. Then we get dist([id], L0) = 2.
This completes the proof of Theorem 3.1.

Theorem 3.2. dist([Hθ1 ], Lθ2) = 2 for θ1 �= θ2.

Proof. Without loss of generality, we may assume θ1 = 0, θ2 = θ (0 < θ < 2π). First,
we prove that dist([H0], Lθ) ≤ 2 (θ �= 0).

From the proof of Theorem 2.2, we have [fλ] ∈ Lθ, −1 ≤ λ < 0.

dist([H0], Lθ) ≤ lim
λ→0

‖[fλ] − [H0]‖1

= lim
λ→0

(
sup
z∈Δ

{
(1 − |z|2)

∣∣∣ (λ − 1)(1 − e−iθ)
(1 − e−iθz)(1 − z)

∣∣∣
})

= lim
λ→0

2|λ − 1| = 2.

Hence dist([H0], Lθ) ≤ 2.
Next, we proceed to prove that dist([H0], Lθ) ≥ 2 (θ �= 0).
Let dist([H0], Lθ) = k′. If k′ < 2, then we can find [f ] ∈ Lθ such that

dist([f ], [H0]) = ‖[f ] − [H0]‖1 ≤ k =
2 + k′

2
< 2.

Let g′(z) = (1 − z)2f ′(z). Then ‖[g]‖1 = ‖[f ] − [H0]‖1 ≤ k. Hence

∣∣∣g′′(z)
g′(z)

∣∣∣ ≤ k

1 − |z|2 . (3.2)
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By integration, we have

|g′(z)| ≤
(1 + |z|

1 − |z|
)k

2
, |f ′(z)(1 − z)2| ≤

(1 + |z|
1 − |z|

)k
2
.

Then

|f ′(teiθ)| ≤
(1 + t

1 − t

) k
2 · 1

|1 − teiθ|2 , (3.3)

and

|f(eiθ)| =
∣∣∣
∫ eiθ

0

f ′(z)dz
∣∣∣ =

∣∣∣
∫ 1

0

f ′(teiθ)dt
∣∣∣ ≤

∫ 1

0

|f ′(teiθ)|dt

≤ 1
|1 − teiθ|2

∫ 1

0

(1 + t

1 − t

) k
2
dt < +∞.

This contradicts [f ] ∈ Lθ.
Hence dist(Lθ, [H0]) = k′ ≥ 2. Then we obtain dist([H0], Lθ) = 2.
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