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Abstract

This paper studies extremal quasiconformal mappings. Some properties of the vari-
ability set are obtained and the Hamilton sequences which are induced by point shift
differentials are also discussed.
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§ 0 . Introduction

In this paper, the following notations will be used. C={the finite complex plane}; �={the
unit disk in C}; Γ=∂Δ.

The vector space of all holomorphic quadratic differentials ϕ = ϕ(z)dz2 in Δ with L1

norm

‖ϕ‖ =
∫∫

Δ

|ϕ(z)|dxdy <∞

will be denoted by Q(Δ) and the unit sphere in Q(Δ) will be denoted by Q0(Δ).

Let h : Γ −→ Γ be a sense-preserving homeomorphism. We call h quasisymmetric if there
is a quasiconformal mapping f : Δ −→ Δ such that f |Γ = h, i.e, h has a quasiconformal
extension f to Δ. For a quasisymmetric function h, set

[h] = {f ; f : Δ −→ Δ is a quasiconformal mapping with f |Γ = h}.

In the following the maximal dilatation of a quasiconformal mapping f is denoted by
K(f) and the complex dilatation is denoted by μf . Now suppose that h is a quasisymmetric
homeomorphism, set

K(h) = inf{K(f); f ∈ [h]}.
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Let f0 ∈ [h]. f0 is said to be extremal if K(f0) = K(h). Set

[h]e = {f ∈ [h];K(f) = K(h)}.

It follows from the normal family argument that for every quasisymmetric function there
always exists an extremal quasiconformal mapping f in [h]. A well-known criterion for f ∈
[h]e is the following theorem due to Hamilton-Krushkal-Reich-Strebel.

Theorem 0.1. (see [1]) Let h be a quasisymmetric function. Then f ∈ [h]e if and only
if

sup
ϕ∈Q0(Δ)

Re
∫∫

Δ

μf (z)ϕ(z)dxdy = ‖μf‖∞.

A sequence {ϕn}∞1 ⊂ Q0(Δ) attaining the above supremum is called a Hamilton sequence
for f or for μf , that is, it satisfies

lim
n→∞Re

∫∫
Δ

μf (z)ϕn(z) dxdy = ‖μf‖∞.

The Hamilton sequence {ϕn}∞1 is called degenerating if lim
n→∞ϕn(z) = 0 locally uniformly.

§ 1 . Some Properties of the Variability Set

Let h : Γ → Γ be a quasisymmetric homeomorphism and let z0 ∈ Δ. The variability set
of z0 with respect to h, which is introduced by Strebel [2], is defined as the set

Vh[z0] = {w ∈ Δ | w = f(z0), f ∈ [h]e}.

Strebel [3] proved that the variability set Vh[z0] is a compact and connected subset of Δ
without holes. In this section, we shall study this set and find some new properties of the
set.

Theorem 1.1. Let h : Γ → Γ be a quasisymmetric homeomorphism and z0 ∈ Δ. Then
there exists a constant M depending only on K(h) such that the hyperbolic diameter of Vh[z0]
is less than M .

Proof. Let f1 and f2 be two extremal quasiconformal mappings in [h]e and suppose
wj = fj(z0) (j = 1, 2). Set F = f2 ◦f−1

1 . Then F is a quasiconformal mapping with maximal
dilatation at most K2(h). Now consider the Teichmüller shift mapping T [w1, w2] : Δ → Δ,
which is the extremal quasiconformal mapping with identity on Γ and maps w1 to w2. Define
the maximal dilatation of T [w1, w2] by K ′. Then it is not hard to see that K ′ ≤ K2(h). It
is known that the maximal dilatation of T [w1, w2] depends only on the hyperbolic distance
of w1 and w2. In fact, if we define

dK′ =
1
2

logK ′
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and dH by the hyperbolic distance of w1 and w2, then we have the following equality

log
edK′ + 1
edK′ − 1

= μ
(edH − 1
edH + 1

)
,

where μ(r) is the conformal module of the ring domain whose boundary components are
the unit circle and the interval {x; 0 ≤ x ≤ r }. From this equality and the fact that
K ′ ≤ K2(h), the theorem follows.

In the following we prove that as a set function the variability set is continuous in the
Hausdorff topology.

Theorem 1.2. Let h : Γ → Γ be a quasisymmetric homeomorphism and z0 ∈ Δ. Then
Vh[z0] is continuous in Δ in the Hausdorff topology.

Proof. Let z0 be fixed and suppose that zn → z0 (n → ∞). First we prove that
lim sup

z→z0

Vh[z] ⊂ Vh[z0]. Suppose wn ∈ Vh[zn] (n = 1, 2, · · · ) such that wn → w0 (n → ∞).

We need to prove that w0 ∈ Vh[z0]. For each n, we choose a mapping fn ∈ [h]e such that
fn(zn) = wn. Since, for each n, the maximal dilatation of fn is K(h) and the family of the
extremal mappings forms a normal family, the limit of any convergent subsequence of {fn}∞1
is a quasiconformal mapping f in [h]e. Assume now the sequence {fn}∞1 itself converges to
f , therefore wn = fn(zn) → w0 = f(z0) ∈ Vh[z0] (n→ ∞).

To prove that lim inf
z→z0

Vh[z] ⊃ Vh[z0], let us fix a point w0 ∈ Vh[z0] and arbitrarily take a

quasiconformal mapping f ∈ [h]e such that f(z0) = w0. As f(z) is continuous in Δ, we see
that lim

z→z0
f(z) = w0. As f(z) ∈ Vh[z], it follows that lim inf

z→z0
Vh[z] ⊃ Vh[z0]. The proof of the

theorem is completed.

Remark 1.1. From the property of the continuity of variability set, it is easy to see
that when a point z0 is such that the variability set Vh[z0] is not a single point, there is a
neighborhood of z0 such that every point z in this neighborhood has the property that the
variability set Vh[z] contains infinitely many points. Combining Strebel’s result, we see that
if the interior of Vh[z0] is not empty, then the interior of Vh[z] is not empty either.

§ 2 . Hamilton Sequences and Variability Set

Some authors have investigated the existence of Hamilton sequence. Recently, Strebel
gives another way to form a Hamilton sequence for extremal Beltrami coefficient by making
use of the point shift differentials. Let h be a quasisymmetric homeomorphism of the unit
circle. For any w �∈ Vh[z0], there is a uniquely determined holomorphic quadratic differentials
ϕw on Δ\{z0} withL1 norm: ∫∫

Δ

|ϕw(z)| dxdy = 1

such that the Beltrami coefficient κϕw/|ϕw| ( for some 0 < κ < 1 ) is an extremal Beltrami
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coefficient for the boundary correspondence of Γ ∪ {z0} onto Γ ∪ {w0} :

h∗w(z) :=

{
h(z), z ∈ ∂Δ;

w, z = z0.

The holomorphic quadratic differential ϕw in Δ\{z0} is called a point shift differential
determined by w and h.

One of the main results of Strebel in [3] is the following

Theorem 2.1. (see [3]) Suppose that h0 : Γ −→ Γ is a given quasisymmetric homeo-
morphism. Let w0 be a boundary point of the variability set Vh0 [z0] and let f0 : Δ −→ Δ
be an extremal quasiconformal mapping with f0 |Γ = h0 such that f0(z0) = w0, the Beltrami
coefficient of which is μ0. Suppose that {wn}∞1 is a sequence of points in the set Δ\Vh0 [z0]
with wn → w0 (n → ∞) and that ϕn = ϕwn is a point shift differential determined by the
point wn and h0 for each n = 1, 2, · · · . Then {ϕn}∞1 is a Hamilton sequence of μ0, namely,

lim
n→∞Re

∫∫
Δ

μ0ϕn dxdy = ‖μ0‖∞.

The significance of this kind Hamilton sequence has two special aspects: one is that
the Hamilton sequence depends only on one parameter and another is that these quadratic
differentials in the Hamilton sequence are just induced from some quasiconformal mappings
in the Teichmüller equivalence class [h].

Now let QP
h (Δ) denote the set of quadratic differentials which have the following prop-

erties:
(1) every element ϕ ∈ QP

h (Δ) has norm 1 and is holomorphic except one simple pole in
Δ ;

(2) for every ϕ ∈ QP
h (Δ), there exist a quasiconformal mapping f ∈ [h] and a constant

k (0 < k < 1) such that the complex dilatation of f is k ϕ̄
|ϕ| .

Now we pose the following questions.

Question 2.1. For every quasiconformal mapping f ∈ [h]e, is there always a Hamilton
sequences {ϕn}∞1 ⊂ QP

h (Δ)? Furthermore is there always a common Hamilton sequence
{ϕn}∞1 ⊂ QP

h (Δ)?

In the following, we can solve this problem under some additional conditions.
First we prove the following lemma.

Lemma 2.1. Let h : Γ → Γ be quasisymmetric and let f0 ∈ [h]e. Suppose that {ϕn}∞1
is a degenerating Hamilton sequence for f0 and that for each n, ϕn has finitely many simple
poles z1, z2, · · · zN in Δ. Then {ϕn}∞1 is a common Hamilton sequence for all f ∈ [h]e.

Proof. For each n, according to the conditions on ϕn, we can write it as

ϕn =
N∑

j=1

αn
j

z − zj
+ ψn, (2.1)
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where ψn is holomorphic in Δ and αn
j , j = 1, 2, · · · , N are constants.

Since {ϕn}∞1 is a degenerating Hamilton sequence for μ0, ϕn → 0 (n → ∞) uniformly
on any compact subset of Δ\{z1, z2, · · · , zN}.

Now, for each 1 ≤ j0 ≤ N , we take a circle Γj0
r = {z | |z − zj0 | = r} with r small enough

such that it is contained in Δ and the interior of it does not contain any pole of ϕn except
zj0 . As ϕn → 0 (n→ ∞) uniformly on Γj0

r , we have

lim
n→∞

∫
Γ

j0
r

ϕn = 0. (2.2)

On the other hand,

lim
n→∞

∫
Γ

j0
r

ϕn = lim
n→∞

∫
Γ

j0
r

( N∑
j=1

αn
j

z − zj
+ ψn

)
= lim

n→∞

∫
Γ

j0
r

αn
j0

z − zj0

= 2πi lim
n→∞αn

j0 . (2.3)

Therefore

αn
j0 → 0, as n→ ∞. (2.4)

From (2.1), we can see that

1 −
∥∥∥ N∑

j=1

αn
j

z − zj

∥∥∥ ≤ ‖ψn‖ ≤ 1 +
∥∥∥ N∑

j=1

αn
j

z − zj

∥∥∥.
It follows from the above inequalities that ‖ψn‖ → 1, as n→ ∞.

Noting that

‖μ0‖∞ = lim
n→∞

(
Re

∫∫
Δ

μ0

N∑
j=1

αn
j

z − zj
+ Re

∫∫
Δ

μ0ψn

)
= lim

n→∞Re
∫∫

Δ

μ0ψn,

we have

lim
n→∞Re

∫∫
Δ

μ0ψn/ ‖ψn‖ = ‖μ0‖∞. (2.5)

We see that {ψn/‖ψn‖}∞1 is a Hamilton sequence for μ0. As, for each n, ψn is holomorphic,
it follows from the result in [4] that {ψn/‖ψn‖}∞1 is a Hamilton sequence for all f ∈ [h]e.
Now by elementary computation, we see easily that {ϕn} is a Hamilton sequence for all
f ∈ [h]e. The proof of Lemma 2.1 is completed.

From the lemma we have the following result.

Theorem 2.2. Let h : Γ −→ Γ be a quasisymmetric homeomorphism and let w0 be a
boundary point of Vh[z0]. Suppose that f0 ∈ [h]e and f0(z0) = w0, the Beltrami coefficient
of which is μ0. Suppose further that {wn}∞1 is a sequence of points in the set Δ\Vh[z0] and
wn → w0 (n → ∞). Assume that ϕn = ϕwn (n = 1, 2, · · · ) is a degenerating Hamilton
sequence for μ0, which is the point shift differentials determined by the point wn and h.

Then {ϕn}∞1 is a Hamilton sequence for all f ∈ [h]e.
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Proof. From the frame mapping criterion, we know that for each n, ϕn has a first order
pole at z0 and is holomorphic in Δ\{z0}. So Theorem 2.2 follows from the lemma.

So if there is a degenerating Hamilton sequence induced by the point shift differentials,
then Theorem 2.2 solves the question. If there is no such Hamilton sequence, we can prove
the following result.

Theorem 2.3. Under the above conditions of Theorem 2.2, suppose that {ϕn}∞1 is not
degenerating and [h]e contains more than one element. Then the interior of the variability

set Vh[z0] is not empty, namely
o

Vh [z0] �= ∅.

Proof. Note that, for all n, ‖ϕn‖ = 1. By the normal family argument there exists a
subsequence of {ϕn}∞1 such that it converges uniformly in compact subsets of Δ. Without
loss of generality, we can assume that the subsequence is {ϕn}∞1 and its limit is ϕ0. Because
{ϕn}∞1 is not degenerating, then ϕ0 is not identical to zero and at most has a first order
pole at z0. We have the following two cases.

( I ) First assume that ϕ0 is holomorphic in Δ. From the Teichmüller unique theorem, we
can see that Vh[z] has only one point for all z ∈ Δ, which contradicts our assumption.

(II) Now assume that ϕ0 has a first order pole at z0. In this case, we use the techniques
to prove the parabolic lemma in [3]. One can find a Jordan domain D ⊂ Δ containing z0
and a quasiconformal mapping f̃ such that f̃ = f0, z ∈ Δ\D and the maximal dilatation of
f̃ in D is strictly less than K(h). It is obvious that f̃ ∈ [h]e. By using Lemma 2 in [5], we

see that
o

Vh [z0] �= ∅. The proof of Theorem 2.3 is completed.

Combining Theorem 2.2 and Theorem 2.3, we see that, if the answer to the question is
negative, then, for every z ∈ Δ, the variability set Vh[z] is a simply connected closed domain
with nonempty interior. Moreover, it is not hard to see from the proof of parabolic lemma
in [3] that, for every boundary point w of the variability set Vh[z], one can find a Jordan arc
contained in the interior of Vh[z] such that w is an endpoint of the arc. We believe that in
this case the boundary of Vh[z] is a Jordan curve.

It is easy to see from Theorem 1.1 that Euclidean diameter of the variability sets Vh[z]
tends to 0 as z → Γ. If one can prove that the hyperbolic diameter tends to zero, then one
can also solve the question.

Theorem 2.4. Let h : Γ → Γ be quasisymmetric. Assume that there exists a sequence
{zn}∞1 ⊂ Δ such that the hyperbolic diameter of Vh[zn] tends to 0 as n→ ∞. Then we can
find a Hamilton sequence {ϕn}∞1 ⊂ QP

h (Δ) for all f ∈ [h]e.

Proof. We can prove some further results. If there exists a Hamilton sequence which
satisfies the conditions of Theorem 2.2, then the proposition follows. So we can assume that
this case never happens. Now Theorem 2.3 tells us that for every z ∈ Δ and for every w on
the boundary of Vh[z], there is a quasiconformal mapping f ∈ [h]e such that f(z) = w and
μf = k ϕ̄

|ϕ| , where ϕ(z,w) is a quadratic differential with norm 1, holomorphic in Δ except a
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simple pole at z and k = K(h)−1
K(h)+1 . Now we arbitrarily take a sequence ϕn = ϕ(zn,wn) which

is induced by the quasiconformal mapping f ∈ [h]e such that f(zn) = wn ∈ ∂Vh[zn] for each
n = 1, 2, · · · , and arbitrarily fix a quasiconformal mapping f0 ∈ [h]e with complex dilatation
μ0. By using the method of the proof of Theorem 2 in [3] or by directly using Theorem 2 in
[6], we have the following estimate

0 ≤ ‖μ0‖∞ − Re
∫∫

Δ

μ0ϕ(zn,wn) ≤ C�(wn, f0(zn)),

where � is the hyperbolic distance and C is a universal constant. From this inequality, we
see that ϕn = ϕ(zn,wn) is a Hamilton sequence for f0. The theorem follows.

Finally we study the case of point shift quadratic differential which does not fix the
quasisymetric function. Recall that the universal Teichmüller space T can be defined as the
set of normalized quasisymmetric homeomorphism of Γ:

T := {h : Γ −→ Γ | h is a quasisymmetric homeomorphism and h(±1) = ±1; h(i) = i}.

The Teichmüller distance dT of T is defined as follows:

dT (h1, h2) :=
1
2

inf

{
log

1 + δ(μf1 , μf2)
1 − δ(μf1 , μf2)

;
fj is quasiconformal mapping

and fj |Γ= hj , j = 1, 2

}
,

where
δ(μf1 , μf2) :=

∥∥∥ μf1 − μf2

1 − μf1 μ̄f2

∥∥∥.
Then we can prove the following result.

Theorem 2.5. Suppose that h0 : Γ −→ Γ is a normalized quasisymmetric homeomor-
phism and that z0 ∈ Δ. Then there exist a sequence hn of points in T and a sequence wn of
points in Δ\Vh0 [z0], for n = 1, 2, · · · , such that

(1) dT (hn, h0) → 0, as n→ ∞;
(2) the point shift differentials ϕn determined by wn and hn form a Hamilton sequence

for all f ∈ [h0]e.

Proof. Again if there is a Hamilton sequence satisfying the condition of Theorem 2.2,
Theorem 2.5 follows. Now if not, then there must exist an extremal quasiconformal mapping
f0 ∈ [h0]e such that its complex dilatation μ0 with |μ0| �= constant, a.e. Define w0 = f0(z0).
By the results of [7], we know that there exists a sequence {hn} of points in T and a sequence
{wn} of points in Δ with wn ∈ Δ\Vhn [z0], for n = 1, 2, · · · , such that

(1) dT (hn, h0) → 0, as n→ ∞;
(2) wn → w0 ∈ Δ, as n→ ∞;
(3) the point shift differentials ϕn determined by wn and hn form a Hamilton sequence

for the extremal mapping f0 : Δ\{z0} → Δ\{w0}.
It is easy to see that this sequence must be degenerating, so the theorem follows from

the lemma.
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