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BOUNDEDNESS OF MAXIMAL

SINGULAR INTEGRALS∗∗∗

CHEN Jiecheng∗ ZHU Xiangrong∗∗

Abstract

The authors study the singular integrals under the Hörmander condition and the
measure not satisfying the doubling condition. At first, if the corresponding singular
integral is bounded from L2 to itself, it is proved that the maximal singular integral
is bounded from L∞ to RBMO except that it is infinite µ-a.e. on Rd. A sufficient
condition and a necessary condition such that the maximal singular integral is bounded
from L2 to itself are also obtained. There is a small gap between the two conditions.
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§ 1 . Introduction

Given a positive Radon measure μ on Rd satisfying the linear growth condition

μ(B(x, r)) ≤ Crn, x ∈ Rd, r > 0, (1.1)

where n is a fixed number with 0 < n ≤ d. In this note we always assume that μ satisfies
condition (1.1). Let k(x, y) be a locally integrable function on Rd×Rd \{(x, y) : x = y} and

|k(x, y)| + |k(y, x)| ≤ C

|x − y|n . (1.2)

Given a locally integrable function f on Rd, set

Tε,Nf(x) =
∫

ε<|x−y|<N

k(x, y)f(y)dμ(y),

T ∗
ε,Nf(x) = sup

ε≤δ,R≤N
|Tδ,Rf(x)|,

T ∗f(x) = sup
N>ε>0

|Tε,Nf(x)|.
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Here T ∗f(x) may be infinite. T ∗
ε,Nf converges to T ∗f increasingly as ε → 0, N → ∞.

The doubling condition on μ, μ(B(x, 2r)) ≤ Cμ(B(x, r)) (∀x ∈ Rd, r > 0), is an essential
assumption in most of the results of classical Calderón-Zygmund theory. However, recently
it has been shown that a big part of the classical theory remains valid if the doubling
assumption on μ is substituted by the size condition (1.1). For example, T1 Theorem and
Tb Theorem have been proved in [6, 8, 12–15, 17]. More literatures and related topics can
be found in [18].

In [7, 11], some Cotlar type inequality and weak type (1,1) estimate for the maximal CZO
have been proved. But to the best of our knowledge there is no result about the maximal
CZO on L∞ even if μ is Lebesgue measure. We will give the boundedness of the maximal
singular integral on L∞ under a weaker assumption.

In the above mentioned papers the CZKs considered always satisfy the Lipschitz type
condition. In this note we will study the singular integrals under the Hörmander condition.
If μ is Lebesgue measure, some work has been done to relax Lipschitz condition in T(1)
Theorem, such as [2, 3, 5, 19]. But an example given in [20] has shown that T(1) Theorem
may be not valid under the Hörmander condition. Here we will develop the ideas in [13]
and [4] to get a sufficient condition and a necessary condition for the L2 boundedness of
the singular integral under the Hörmander condition. It is remarkable that it seems that
our necessary condition is sharper than the sufficient and necessary condition given in T1
Theorem (see [6, 10]).

Now we give the definition of RBMO. More details can be found in [13].
Given a fixed number ρ > 1, Q and R are two cubes such that Q ⊂ R. Suppose that

ρm−1l(Q) ≤ l(R) < ρml(Q), f ∈ L1
loc(R

d, dμ). Set

kQ,R = 1 +
m∑

j=0

μ(ρjQ)
(l(ρjQ))n

,

mQf =
1

μ(Q)

∫
Q

f(y)dμ(y).

We say f ∈ RBMO if for any cube Q there exists a number fQ such that

1
μ(ρQ)

∫
Q

|f(y) − fQ|dμ(y) ≤ C

and
|fR − fQ| ≤ CkQ,R, Q ⊂ R,

where the smallest number C satisfying these inequalities is called the RBMO norm of f .
If ρ is replaced by another ρ′ > 1, we will get an equivalent norm. From now on we always
set ρ = 6.

We will use the interpolation proved in [13] to get the L2 boundedness. Though it is very
easy to prove the boundedness from H1,∞

atb to L1, for the purpose of this note we will prove
the boundedness from L∞ to RBMO and use the dual argument to give the boundedness
from H1,∞

atb to L1. The definition of H1,∞
atb can be found in [13, 16].

The theorems below are main results in this note.
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Theorem 1.1. Besides (1.2), suppose that there hold the Hörmander condition∫
|x−y|>2|y−y′|

|k(y, x) − k(y′, x)|dμ(x) ≤ C, (1.3)

and the following uniformly boundedness for a bounded function a with supp(a) ⊂ Q where
Q is a cube ∫

|Tε,Na|2dμ ≤ C‖a‖2
∞μ(Q). (1.4)

Then we have

‖T ∗
ε,Nf‖RBMO ≤ C‖f‖∞. (1.5)

So T ∗f is either infinite μ-a.e. or finite μ-a.e. Furthermore, if T ∗f is finite μ-a.e., then
‖T ∗f‖RBMO ≤ C‖f‖∞.

Remark 1.1. In the proof of Theorem 1.1 it is easy to check that T ∗
ε,Nf can be replaced

by Tε,Nf , so we have
‖Tε,Nf‖RBMO ≤ C‖f‖∞.

It is crucial in the proof of Theorem 1.2.

Theorem 1.2. For convenience, suppose that k is a real-valued function. Besides (1.2),
suppose that there hold the Hörmander condition∫

|x−y|>2|y−y′|
(|k(x, y) − k(x, y′)| + |k(y, x) − k(y′, x)|)dμ(x) ≤ C, (1.6)

and for any N > ε > 0, ∫∫
SεQ

|Uε,N (x, y)|dμ(x)dμ(y) ≤ Cμ(Q), (1.7)
∫∫

SεQ

|U ′
ε,N (x, y)|dμ(x)dμ(y) ≤ Cμ(Q), (1.8)

where SεQ = {(x, y) ∈ Q × Q : |x − y| > ε},

Uε,N (x, y) =
∫

ε<|x−z|<N,ε<|y−z|<N

k(z, x)k(z, y)dμ(z),

U ′
ε,N (x, y) =

∫
ε<|x−z|<N,ε<|y−z|<N

k(x, z)k(y, z)dμ(z).

We can conclude that

‖T ∗f‖2 ≤ C‖f‖2. (1.9)

On the other hand, if (1.9) holds, then∫ ∣∣∣
∫

SεQ

Uε,N(x, y)dμ(x)
∣∣∣dμ(y) ≤ Cμ(Q), (1.10)

∫ ∣∣∣
∫

SεQ

U ′
ε,N(x, y)dμ(x)

∣∣∣dμ(y) ≤ Cμ(Q). (1.11)
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Remark 1.2. Under the Lipschitz condition, if for any N > ε > 0,∫∫
SεQ

Uε,N (x, y)dμ(x)dμ(y) ≤ Cμ(Q), (1.12)
∫∫

SεQ

U ′
ε,N (x, y)dμ(x)dμ(y) ≤ Cμ(Q), (1.13)

then from [10, Theorem 4, p.306] and [6], we have ‖T ∗f‖2 ≤ C‖f‖2. This fact shows that
under the Lipschitz condition (1.10) and (1.11) are equivalent to (1.12) and (1.13).

The letter C in this note denotes a positive constant which only depends on n, d and
may be variant in different cases.

§ 2 . Some Lemmas

In this section we always suppose that k(x, y) satisfies conditions (1.2) and (1.3).
We say a ball B = B(x, r) is (6, 6d+1)-ball if μ(6B) ≤ 6d+1μ(B). For any ball B, let k

be the smallest positive integer such that B(x, 6kr) is a (6, 6d+1)-ball. The existence of k is
obviously.

Lemma 2.1. The notations are as above. Then∫
B(x,6kr)\B(x,r)

dμ(y)
|x − y|n ≤ C. (2.1)

The proof is easy. For convenience, we give the proof here.

Proof. From (1.1) and the definition of k, we have
∫

B(x,6kr)\B(x,r)

dμ(y)
|x − y|n =

k∑
j=1

∫
B(x,6jr)\B(x,6j−1r)

dμ(y)
|x − y|n

≤
k∑

j=1

μ(B(x, 6jr))
(6j−1r)n

≤ C
k∑

j=1

6(j−k)(d+1)μ(B(x, 6kr))
(6jr)n

≤ C
∞∑

i=0

6−i(d+1−n) μ(B(x, 6kr))
(6kr)n

≤ C.

Lemma 2.2. Let

T ′
ε,Nf(x) =

∫
ε<|x−y|<N

k(y, x)f(y)dμ(y)

and η be a Borel measure which is supported in a ball B = B(y0, r) and η(B) = 0. Then∫
(6B)c

|T ′
ε,Nη|dμ ≤ C‖η‖. (2.2)
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Proof. Set

A = {x : max{6r, ε − r} < |x − yo| < ε + r or max{6r, N − r} < |x − yo| < N + r}.

If x ∈ Ac,

B(y0, r) ⊆ {y : ε < |y − x| < N} or B(y0, r) ⊆ {y : |y − x| < ε or N < |y − x|},

so

|T ′
ε,Nη(x)| =

∣∣∣
∫

ε<|x−y|<N

k(y, x)dη(y)
∣∣∣

=
∣∣∣
∫

ε<|x−y|<N

(k(y, x) − k(y0, x))dη(y)
∣∣∣

≤
∫

ε<|x−y|<N

|k(y, x) − k(y0, x)|d|η(y)|.

Now it can be derived from the Hörmander condition that
∫

Ac∩(6B)c

|T ′
ε,Nη|dμ ≤ C‖η‖. (2.3)

If x ∈ A,

|T ′
ε,Nη(x)| ≤ C

∫
B(y0,r)

|k(y, x)|d|η(y)| ≤ C

∫
B(y0,r)

d|η(y)|
|x − y|n .

It is obvious that for any y ∈ B(y0, r),

∫
A

dμ(x)
|x − y|n ≤ C.

So it can be shown that
∫

A

|T ′
ε,Nη(x)|dμ ≤ C‖η‖. (2.4)

From (2.3) and (2.4), we get the desired inequality.

Lemma 2.3. (A Variant Inequality of [1])

T ∗
ε,Nϕ(x) ≤ C(M(Tε,Nϕ)(x) + ‖ϕ‖∞), (2.5)

where M is the centered H-L operator and ϕ ∈ L∞.

Proof. Let k be the smallest positive integer such that B(x, R) = B(x, 6kr) is a (6, 6d+1)-
ball. Since

|Tr,sϕ(x)| ≤ |Tr,Nϕ(x)| + |Ts,Nϕ(x)| for any ε < r < s < N,
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it is sufficient to estimate |Tr,Nϕ(x)|.

|Tr,Nϕ(x) − T6R,Nϕ(x)| ≤
∫

B(x,6R)\B(x,r)

|ϕ(y)|
|x − y|n dμ(y)

≤ ‖ϕ‖∞
∫

B(x,6R)\B(x,r)

dμ(y)
|x − y|n

≤ C‖ϕ‖∞. (2.6)

The last inequality can be obtained by Lemma 2.1. Set

UR(x) =
1

μ(B(x, R))

∫
B(x,R)

Tε,Nϕ(y)dμ(y),

which is clearly controlled by M(Tε,Nϕ)(x).

|T6R,Nϕ(x) − UR(x)|

=
∣∣∣Tε,Nϕχ{y:6R<|x−y|}(x) −

∫
χB(x,R)

μ(B(x, R))
Tε,Nϕdμ

∣∣∣

=
∣∣∣
∫

T ′
ε,Nδx(z)ϕχ{z:6R<|x−z|}(z)dμ(z) −

∫
T ′

ε,N

( χB(x,R)

μ(B(x, R))

)
(z)ϕ(z)dμ(z)

∣∣∣

≤
∫ ∣∣∣T ′

ε,N

(
δx − χB(x,R)

μ(B(x, R))

)
(z)ϕχ{z:6R<|x−z|}(z)

∣∣∣dμ(z)

+
1

μ(B(x, R))

∫
χB(x,R)(y)|Tε,N(ϕχ{y:|x−y|<6R})|dμ(y),

where T ′
ε,N denotes the dual of Tε,N . The first term does not exceed C‖ϕ‖∞ by Lemma 2.2,

while the second can be controlled by

1
μ(B(x, R))

‖χB(x,R)‖L2(μ)

( ∫
R

|Tε,N (ϕχB(x,6R))|2dμ
) 1

2

≤ C
(μ(B(x, 6R))

μ(B(x, R))

) 1
2 ‖ϕ‖∞ ≤ C‖ϕ‖∞,

so the proof of the lemma is completed.

Lemma 2.4. Q and R are two cubes and Q ⊂ R. There holds

∫
Q

∫
R

|T ∗
ε,Nf(x) − T ∗

ε,Nf(y)|dμ(y)dμ(x) ≤ CkQ,R‖f‖∞(μ(Q)μ(6R) + μ(6Q)μ(R)). (2.7)

Proof. Set f1 = fχ6R, f2 = fχ(6R)c . From

|T ∗
ε,Nf(x) − T ∗

ε,Nf(y)| ≤ |T ∗
ε,Nf2(x) − T ∗

ε,Nf2(y)| + T ∗
ε,Nf1(x) + T ∗

ε,Nf1(y)
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we have ∫
Q

∫
R

|T ∗
ε,Nf(x) − T ∗

ε,Nf(y)|dμ(y)dμ(x)

≤
∫

Q

∫
R

|T ∗
ε,Nf2(x) − T ∗

ε,Nf2(y)|dμ(y)dμ(x)

+ μ(Q)
∫

R

T ∗
ε,Nf1(y)dμ(y) + μ(R)

∫
Q

T ∗
ε,Nf1(x)dμ(x). (2.8)

By Lemma 2.3 and (1.4), we have

μ(Q)
∫

R

T ∗
ε,Nf1(y)dμ(y) ≤ Cμ(Q)

∫
R

[M(Tε,Nf1)(y) + ‖f‖∞]dμ(y)

≤ Cμ(Q)
(
(μ(R))

1
2

( ∫
R

(Tε,Nf1)2dμ
) 1

2
+ μ(R)‖f‖∞

)

≤ Cμ(Q)(μ(R))
1
2 (μ(6R))

1
2 ‖f‖∞ + Cμ(Q)μ(R)‖f‖∞

≤ Cμ(Q)μ(6R)‖f‖∞. (2.9)

Take m such that 6m−1l(Q) ≤ l(R) < 6ml(Q). It is easy to check that

R ⊂ 6m+1Q, 6R ⊂ 6m+2Q.

For any x ∈ Q,

T ∗
ε,Nf1(x) ≤

∫
6m+2Q\6Q

|k(x, y)|dμ(y)‖f‖∞ + T ∗
ε,N (f1χ6Q)(x)

≤
m+1∑
j=1

μ(6j+1Q)
(l(6jQ))n

‖f‖∞ + T ∗
ε,N (f1χ6Q)(x)

≤ C(kQ,R‖f‖∞ + T ∗
ε,N(f1χ6Q)(x)). (2.10)

So by Lemma 2.3 and (1.4)

μ(R)
∫

Q

T ∗
ε,Nf1(x)dμ(x) ≤ Cμ(R)

(
μ(Q)kQ,R‖f‖∞ +

∫
Q

T ∗
ε,N (f1χ6Q)dμ

)

≤ Cμ(R)(μ(Q)kQ,R‖f‖∞ + μ(6Q)‖f‖∞)

≤ Cμ(R)μ(6Q)kQ,R‖f‖∞. (2.11)

Now there is nothing left to deal with except the first term in (2.8).
It is obvious that we can take ε(x), N(x) such that

|Tε(x),N(x)f2(x)| = T ∗
ε,Nf2(x). (2.12)

Obviously

|T ∗
ε,Nf2(x) − T ∗

ε,Nf2(y)|

≤ |Tε(x),N(x)f2(x) − Tε(x),N(x)f2(y)| + |Tε(y),N(y)f2(x) − Tε(y),N(y)f2(y)|. (2.13)



566 CHEN, J. C. & ZHU, X. R.

For convenience we may denote r = ε(x), s = N(x). Because of symmetry, it is sufficient to
compute one term. Set

Ax = {z ∈ (6R)c : r < |x − z| < s}, Ay = {z ∈ (6R)c : r < |y − z| < s}.
we have

|Tr,sf2(x) − Tr,sf2(y)| =
∣∣∣
∫

Ax

k(x, z)f2(z)dμ(z) −
∫

Ay

k(y, z)f2(z)dμ(z)
∣∣∣

≤
∫

Ax∩Ay

|(k(x, z) − k(y, z))f2(z)|dμ(z)

+
∫

Ax\Ay

|f2(z)|
|x − z|n dμ(z) +

∫
Ay\Ax

|f2(z)|
|y − z|n dμ(z). (2.14)

Noticing that x, y ∈ R, z ∈ (6R)c, from (1.3) we have∫
Ax∩Ay

|(k(x, z) − k(y, z))f2(z)|dμ(z) ≤ C‖f‖∞. (2.15)

Besides, it is easy to check that when x, y ∈ R,∫
Ax\Ay

1
|x − z|n dμ(z) ≤ C,

∫
Ay\Ax

1
|y − z|n dμ(z) ≤ C.

Now we can conclude that

|Tr,sf2(x) − Tr,sf2(y)| ≤ C‖f‖∞,

∫
Q

∫
R

|T ∗
ε,Nf2(x) − T ∗

ε,Nf2(y)|dμ(x)dμ(y) ≤ Cμ(Q)μ(R)‖f‖∞. (2.16)

Let everything together, this lemma has been proved.

§ 3 . Proof of Theorem 1.1

Let Q = R in Lemma 2.4. We can get

1
μ(6Q)

∫
Q

|T ∗
ε,Nf(y) − mQT ∗

ε,Nf |dμ(y)

≤ 1
μ(Q)μ(6Q)

∫
Q

∫
Q

|T ∗
ε,Nf(x) − T ∗

ε,Nf(y)|dμ(y)dμ(x)

≤ C
kQ,Q‖f‖∞μ(Q)μ(6Q)

μ(Q)μ(6Q)

= C‖f‖∞. (3.1)

On the other hand, it can be derived that

|mRT ∗
ε,Nf − mQT ∗

ε,Nf | ≤ 1
μ(Q)μ(R)

∫
Q

∫
R

|T ∗
ε,Nf(x) − T ∗

ε,Nf(y)|dμ(y)dμ(x)

≤ C‖f‖∞kQ,R

(μ(6Q)
μ(Q)

+
μ(6R)
μ(R)

)
. (3.2)
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Using the result of [13, Lemma 2.10, p.101], we have

‖T ∗
ε,Nf‖RBMO ≤ C‖f‖∞.

§ 4 . Proof of Theorem 1.2

At first we show that it is sufficient to prove (1.4) for Tε,N and T ′
ε,N . In the proof of

Theorem 1.1 it can be derived that ‖Tε,Nf‖RBMO ≤ C‖f‖∞. Also we have ‖T ′
ε,Nf‖RBMO ≤

C‖f‖∞, so ‖Tε,Nf‖1 ≤ C‖f‖H1,∞
atb

by the dual argument. Using the interpolation proved
in [13], we have ‖Tε,Nf‖2 ≤ C‖f‖2. In [9] we have proved that under the Hörmander
condition if ‖Tεf‖2 ≤ C‖f‖2 for any ε > 0, then ‖T ∗f‖p ≤ C‖f‖p for any 1 < p < ∞ and
‖T ∗f‖1,∞ ≤ C‖f‖1.

Because of symmetry it is enough for us to check that (1.4) holds for Tε,N . Let a be a
bounded function with supp(a) ⊂ Q where Q is a cube. As

∫
Q

∫
|x−y|<ε

|Uε,N (x, y)|dμ(x)μ(y)

≤ C

∫
Q

∫
|x−y|<ε

∫
|x−z|>2ε

1
|x − z|2n

dμ(z)dμ(x)dμ(y)

+ C

∫
Q

∫
|x−y|<ε

∫
ε<|x−z|<2ε

1
ε2n

dμ(z)dμ(x)dμ(y)

≤ Cμ(Q), (4.1)

we have

‖Tε,Na‖2
2 =

∫∫
{x∈Q:N>|z−x|>ε}

∫
{y∈Q:N>|z−y|>ε}

k(z, x)k(z, y)a(x)a(y)dμ(x)dμ(y)dμ(z)

=
∫∫

SεQ

Uε,N (x, y)a(x)a(y)dμ(x)dμ(y) + O(‖a‖2
∞μ(Q))

≤ C‖a‖2
∞μ(Q). (4.2)

Also we can get ‖T ′
ε,Na‖2

2 ≤ C‖a‖2
∞μ(Q).

Now, we show that (1.9) is necessary. For two bounded functions a and b supported on
a cube Q, we have

∫
Q

Tε,NaTε,Nb =
∫∫

U(x, y)a(x)b(y)dμ(x)dμ(y).

Set

a = χQ, b(y) = sign
(∫

Q

U(x, y)dμ(x)
)
χQ(y).

It is easy to see that (1.9) is necessary for the L2 boundedness of T ∗, also for (1.10).
The proof is completed.
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