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CHARACTERIZATIONS OF JORDAN †-SKEW

MULTIPLICATIVE MAPS ON OPERATOR
ALGEBRAS OF INDEFINITE INNER

PRODUCT SPACES∗∗∗
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Abstract

Let H and K be indefinite inner product spaces. This paper shows that a bijective
map Φ : B(H) → B(K) satisfies Φ(AB† + B†A) = Φ(A)Φ(B)† + Φ(B)†Φ(A) for every
pair A, B ∈ B(H) if and only if either Φ(A) = cUAU† for all A or Φ(A) = cUA†U†

for all A; Φ satisfies Φ(AB†A) = Φ(A)Φ(B)†Φ(A) for every pair A, B ∈ B(H) if and
only if either Φ(A) = UAV for all A or Φ(A) = UA†V for all A, where A† denotes the
indefinite conjugate of A, U and V are bounded invertible linear or conjugate linear
operators with U†U = c−1I and V †V = cI for some nonzero real number c.
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§ 1 . Introduction

It is a surprising result of Matindale [6] that every multiplicative bijective map from a
prime ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive.
Therefore, one can say that the multiplicative structure of rings of that kind completely
determines the ring structure. This result was utilized by Šemrl in [9] to describe the
form of the semigroup isomorphisms of standard operator algebras on Banach spaces. Some
other results on the additivity of multiplicative maps (in fact, ∗-semigroup homomorphisms)
between operator algebras can be found in [4, 5, 7, 8]. Besides additive and multiplicative
maps (that is, ring homomorphisms) between rings, sometimes one has to consider Jordan
homomorphisms and Jordan ∗-homomorphisms or Jordan †-homomorphisms. The structure
of associative rings has been studied by many people in ring theory. Moreover, Jordan
operator algebras have important applications in the mathematical foundations of quantum
mechanics. Let R and R′ be rings and let Φ : R → R′ be a map. Recall that Φ is called a
Jordan homomorphism if

Φ(A + B) = Φ(A) + Φ(B)
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and

Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A)

for all A, B ∈ R. In the case that both R and R′ have an involution operation ∗, Φ is
called a Jordan ∗-homomorphism if it is a Jordan homomorphism and Φ(A∗) = Φ(A)∗ for
all A ∈ R. To ensure the additivity of a “multiplicative” map, one can go a little further
by even more weakening the multiplicative property of the maps in question (see [5, 7, 8]).
Let φ be a bijective map on a standard operator algebra. Molnár showed in [7] that if φ

satisfies φ(ABA) = φ(A)φ(B)φ(A), then φ is additive. Later, Molnár in [8] and then Lu in [5]
considered the cases that φ preserves the operation 1

2 (AB+BA) and AB+BA, respectively,
and proved that such φ is also additive. Thus the Jordan multiplicative structure also
determines the Jordan ring structure of the standard operator algebras. In the present
paper, inspired by [1] and [2] we are interested in the questions of taking the indefinite
structures and the involution structures in consideration.

Let H and K be real or complex complete indefinite inner product spaces with † standing
for the conjugation related to the indefinite structures (see [3, 10]). The purpose of this paper
is to show that if Φ : B(H) → B(K) is a bijective map and satisfies

Φ(AB† + B†A) = Φ(A)Φ(B)† + Φ(B)†Φ(A) (1.1)

for every pair A, B ∈ B(H) or

Φ(AB†A) = Φ(A)Φ(B)†Φ(A) (1.2)

for every pair A, B ∈ B(H), then Φ is automatically linear or conjugate linear. Consequently,
such Φ are classified completely. In fact we show that Φ satisfies the multiplicative property
(1.1) if and only if there exist a nonzero real number c and a continuous invertible linear
or conjugate linear operator U with U †U = c−1I such that either Φ(A) = cUAU † for all
A or Φ(A) = cUA†U † for all A, that is, Φ is a †-isomorphism, or a †-anti-isomorphism,
or a conjugate †-isomorphism, or a conjugate †-anti-isomorphism. While, Φ satisfies the
multiplicative property (1.2) if and only if there exist a real number c �= 0 and bounded
invertible linear or conjugate linear operators U and V with U †U = c−1I and V †V = cI

such that either Φ(A) = UAV for all A or Φ(T ) = UA†V for all A. Applications to
Hilbert space case are also given. Let A be a factor C∗-algebra. A similar argument also
reveals that, if a bijective map Φ : A ⊗ M2(C) → A ⊗ M2(C) satisfies Φ(AB∗ + B∗A) =
Φ(A)Φ(B)∗+Φ(B)∗Φ(A) for every pair A, B ∈ A⊗M2(C), then Φ must be a C∗-isomorphism
or conjugate C∗-isomorphism.

Let us recall some conceptions and fix some notations. Denote F the real field R or the
complex field C. For every positive integer n, Mn(F) denotes the matrix algebra of all n×n

matrices over F. Let (H, [ · , · ]) and (K, [ · , · ]) be complete indefinite inner product spaces
and denote B(H, K) (B(H) if H = K) the set of all bounded linear operators from H into
K. For any T ∈ B(H, K), the indefinite conjugate of T with respect to the indefinite inner
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products [ · , · ] is an operator T † ∈ B(K, H) defined by the equation [Tx, y] = [x, T †y] for all
x ∈ H and y ∈ K. On the other hand, assume that Hi (i = 1, 2) are Hilbert spaces with inner
product 〈 · , · 〉 and Ji ∈ B(Hi) are self-adjoint invertible operators. Then, for each i = 1, 2,
(Hi, [ · , · ]Ji) is a complete indefinite inner product space, where [ · , · ]Ji = 〈Ji( · ), · 〉, which
is induced by Ji. It is clear that, with respect to [ · , · ]Ji , the indefinite conjugate T † of an
operator T ∈ B(H1, H2) is of the form T † = J−1

1 T ∗J2, in which T ∗ stands for the usual
conjugate of T related to the inner products 〈 · , · 〉. Sometimes we also call T † = J−1

1 T ∗J2

the (J1, J2)-conjugate of T . If H1 = H2 are the same Hilbert spaces and J1 = J2 = J , the
(J1, J2)-conjugate of an operator T is often called the J-conjugate of T (see [3, 10]).

§ 2 . Characterization of Jordan †-Skew Multiplicative Maps

In this section, the automatic additivity of Jordan †-skew multiplicative maps is proved,
and then a characterization of Jordan †-isomorphisms of operator algebras on indefinite
inner product spaces is given only by Jordan †-skew multiplicativity. The following is our
main result.

Theorem 2.1. Let H and K be (real or complex) complete indefinite inner product
spaces and let Φ : B(H) → B(K) be a bijective map. If Φ satisfies

Φ(AB† + B†A) = Φ(A)Φ(B)† + Φ(B)†Φ(A) (2.1)

for every pair A, B ∈ B(H), then Φ is additive.

Our approach is similar to that in [5] for the case that Φ(AB + BA) = Φ(A)Φ(B) +
Φ(B)Φ(A). The main technique we will use is the following argument which will be termed
a standard argument. Suppose A, B, S ∈ A are such that Φ(S) = Φ(A)+Φ(B). Multiplying
this equality by Φ(T )† (T ∈ A) from the right and the left, respectively, we get Φ(T )†Φ(S) =
Φ(T )†Φ(A) + Φ(T )†Φ(B) and Φ(S)Φ(T )† = Φ(A)Φ(T )† + Φ(B)Φ(T )†. Summing them, we
get

Φ(S)Φ(T )† + Φ(T )†Φ(S) = Φ(A)Φ(T )† + Φ(T )†Φ(A) + Φ(T )†Φ(B) + Φ(B)Φ(T )†.

It follows from (2.1) that

Φ(ST † + T †S) = Φ(AT † + T †A) + Φ(BT † + T †B).

Moreover, if

Φ(AT † + T †A) + Φ(BT † + T †B) = Φ(AT † + T †A + BT † + T †B),

then by injectivity of Φ, we have

ST † + T †S = AT † + T †A + BT † + T †B.
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Now assume that Φ satisfies the assumption in Theorem 2.1, we have to show that Φ is
additive. We divide the proof into several lemmas. For the sake of simplicity, without loss
of the generality, we assume that H = K.

Lemma 2.1. Φ(0) = 0.

Proof. Since Φ is surjective, we can find an A ∈ B(H) such that Φ(A) = 0. Therefore
Φ(0) = Φ(0A + A0) = 0.

Let H = H+ ⊕H− be a regular decomposition of H . We may assume that both H+ and
H− are nontrivial. In the sequel, we denote P1 ∈ B(H) be the fixed non-trivial self-adjoint
idempotent operator which has the matrix form

P1 =

(
I 0
0 0

)

according to the regular decomposition, where I is the identity operator on H+ (In the case
that H+ or H− is {0}, say H+ = 0, one may take any nonzero projection P1 in B(H−) with
inner product 〈 · , · 〉 = −[ · , · ], and the proof is almost the same). Let P2 = I − P1 and set
Aij = PiB(H)Pj , i, j = 1, 2. Then we have B(H) = A11+̇A12+̇A21+̇A22. In what follows,
we write Aij , Bij , · · · for the elements in Aij .

Lemma 2.2. Let S = S11 +S12 +S21 +S22 ∈ B(H). The following statements are true.
( i ) For Tij ∈ Aij (1 ≤ i, j ≤ 2), we have TijS +STij = TijSj1 +TijSj2 +S1iTij +S2iTij.
( ii ) If TijSjk = 0 holds for every Tij ∈ Aij (1 ≤ i, j, k ≤ 2), then Sjk = 0. Dually, if

SkiTij = 0 for all Tij ∈ Aij (1 ≤ i, j, k ≤ 2), then Ski = 0.
(iii) If TijS + STij ∈ Aij , for every Tij ∈ Aij (1 ≤ i �= j ≤ 2), then Sji = 0.
(iv) If SiiTii + TiiSii = 0 for every Tii ∈ Aii (i = 1, 2), then Sii = 0.
( v ) If TjjS +STjj ∈ Aij for every Tjj ∈ Ajj (1 ≤ i �= j ≤ 2), then Sji = 0 and Sjj = 0.

Dually, if TjjS +STjj ∈ Aji for every Tjj ∈ Ajj (1 ≤ i �= j ≤ 2), then Sij = 0 and Sjj = 0.

Proof. Obvious.

Lemma 2.3. Φ(Aii + Aij) = Φ(Aii) + Φ(Aij) (1 ≤ i �= j ≤ 2).

Proof. Since Φ is surjective, we may find an element S = S11 + S12 + S21 + S22 ∈ B(H)
such that

Φ(S) = Φ(Aii) + Φ(Aij). (2.2)

For T †
ji ∈ Aij , applying a standard argument to (2.2), we get Φ(T †

jiS + ST †
ji) = Φ(T †

jiAii +
AiiT

†
ji) + Φ(AijT

†
ji + T †

jiAij) = Φ(AiiT
†
ji). Therefore, T †

jiS + ST †
ji = AiiT

†
ji holds for every

T †
ji ∈ Aij . It follows from Lemma 2.2(iii) that Sji = 0. Hence by Lemma 2.2(i), we see that

T †
jiSjj + SiiT

†
ji = AiiT

†
ji (2.3)

for all T †
ji ∈ Aij . For T †

jj ∈ Ajj , applying a standard argument to (2.2) again, we obtain
that T †

jjS + ST †
jj = AijT

†
jj . Then Lemma 2.2(v) entails that Sij = 0 and Sjj = 0. Hence
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by Lemma 2.2(i), we get SijT
†
jj = AijT

†
jj for every T †

jj ∈ Ajj and thus Aij = Sij by Lemma
2.2(ii). Moreover from (2.3) we have that SiiT

†
ji = AiiT

†
ji holds for every T †

ji ∈ Aij . Hence
by Lemma 2.2(ii) we see that Aii = Sii. Consequently, S = Aii + Aij , as desired.

Lemma 2.4. Φ(Aii + Aji) = Φ(Aii) + Φ(Aji) (1 ≤ i �= j ≤ 2).

The proof of this lemma is similar to that of Lemma 2.3, and we omit it here.

Lemma 2.5. Φ(A12 + C12A22) = Φ(A12) + Φ(C12A22).

Proof. Since

A12 + B†
21A22 = (A12 + A22)(P1 + B†

21) + (P1 + B†
21)(A12 + A22),

by using (2.1), Lemma 2.3 and Lemma 2.4, we have

Φ(A12 + B†
21A22) = Φ(A12 + A22)Φ(P1 + B21)† + Φ(P1 + B21)†Φ(A12 + A22)

= (Φ(A12) + Φ(A22))(Φ(P1) + Φ(B21))†

+ ((Φ(P1) + Φ(B21))†(Φ(A12) + Φ(A22))

= Φ(A12)Φ(P1)† + Φ(A12)Φ(B21)† + Φ(A22)Φ(P1)†

+ Φ(A22)Φ(B21)† + Φ(P1)†Φ(A12)

+ Φ(B21)†Φ(A12) + Φ(P1)†Φ(A22) + Φ(B21)†Φ(A22)

= Φ(A12P1 + P1A12) + Φ(A22B
†
21 + B†

21A22)

+ Φ(A12B
†
21 + B†

21A12) + Φ(A22P1 + P1A22)

= Φ(A12) + Φ(B†
21A22).

Lemma 2.6. Φ(A21 + A22D21) = Φ(A21) + Φ(A22D21).

Proof. Note that

A21 + A22B
†
12 = (A21 + A22)(P1 + B†

12) + (P1 + B†
12)(A21 + A22).

Now we can complete the proof using a computation similar to that in the proof of Lemma
2.5.

Lemma 2.7. Φ is additive on A12.

Proof. Let A12, B12 ∈ A12 and choose S = S11 + S12 + S21 + S22 ∈ B(H) such that

Φ(S) = Φ(A12) + Φ(B12). (2.4)

For T †
22 ∈ A22, applying a standard argument to the equation (2.4) and using Lemma 2.5,

we get
Φ(T †

22S + ST †
22) = Φ(A12T

†
22) + Φ(B12T

†
22) = Φ((A12 + B12)T

†
22).
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Hence
T †

22S + ST †
22 = (A12 + B12)T

†
22 (2.5)

for every T †
22 ∈ A22. It follows from Lemma 2.2(v) that S22 = S21 = 0. Moreover, by

(2.5) and Lemma 2.2(i) we have S12T
†
22 = (A12 + B12)T

†
22 for every T †

22 ∈ A22. And then
S12 = A12 + B12.

Now there remains to prove that S11 = 0. For T †
21 ∈ A12, applying a standard argument

to (2.4) again, we get that T †
21S + ST †

21 = 0. Since S22 = S21 = 0, we see that S11T
†
21 = 0

for every T †
21 ∈ A12. Hence from Lemma 2.2(ii) we get S11 = 0.

Lemma 2.8. Φ is additive on A21.

Proof. Let A21, B21 ∈ A21 and choose S = S11 + S12 + S21 + S22 ∈ B(H) such that

Φ(S) = Φ(A21) + Φ(B21). (2.6)

For T †
22 ∈ A22, applying a standard argument to the equation (2.6) and using Lemma 2.6,

we get
T †

22S + ST †
22 = T †

22(A21 + B21) (2.7)

for every T †
22 ∈ A22. It follows from Lemma 2.2(v) that S22 = S12 = 0. Hence (2.7) becomes

T †
22S21 = T †

22(A21 + B21) for every T †
22 ∈ A22. This implies that S21 = A21 + B21.

To prove S11 = 0, let T †
12 ∈ A21. Applying a standard argument to (2.6) again, we get

that T †
12S + ST †

12 = 0. Since we already have S22 = S12 = 0, we get that T †
12S11 = 0 for

every T †
12 ∈ A21. Hence it follows from Lemma 2.2(ii) that S11 = 0.

Lemma 2.9. Φ is additive on Aii (i = 1, 2).

Proof. Let Aii, Bii ∈ Aii and choose S = S11 + S12 + S21 + S22 ∈ B(H) such that

Φ(S) = Φ(Aii) + Φ(Bii). (2.8)

Let j �= i. For T †
jj ∈ Ajj , applying a standard argument to (2.8), we get T †

jjS + ST †
jj = 0.

It follows from Lemma 2.2(v) that Sij = Sji = Sjj = 0.
There remains to prove that Sii = Aii+Bii. For T †

ji ∈ Aij , applying a standard argument
to (2.8) again, we get

Φ(ST †
ji + T †

jiS) = Φ(AiiT
†
ji) + Φ(BiiT

†
ji).

Hence by Lemmas 2.7 and 2.8, one sees that

ST †
ji + T †

jiS = (Aii + Bii)T
†
ji

for every T †
ji ∈ Aij . Since Sij = Sji = Sii = 0, it follows that SiiT

†
ji = (Aii + Bii)T

†
ji for

every T †
ji ∈ Aij . Hence, by Lemma 2.2(ii) we have that Sii = Aii + Bii.

Lemma 2.10. Φ is additive on P1A = A11 + A12.
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Proof. Let A11, B11 ∈ Aii and A12, B12 ∈ A12. Then by Lemmas 2.3, 2.7 and 2.9 we
see that

Φ((A11 + A12) + (B11 + B12)) = Φ((A11 + B11) + (A12 + B12))

= Φ(A11 + A12) + Φ(B11 + B12)

= Φ(A11) + Φ(A12) + Φ(B11) + Φ(B12)

= Φ(A11 + A12) + Φ(B11 + B12).

Lemma 2.11. Φ(A11 + A22) = Φ(A11) + Φ(A22).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(A11) + Φ(A22). (2.9)

For P1, applying a standard argument to (2.9) we have

Φ(P1S + SP1) = Φ(A11P1 + P1A11).

This implies that P1S+SP1 = 2A11. Multiplying P2 from the left and the right in the above
equality, we get that S12 = S21 = 0 and S11 = A11. Furthermore, a standard argument to
(2.9) yields that

Φ(ST †
22 + T †

22S) = Φ(A22T
†
22 + T †

22A22)

for every T †
22 ∈ A22. Hence by the injectivity of Φ, we have ST †

22 +T †
22S = A22T

†
22 +T †

22A22.
Since S12 = S21 = 0, in combination with the above equality, we get

(S22 − A22)T
†
22 + T †

22(S22 − A22) = 0

for every T †
22 ∈ A22. Hence S22 − A22 = 0. Consequently S = A11 + A22.

Lemma 2.12. Φ(A12 + A21) = Φ(A12) + Φ(A21).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(A12) + Φ(A21). (2.10)

For T †
21 ∈ A12, applying a standard argument to (2.10), we have

Φ(ST †
21 + T †

21S) = Φ(A12T
†
21 + T †

21A12) + Φ(A21T
†
21 + T †

21A21)

= Φ(A21T
†
21 + T †

21A21).

Hence by injectivity of Φ, we obtain

ST †
21 + T †

21S = A21T
†
21 + T †

21A21
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for every T †
21 ∈ A12. Multiplying this equality by P1 from the right, we get that T †

21S21 =
T †

21A21 for every T †
21 ∈ A12. Then it follows from Lemma 2.2(ii) that S21 = A21. Hence by

Lemma 2.2(i),
T †

21S22 + S11T
†
21 = 0 (2.11)

holds for every T †
21 ∈ A12. An argument similar to what has led to the equality S21 = A21

shows that S12 = A12.
Applying a standard argument to (2.10) again, we get

Φ(SP1 + P1S) = Φ(P1A12 + A12P1) + Φ(P1A21 + A21P1)

= Φ(A21) + Φ(A12) = Φ(S).

Therefore S = SP1 + P1S. This implies that S11 = 0. Hence we deduce from (2.11) and
Lemma 2.2(ii) that S22 = 0. Consequently, S = A12 + A21.

Lemma 2.13. Φ(A11 + A12 + A21) = Φ(A11) + Φ(A12) + Φ(A21).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that Φ(S) = Φ(A11) + Φ(A12) +
Φ(A21). Then, by Lemma 2.3 and Lemma 2.4, we have

Φ(S) = Φ(A11 + A12) + Φ(A21) (2.12)

and
Φ(S) = Φ(A11 + A21) + Φ(A12). (2.13)

For T †
12 ∈ A21, applying a standard argument to (2.12) we get

T †
12S + ST †

12 = A12T
†
12 + T †

12A11 + T †
12A12. (2.14)

Multiplying this equality by P1 from the left, we see that S12T
†
12 = A12T

†
12 for every T †

12 ∈
A21. So S12 = A12. Similarly, for T †

21 ∈ A12, applying a standard argument to (2.13), we
get S21 = A21. Multiplying (2.14) by P2 and P1 from the left and from the right, we get

S22T
†
12 + T †

12S11 = T †
12A11 (2.15)

for every T †
12 ∈ A21. Let T †

22 ∈ A22. Applying a standard argument to (2.12), we can easily
see that

Φ(ST †
22 + T †

22S) = Φ(A12T
†
22) + Φ(T †

22A21) = Φ(A12T
†
22 + T †

22A21)

by making use of Lemma 2.12. Therefore

ST †
22 + T †

22S = A12T
†
22 + T †

22A21

for every T †
22 ∈ A22. Multiplying this equality by P2 from the left and from the right, we get

that S22T
†
22 + T †

22S22 = 0 for every T †
22 ∈ A22. It follows from Lemma 2.2(iv) that S22 = 0.

Hence, by (2.15), we have S11 = A11. Consequently, S = A11 + A12 + A21.
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Proof of Theorem 2.1. It suffices to check that Φ(A11 +A12 +A21 +A22) = Φ(A11)+
Φ(A12) + Φ(A21) + Φ(A22).

Let S = S11 + S12 + S21 + S22 ∈ B(H) such that

Φ(S) = Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22). (2.16)

Then we have

Φ(P1S + SP1) = Φ(P1)Φ(S) + Φ(S)Φ(P1)

= Φ(P1)(Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22))

+ (Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22))Φ(P1)

= Φ(2A11) + Φ(A12) + Φ(A21)

= Φ(2A11 + A12 + A21),

making use of Lemma 2.13 in the last equality. It follows that P1S+SP1 = 2A11+A12+A21,
that is, 2S11 +S12 + S21 = 2A11 +A12 +A21. Multiplying the equality by P2 from the right
and the left, we get that S11 = A11, S21 = A21 and S12 = A12.

Let T †
21 ∈ A12. Applying a standard argument to (2.16) again we see that

Φ(T †
21S + ST †

21) = Φ(A11T
†
21) + Φ(A21T

†
21 + T †

21A21) + Φ(T †
21A22).

Furthermore, applying a standard argument to the above equality, we obtain

Φ(P1ST †
21 + P1T

†
21S + T †

21SP1) = Φ(P1A11T
†
21) + Φ(2T †

21A21P1) + Φ(T †
21A22)

= Φ(A11T
†
21 + 2T †

21A21 + T †
21A22),

making use of Lemma 2.10. Hence we have

T †
21S22 + S11T

†
21 + 2T †

21S21 = A11T
†
21 + 2T †

21A21 + T †
21A22.

Since we have shown that S11 = A11 and S21 = A21, it follows that T †
21S22 = T †

21A22 for
every T †

21 ∈ A12, and hence S22 = A22. Consequently, S = A11 + A12 + A21 + A22.
Now it is clear that Φ is additive, completing the proof.

The following result further gives a thorough classification of the maps which satisfies
the assumption in Theorem 2.1.

Theorem 2.2. Let H and K be (real or complex) complete indefinite inner product
spaces and let Φ : B(H) → B(K) be a bijective map. Then Φ satisfies (2.1), that is,

Φ(AB† + B†A) = Φ(A)Φ(B)† + Φ(B)†Φ(A)

for every pair A, B ∈ B(H), if and only if there exist a nonzero real number c and a linear
or conjugate linear bounded invertible operator U ∈ B(H, K) satisfying U †U = c−1I such
that Φ(A) = cUAU † for all A ∈ B(H) or Φ(A) = cUA†U † for all A ∈ B(H).
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Proof. We need only check the “only if” part. Assume that Φ satisfies the equation
(2.1) for every pair A, B ∈ B(H). By Theorem 2.1, Φ is additive. Note that

Φ(I) = Φ
(
I
(1

2
I
)†

+
(1

2
I
)†

I
)

= Φ(I)Φ
(1

2
I
)†

+ Φ
(1

2
I
)†

Φ(I)

= Φ
((1

2
I
)
I† + I†

1
2
I
)

= Φ
(1

2
I
)
Φ(I)† + Φ(I)†Φ

(1
2
I
)
.

This yields that Φ(I)† = Φ(I). Letting A = I, B = I in Equation (2.1), we get that
Φ(I)2 = Φ(I) by the additivity of Φ. Letting B = I in Equation (2.1), we have

2Φ(A) = Φ(A)Φ(I) + Φ(I)Φ(A).

Multiplying this equality by Φ(I) from the left and the right, we get Φ(I)Φ(A) = Φ(A)Φ(I),
which implies that Φ(I) = I since Φ(I)† = Φ(I) and Φ(I)2 = Φ(I). Furthermore, Φ(B†) =
Φ(B)†.

Since B(H) is a prime ring, as a Jordan ring automorphism, Φ must be a ring auto-
morphism or a ring anti-automorphism. If H is of infinite dimension, then by a result
in [7] Φ is linear or conjugate linear. Therefore there exists a linear or conjugate lin-
ear bounded invertible operator U on H such that Φ(A) = UAU−1 for all A ∈ B(H) or
Φ(A) = UJA∗JU−1 = UA†U−1 for all A ∈ B(H) (notice that A∗ = JA†J with J = 2P1−I,
where P1 is the projection from H onto H+ along H−). Because Φ preserves the † operation,
we see that U †U = αI for some nonzero real number α. Let c = α−1. Then we have either
Φ(A) = cUAU † for all A ∈ B(H) or Φ(A) = cUA†U † for all T ∈ B(H).

Assume now that H is finite dimensional with dim H = n and dimH+ = k. According to
the regular decomposition H = H+ ⊕H−, we take orthonormal bases {e1, e2, · · · , ek} in H+

and {ek+1, ek+2, · · · , en} in H− respectively. Then H is isomorphism to Fn equipped with

the indefinite inner product [ · , · ] = 〈J( · ), · 〉, where J = 2P1−I with P1 =
k∑

i=1

Eii ∈ Mn(F)

and Eij ∈ Mn(F) the unit matrix with entry 1 at (i, j) position and 0 elsewhere. So B(H) is
isomorphism to Mn(F) and we can regard Φ as a Jordan ring isomorphism of Mn(F). By a
result in [7] there exist an automorphism τ of F and an invertible matrix U ∈ Mn(F) such that
Φ(A) = UAτU−1 or Φ(A) = UAt

τU−1 for all U ∈ Mn(F). Here At denotes the transpose of
A and Aτ denotes the matrix obtained from A by applying τ on every entries of it. If Φ takes
the form Φ(A) = UAτU−1 for every A, then, since Φ(A†) = Φ(A)†, we have U(A†)τU−1 =
(U−1)†(Aτ )†U †. It follows that U †U(A†)τ = (Aτ )†U †U . Furthermore, JU∗JU(JA∗J)τ =
J(Aτ )∗JJU∗JU . This entails that U∗JUJ(A∗)τ = (Aτ )∗U∗JUJ . Replacing A by Eij in
this equality, we have U∗JUJEij = EijU

∗JUJ , which implies that U∗JUJ = αI for some
nonzero real number α. Thus we get (A∗)τ = (Aτ )∗ for all A ∈ Mn(F) which is clearly implies
that τ(λ) = τ(λ). Therefore, either τ(λ) = λ for every λ ∈ F or τ(λ) = λ for every λ ∈ F.
Let c = α−1. Then we have either Φ(A) = cUAU † for all A ∈ Mn(F) or Φ(A) = cUAU †

for all A ∈ Mn(F). Here A denotes the matrix obtained by taking conjugate operation on
every entries of A. For the second case, a similar argument shows that Φ(A) = cUAtU † for
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all A ∈ Mn(F) or Φ(A) = cU(A)tU † for all A ∈ Mn(F). However, it is easily checked that
these forms are equivalent to the forms stated in the theorem. The proof is completed.

Theorem 2.2 can be restated in another way.

Theorem 2.2′. Let Hi be (real or complex) Hilbert spaces and let Ji ∈ B(Hi) be invertible
self-adjoint operators, i = 1, 2. Assume that Φ : B(H1) → B(H2) is a bijective map. Then
Φ satisfies

Φ(AJ−1
1 B∗J1 + J−1

1 B∗J1A) = Φ(A)J−1
2 Φ(B)∗J2 + J−1

2 Φ(B)∗J2Φ(A)

for every pair A, B ∈ B(H1) if and only if there exist a nonzero real number c and a linear
or conjugate linear bounded invertible operator U ∈ B(H1, H2) satisfying J−1

1 U∗J2U = c−1I

such that Φ(A) = cUAJ−1
1 U∗J2 for all A ∈ B(H1) or Φ(A) = cUJ−1

1 A∗U∗J2 for all A ∈
B(H1).

In particular, we have

Corollary 2.1. Let H and K be (real or complex) Hilbert spaces and let Φ : B(H) →
B(K) be a bijective map. Then, Φ satisfies

Φ(AB∗ + B∗A) = Φ(A)Φ(B)∗ + Φ(B)∗Φ(A)

for every pair A, B ∈ B(H) if and only if there exists a unitary or a conjugate unitary
operator U ∈ B(H, K) such that either Φ(A) = UAU∗ for all A ∈ B(H) or Φ(A) = UA∗U∗

for all A ∈ B(H).

Remark 2.1. Theorem 2.2 still holds if we replace the equation (2.1) by the following
equation

Φ
(1

2
(AB† + B†A)

)
=

1
2
Φ(A)Φ(B)† +

1
2
Φ(B)†Φ(A) (2.17)

for every pair A, B ∈ B(H). Analogues of Theorem 2.2′ and Corollary 2.1 are also true. The
proofs are similar and omitted here.

Corollary 2.1 can also be generalized slightly to the C∗-algebra case.

Theorem 2.3. Let A be a factor C∗-algebra and let Φ : A⊗ M2(C) → A⊗ M2(C) be a
bijective map. Then

Φ(AB∗ + B∗A) = Φ(A)Φ(B)∗ + Φ(B)∗Φ(A) (2.18)

for every pair A, B ∈ A ⊗ M2(C) if and only if Φ is a C∗-isomorphism or a conjugate
C∗-isomorphism.

Proof. Denote by Eij the unit matrix with entry 1 at (i, j) position and 0 elsewhere,
i, j = 1, 2. Let Bij = A ⊗ Eij . Then B = A ⊗ M2(C) = B11+̇B12+̇B21+̇B22. Replacing †
operation by ∗ operation and applying the similar argument as that in the proof of Theorem
2.1, we see that Φ is additive. Moreover, Φ(I) = I, Φ(A∗) = Φ(A)∗ and Φ(A2) = Φ(A)2.
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For λ ∈ R+, we note that

Φ(λI) = Φ
(√λ

2
I

√
λ

2
I +

√
λ

2
I

√
λ

2
I
)

= Φ
(√λ

2
I
)
Φ
(√λ

2
I
)∗

+ Φ
(√λ

2
I
)
Φ
(√λ

2
I
)∗

≥ 0

and Φ(ρI) = ρI when ρ is a rational number. For every λ ∈ R, there exist two rational
number sequences {rn}, {sn} such that rn ≤ λ ≤ sn and lim rn = lim sn = λ when n → ∞.
Thus by the additivity of Φ, we have

rnI = Φ(rnI) ≤ Φ(λI) ≤ Φ(snI) = snI,

therefore Φ(λI) = λI. Further we have

Φ(λA) = Φ
((λ

2
I
)
A + A

(λ1
2

I
))

= Φ
(λ

2
I
)
Φ(A) + Φ(A)Φ

(λ

2
I
)

= λΦ(A),

that is, Φ is real linear. The facts

Φ(iI)∗ = Φ(−iI) = −Φ(iI) and Φ(iI)∗Φ(iI) = Φ(iI)Φ(iI)∗ = 1

together imply that Φ(iI) is unitary. Noting that

Φ(A(iI)∗ + (iI)∗A) = −Φ(A)Φ(iI) − Φ(iI)Φ(A),

we have

2Φ(iA) = Φ(A)Φ(iI) + Φ(iI)Φ(A). (2.19)

Multiplying (2.19) by Φ(iI)∗ from both sides, we get that Φ(iI)Φ(iA) = Φ(iA)Φ(iI). There-
fore Φ(iI) = ±iI. Moreover by (2.19) we have Φ(iA) = ±iΦ(A). Consequently Φ is linear
or conjugate linear. So Φ is a C∗-isomorphism or a conjugate C∗-isomorphism. The proof
of this theorem is completed.

Particularly, since every von Neumann algebra is locally matrix, we have the following

Corollary 2.2. Let A be a factor von Neumann algebra and let Φ : A → A be a bijective
map. Then

Φ(AB∗ + B∗A) = Φ(A)Φ(B)∗ + Φ(B)∗Φ(A)

holds for every pair A, B ∈ A if and only if Φ is a C∗-isomorphism or a conjugate C∗-
isomorphism.

§ 3 . Jordan †-Skew Triple-Multiplicative Maps

In this section, we turn to the discussion of the maps which preserve the †-skew triple-
product AB†A of operators on indefinite inner product spaces. We show that such maps
are automatically additive and can be classified completely, too.
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Theorem 3.1. Let H and K be two (real or complex) complete indefinite inner product
spaces and let Φ : B(H) → B(K) be a bijective map. Then Φ satisfies

Φ(AB†A) = Φ(A)Φ(B)†Φ(A) (3.1)

for every pair A, B ∈ B(H) if and only if there exist a real number c �= 0 and bounded
invertible linear or conjugate linear operators U : H → K and V : K → H with U †U = c−1I

and V †V = cI such that either Φ(A) = UAV for all A ∈ B(H) or Φ(A) = UA†V for all
A ∈ B(H).

Proof. Only the “only if” part needs to be checked. Assume that Φ satisfies (3.1). Let
us show that Φ has the desired form.

Since Φ is surjective, we can find an A ∈ B(H) such that Φ(A) = 0. Therefore Φ(0) =
Φ(A0†A) = Φ(A)Φ(0)†Φ(A) = 0.

We assert that Φ(I) is invertible and Φ(I)Φ(I)† = Φ(I)†Φ(I) = I. Let A = I and B be
arbitrary in the equality (3.1). We have that

Φ(B†) = Φ(I)Φ(B)†Φ(I). (3.2)

This yields that Φ(I) is invertible by the bijectivity of Φ. Multiplying the equality Φ(I) =
Φ(I†) = Φ(I)Φ(I)†Φ(I) by Φ(I)−1, we get that Φ(I)Φ(I)† = Φ(I)†Φ(I) = I.

Let Ψ(A) = Φ(A)Φ(I)†. Then Ψ(I) = I, and

Ψ(AB†A) = Φ(AB†A)Φ(I)† = Φ(A)Φ(B)†Φ(A)Φ(I)†

= Φ(A)Φ(B)†Ψ(A) = Ψ(A)Ψ(B)†Ψ(A).

It is obvious that Ψ(A†) = Ψ(A)†, Ψ(A2) = Ψ(A)2. Furthermore, we have

Ψ(ABA) = Ψ(A(B†)†A) = Ψ(A)Ψ(B†)†Ψ(A) = Ψ(A)Ψ(B)Ψ(A)

for every pair A, B ∈ B(H). Thus, by [7], Ψ is a Jordan ring isomorphism. The same reason
as that in the proof of Theorem 2.2 gives that Ψ has the form Ψ(A) = cUAU † (A ∈ B(H)) or
Ψ(A) = cUA†U † (A ∈ B(H)), where U : H → K is a bounded invertible linear or conjugate
linear operator with U †U = c−1I for some real number c �= 0. Let V = cU †Φ(I). Then
V †V = cI, and either Φ(A) = UAV for all A ∈ B(H) or Φ(T ) = UA†V for all A ∈ B(H),
and this completes the proof.

Like Theorem 2.2 can be restated as Theorem 2.2′, Theorem 3.1 also has a restatement
in terms of Hilbert space operators which we omit here. Particularly, we have the following

Corollary 3.1. Let H and K be two (real or complex) Hilbert spaces and let Φ : B(H) →
B(K) be a bijective map. Then Φ satisfies

Φ(AB∗A) = Φ(A)Φ(B)∗Φ(A)
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for every pair A, B ∈ B(H) if and only if there exist unitaries or conjugate unitaries U :
H → K and V : K → H such that either Φ(A) = UAV for all A ∈ B(H) or Φ(A) = UA∗V
for all A ∈ B(H).

It follows from Theorem 3.1 that we can get a characterization of Jordan †-isomorphisms
by Jordan †-skew triple-multiplicativity. In fact, a bijective map Φ : B(H) → B(K) is a
Jordan †-isomorphism if and only if it is unital and Φ(AB†A) = Φ(A)Φ(B)†Φ(A) for every
A, B.
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