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THE REGULAR SOLUTIONS OF THE ISENTROPIC
EULER EQUATIONS WITH DEGENERATE

LINEAR DAMPING∗∗∗
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Abstract

The regular solutions of the isentropic Euler equations with degenerate linear damp-
ing for a perfect gas are studied in this paper. And a critical degenerate linear damping
coefficient is found, such that if the degenerate linear damping coefficient is larger than
it and the gas lies in a compact domain initially, then the regular solution will blow up
in finite time; if the degenerate linear damping coefficient is less than it, then under
some hypotheses on the initial data, the regular solution exists globally.
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§ 1 . Introduction

In this paper we consider the following Cauchy problem of the isentropic Euler equations
with degenerate linear damping:{

∂tρ + div(ρu) = 0,

ρ(∂t + (u · ∇))u + ∇p = −α(t)ρu
(1.1)

with initial data

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), (1.2)

where ρ, u, p represent the density, velocity and pressure of a polytropic gas respectively, the
equation of state is p = k2ργ , 1 < γ ≤ 3, γ is the adiabatic coefficient, k > 0. x ∈ R

n, n ≥ 1.
α(t) is the damping coefficient, so α(t) ≥ 0, α(t) → 0 when t → ∞, we say that the damping
α(t)ρu is a degenerate linear damping. We assume that α(t) is Lipschitz continuous in this
paper.

Previous works in the field of Euler equations with damping are concentrated in equations
with constant damping coefficient, that is, α(t) is a constant α. When vacuum does not
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occurs, especially the density has a positive infimum, the global classical solutions exist
if the initial data is small enough in some sense (see [10, 11]). The damping αρu plays an
important and positive role in the existence of global classical solutions, since the supremum
of the initial data for the global existence of a classical solution is related to α. When some
functionals related to the initial data are large enough, the classical solution does not exist
globally, or we say the classical solution blows up in finite time (see [9, 10]).

When vacuum occurs, we usually study the regular solutions of (1.1), such as [5, 7]. Take

π =
2k

γ − 1
√

γ ρ(γ−1)/2.

Then the equations (1.1) can be written as:⎧⎪⎨⎪⎩
(∂t + u · ∇)π +

γ − 1
2

πdivu = 0,

(∂t + (u · ∇))u +
γ − 1

2
π∇π = −α(t)u.

(1.3)

Let ρ = 0, that is π = 0. Then the velocity u satisfies (∂t + (u · ∇))u = −α(t)u. This leads
to the following definition.

Definition 1.1. We say a solution (ρ, u) of (1.1) is a regular solution on R
n × [0, T ) if

and only if
( i ) (ρ, u) ∈ C1(Rn × [0, T )), ρ ≥ 0,
( ii ) p (ρ, S)(x, t) ∈ C1(Rn × [0, T )),
(iii) in outside of the support of ρ, u satisfies

(∂t + (u · ∇))u = −α(t)u. (1.4)

We first investigate the case α(t) ≡ α > 0 in (1.1). We prove that if the gas locates
initially in a compact domain, then the regular solution of (1.1) does not exist globally
(see Theorem 2.1). But when α(t) ≡ 0 and the initial gas locates in a compact domain,
then under some assumptions on initial velocity (see (H1), (H2)) and the initial density, the
regular solution of (1.1) exists globally (see [2, Theorem 1]). This motivates us to consider
the Euler equations with degenerate linear damping, that is, t → ∞, α(t) → 0. The other
forms of degenerate damping are not considered in this paper. When α(t) tends to zero
slowly, we can also prove the regular solution of (1.1) blows up in finite time (see Theorem
2.2). When α(t) tends to zero fast enough, under the same assumptions on the initial data
as that of it in [2], we prove that the regular solution of (1.1) exists globally (see Theorem
3.1). Furthermore, α(t) discussed in Theorem 2.2 and Theorem 3.1 is almost complete.

Remark 1.1. From our work we discover that the damping plays a negative role in the
existence of regular solution of Euler equations if the vacuum occurs. This is quite different
from the case of non-vacuum.

§ 2 . Non-existence of the Global Regular Solution

2.1. Linear damping case

We first consider the Euler equations with linear damping. Our result is as follows.
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Theorem 2.1. Suppose (ρ, u) is a regular solution of (1.1) on R
n × [0, T ) corresponding

to initial density ρ0, suppρ0 is compact and the total mass m =
∫

ρ0(x)dx > 0, α(t) ≡ α > 0.
Then the life span T must be finite.

Proof. The proof is similar to that in [5, 7]. Let Ω(t) = suppρ(x, t), Ω0 = suppρ0, R0 =
sup
x∈Ω0

|x|. For every x′ ∈ ∂Ω(t0), there exists a curve x(t) and a point x0 ∈ ∂Ω0 such that

dx(t)
dt

= u(x(t), t), x(0) = x0, x(t0) = x′.

So
d2x(t)

dt2
= ut(x(t), t) + (u(x(t), t) · ∇)u(x(t), t) = −αu(x(t), t) = −α

dx(t)
dt

,

and

x(t) = x0 +
1 − e−αt

α
u0(x0). (2.1)

This indicates that Ω(t) always stays in a compact domain. Let R∗ = R0 + sup
x∈∂Ω0

{|u0(x)|}
α .

Then from (2.1) we have

R(t) = sup
x∈Ω(t)

|x| = sup
x∈∂Ω(t)

|x| ≤ R∗.

We define
H(t) =

1
2

∫
Ω(t)

ρ(x, t)|x|2dx.

Note that ρ|∂Ω(t) = p|∂Ω(t) = 0. From the equations (1.1) we have

H ′(t) =
1
2

∫
Ω(t)

ρt(x, t)|x|2dx = −1
2

∫
Ω(t)

div(ρu)|x|2dx =
∫

Ω(t)

ρu · xdx,

H ′′(t) =
∫

Ω(t)

(ρu)t · xdx =
∫

Ω(t)

−[div(ρu)u + (ρu · ∇)u + ∇p + αρu] · xdx

=
∫

Ω(t)

(ρ(x, t)|u|2 + np(ρ, s))dx − α

∫
Ω(t)

ρu · xdx.

So we get

H ′′(t) + αH ′(t) =
∫

Ω(t)

(ρ(x, t)|u|2 + np(ρ, s))dx ≥
∫

Ω(t)

np(ρ, s)dx.

By Hölder inequality

m =
∫

Ω(t)

ρdx ≤
( ∫

Ω(t)

ργdx
)1/γ(∫

Ω(t)

dx
)1/γ′

= (V (t))1/γ′
( ∫

Ω(t)

ργdx
)1/γ

,

where 1
γ + 1

γ′ = 1. Then we get from the equation of state

n

∫
Ω(t)

p(ρ, s)dx = nk2

∫
Ω(t)

ργdx ≥ nk2mγ(V (t))−γ/γ′ ≥ nk2mγ(ωn(R∗)n)−γ/γ′ = η > 0,
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where ωn represents the volume of the unit ball in R
n. So we get the following estimate:

H ′′(t) + αH ′(t) ≥ η.

Solving this inequality we obtain

H(t) ≥ H(0) +
1
α

(
H ′(0) − η

α

)
(1 − e−αt) +

η

α
t.

On the other hand,

H(t) =
1
2

∫
Ω(t)

ρ(x, t)|x|2dx ≤ m

2
(R∗)2.

So

η

α
t ≤ m

2
(R∗)2 − H(0) − 1

α

(
H ′(0) − η

α

)
(1 − e−αt) ≤ m

2
(R∗)2 +

1
α

(
|H ′(0)| + η

α

)
.

Then T must be finite.
Theorem 2.1 points out that no matter what the positive constant α is, the regular

solution of (1.1) must blow up in finite time. As indicated in the first section, the Euler
equations with compactly supported initial density may possess global regular solution, so
we consider the degenerate linear damping.

2.2. Degenerate linear damping case

The equality (2.1) implies that the smaller α is, the larger R∗ is. This is also true for
α(t). So, if α(t) tends to zero slowly enough, the regular solution will also blow up in finite
time.

Theorem 2.2. Suppose that (ρ, u) is a regular solution of (1.1) on R
n × [0, T ), α(t) ∼

A
(1+t)θ (t → ∞), 0 < θ < 1, A > 0 or α(t) = A

1+t , A > n(γ−1)
2+n(γ−1) , suppρ0 is compact and

the total mass m > 0. Then the life span T must be finite.

Proof. The definitions of Ω(t), Ω0, R0, x(t) are exactly as those in the proof of Theorem
2.1. We have d2x(t)

dt2 = −α(t)dx(t)
dt and

x(t) = x0 + u0(x0)
∫ t

0

e−
�

s
0 α(τ)dτds = x0 + u0(x0)G(t). (2.2)

If α(t) → 0 (t → ∞) and G(t) =
∫ t

0
e−

� s
0 α(τ)dτds is bounded, then supp Ω(t) will stay

in a compact domain B(O, R∗), and we will easily prove the blow-up of the regular solution
in a way similar to the proof of Theorem 2.1. We also define H(t) = 1

2

∫
Ω(t)

ρ(x, t)|x|2dx.
Then we can get

H ′′(t) + α(t)H ′(t) =
∫

Ω(t)

(ρ(x, t)|u|2 + np(ρ, s))dx ≥
∫

Ω(t)

np(ρ, s)dx.

From the equation of state and the boundedness of G(t), we have

n

∫
Ω(t)

p(ρ, s)dx ≥ nk2
( ∫

Ω(t)

ρdx
)γ(∫

Ω(t)

dx
)− γ

γ′ ≥ nk2mγ(V (t))−γ/γ′ ≥ η > 0,

so
H ′′(t) + α(t)H ′(t) ≥ η.
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Multiplying the last inequality by e
�

t
0 α(s)ds and then integrating it on [0, t], we have

e
� t
0 α(s)dsH ′(t) − H ′(0) ≥ η

∫ t

0

e
� s
0 α(τ)dτds.

By the boundedness of G(t) we have e−
� t
0 α(s)ds → 0 (t → ∞), so e

� t
0 α(s)ds → ∞ (t → ∞),

and we can easily prove lim
t→∞

�
t
0 e

� s
0 α(τ)dτ ds

e
� t
0 α(s)ds

= +∞. There exists T0 > 0 such that H ′(t) ≥
H ′(0)e−

�
t
0 α(s)ds + 2 ≥ 1 when t > T0. Then by integrating it on [T0, t] we obtain

H(t) ≥ H(T0) + t − T0.

On the other hand, we have

H(t) =
1
2

∫
Ω(t)

ρ(x, t)|x|2dx ≤ m

2
(R∗)2.

So t must be finite.
If α(t) = A

1+t , A > 1, then g(t) = e−
�

t
0 α(s)ds = 1

(1+t)A , G(t) =
∫ t

0 g(s)ds <
∫∞
0 g(t)dt <

+∞. Or if α(t) ∼ A
(1+t)θ (t → ∞), 0 < θ < 1, A > 0, then it is easy to deduce that∫∞

0
g(t)dt < ∞ by the fact that lim

t→∞

� t
0 α(s)ds

A
1−θ [(1+t)(1−θ)−1]

= lim
t→∞

α(t)
A

(1+t)θ
= 1. G(t) is bounded on

both these occasions.
Then we consider the case of α(t) = A

1+t ,
n(γ−1)

2+n(γ−1) < A ≤ 1. First we suppose A < 1.
Then g(t) = 1

(1+t)A , G(t) = 1
1−A [(1 + t)(1−A) − 1], and

R(t) = sup
x∈Ω(t)

|x| = sup
x∈∂Ω(t)

|x| ≤ R0 + G(t) sup
x∈∂Ω(t)

|u0(x)| ≤ R0 + BG(t) = d∗(t).

Repeat the deduction above we obtain

H ′′(t) + α(t)H ′(t) =
∫

Ω(t)

(ρ(x, t)|u|2 + np(ρ, s))dx ≥
∫

Ω(t)

np(ρ, s)dx ≥ nk2mγ(V (t))−γ/γ′

≥ nk2mγ(ωn(d∗(t))n)−(γ−1) = C(R0 + BG(t))−n(γ−1),

so we have
d

dt

(
e
�

t
0 α(s)dsH ′(t)

) ≥ Ce
�

t
0 α(s)ds(R0 + BG(t))−n(γ−1).

Integrating the last inequality on [0, t], we have

H ′(t) ≥ e−
� t
0 α(s)dsH ′(0) + e−

� t
0 α(s)ds

∫ t

0

Ce
� s
0 α(τ)dτ (R0 + BG(s))−n(γ−1)ds

= H ′(0)g(t) + F (t).

Again integrating the last inequality on [0, t], we have

H(t) ≥ H(0) + H ′(0)G(t) +
∫ t

0

F (s)ds. (2.3)

On the other hand, we have

H(t) =
1
2

∫
Ω(t)

ρ(x, t)|x|2dx ≤ m

2
(d∗(t))2 ≤ m

2
(R0 + BG(t))2. (2.4)
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We calculate the following limit

lim
t→∞

∫ t

0
F (s)ds

m
2 (R0 + BG(t))2

= lim
t→∞

F (t)
m(R0 + BG(t))g(t)

= lim
t→∞

∫ t

0
Ce

� s
0 α(τ)dτ (R0 + BG(s))−n(γ−1)ds

m(R0 + BG(t))

= lim
t→∞

Ce
� t
0 α(τ)dτ (R0 + BG(t))−n(γ−1)

mBg(t)

= lim
t→∞

C(1 + t)2A

mB(R0 + B
1−A ((1 + t)1−A − 1))n(γ−1)

=
C

mB

(1 − A

B

)n(γ−1)

lim
t→∞(1 + t)2A−(1−A)n(γ−1).

So if 2A − (1 − A)n(γ − 1) > 0, that is, A > n(γ−1)
2+n(γ−1) , we have

lim
t→∞

∫ t

0
F (s)ds

m
2 (R0 + BG(t))2

= +∞. (2.5)

From (2.3)–(2.5) we can draw the conclusion that t must be finite. So we have proved that
if 1 > A > n(γ−1)

2+n(γ−1) then the life span T of the regular solution must be finite.
When α(t) = 1

1+t , we have g(t) = 1
(1+t) , G(t) = ln(1+ t). The same deduction gives that

the life span T of the regular solution must be finite, we omit the proof.

From the proof of Theorem 2.2, we can also conclude that if A = n(γ−1)
2+n(γ−1) and

C

mB

(1 − A

B

)n(γ−1)

=
nk2

B

(m

ωn

)(γ−1)(1 − A

B

)n(γ−1)

> 1,

then the life span T of the regular solution must be finite.

Remark 2.1. Suppose that (ρ, u) is a regular solution of (1.1) on R
n × [0, T ), α(t) =

A
1+t , A = n(γ−1)

2+n(γ−1) , suppρ0 is compact. There exists a constant m∗ > 0 depending on n, γ

and sup
x∈∂Ω0

|u0(x)|, such that if the total mass m > m∗, the life span T of the regular solution

must be finite.

§ 3 . Global Existence of the Regular Solution

3.1. Main results on global existence

Because the classical solution of the equations (1.3) corresponds to the regular solution
of the equations (1.1), we will prove the existence of the classical solution of (1.3) to obtain
the existence of the regular solution of (1.1). Now we study the Cauchy problem of (1.3)
with initial data

π(x, 0) = π0(x) =
2k

γ − 1
√

γ ρ
(γ−1)/2
0 (x), u(x, 0) = u0(x). (3.1)
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Since vacuum occurs, (0, ū) is considered as an approximate solution of the Cauchy problem
(1.3), (3.1). Thus the approximate problem is as follows:{

ūt + (ū · ∇)ū = −α(t)ū,

ū(x, 0) = u0(x).
(3.2)

Solving it, we obtain

ū(X(x0, t), t) = u0(x0)g(t), (3.3)

where

X(x0, t) = x0 + G(t)u0(x0), (3.4)

g(t) = e
� t
0 −α(s)ds, G(t) =

∫ t

0

g(s)ds. (3.5)

We differentiate (3.3) with respect to x0 and get

(I + G(t)Du0(x0))Dū(X(x0, t), t) = Du0(x0)g(t).

In order to solve for Dū, the matrix I + G(t)Du0(x0) must be invertible for all t. And
Theorem 2.2 implies that G(t) → +∞ (t → ∞) is necessary for the existence of regular
solution of (1.1), so we need the spectrum of Du0 to be bounded away from real negative
numbers. Thus we assume that u0 satisfies

(H1) Du0 ∈ L∞(Rn), D2u0 ∈ Hm−1(Rn),

(H2) There exists δ > 0, such that for all x ∈ R
n, dist(SpDu0(x), R−) ≥ δ,

where dist represents the distance and Sp the spectrum. From the assumptions (H1), (H2),
we obtain the existence of the global classical solution of (3.2). But the hypothesis (H2)
implies that u is not in the Sobolev space Hm(Rn). Also by (H1), we have u0 ∈ Hm+1

loc (Rn)
and

ū ∈ C([0,∞), Hm+1
loc (Rn)) ∩ C1([0,∞), Hm

loc(R
n)).

We denote X = {f : R
n × R

+ → R
n | Du0 ∈ L∞(Rn), D2u0 ∈ Hm−1(Rn)}, its norm is

denoted by ‖ · ‖X. We also denote by | · |q the norm of Lq(Rn), by ‖ · ‖0 the norm of L2(Rn),
and by ‖ · ‖m the norm of Hm(Rn). Now we state the main results in this section as follows:

Theorem 3.1. Let α(t) = A
1+t , 0 < A < 1 − 1

a or α(t) = O
(

A
(1+t)θ

)
(t → ∞), θ > 1,

where a = min{2, 1+ γ−1
2 n}. Suppose that m > 1+ n

2 , u0 satisfies the hypotheses (H1), (H2),
ρ
(γ−1)/2
0 ∈ Hm(Rn) and is sufficiently small, suppρ0 is compact. Then the Cauchy problem

(1.1), (1.2) has a global regular solution (ρ, u) satisfying

(ρ(γ−1)/2, u − ū)T ∈ C([0,∞), Hm(Rn)) ∩ C1([0,∞), Hm−1(Rn)).

Indeed we prove the existence of the classical solution of the Cauchy problem (1.3), (3.1).
To prove Theorem 3.1, we adapt the proof of [2] with some improvements to our case. And
the solution (π, u) we obtained here has the following estimate.

Theorem 3.2. Under the same assumptions in Theorem 3.1, the solution in Theorem
3.1 satisfies
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( i ) for all 1 ≤ k ≤ m, t ≥ 0, ‖DkU(t)‖0 ≤ C(1 + G(t))−(k+r),
( ii ) for all t ≥ 0, |U |∞ ≤ C(1 + G(t))1−a,
(iii) for all t ≥ 0, |DU |∞ ≤ C(1 + G(t))−a,

where U = (π, u− ū)T , r = min{1, γ−1
2 n}− n

2 = a− 1− n
2 , C depends on δ, ‖u0‖X , ‖π0‖m

and
∫ ∞

0

(1 + G(t))−adt. If α(t) = O( A
(1+t)θ ), θ > 1, then G(t) ∼ t; and if α(t) = A

1+t , 0 <

A < 1 − 1
a , then G(t) ∼ t1−A.

Remark 3.1. If n(γ−1) ≤ 2, then a = min{2, 1+ γ−1
2 n} = 1+ γ−1

2 n, 1− 1
a = n(γ−1)

2+n(γ−1) ,
it seems hardly possible to find other α(t) than those discussed in Theorem 2.2 and Theorem
3.1. For almost all the polytropic gases, n(γ − 1) ≤ 2, so our conclusions show that α(t) =

n(γ−1)
(2+n(γ−1))(1+t) is the critical degenerate damping coefficient.

3.2. Local existence

We now prove the local existence of the Cauchy problem (1.3), (3.1). It is convenient to
write the equations (1.3) as

∂tV +
n∑

i=1

Ai(V )∂xiV = −α(t)Ṽ ,

where V = (π, u1, · · · , un)T , Ṽ = (0, u1, · · · , un)T , Ai(V ) are (n + 1) × (n + 1) matrices:

Ai(V ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui 0 · · · γ−1
2 π · · · 0

0 ui 0 0
...

...
. . .

...
γ−1

2 π 0 · · · ui · · · ...
...

...
. . . 0

0 0 · · · · · · 0 ui

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that every element in Ai(V ) is linear in V , which will simplify the calculation.
Since u0∈̄Hm(Rn), we cannot apply directly the theory of symmetric hyperbolic system,

as in [3, 6]. Let R > 0 be such that suppρ0 = suppπ0 ⊂ B(O, R). We set ϕ ∈ C∞
0 (Rn)

satisfying ϕ = 1 on B(O, R + 2η), where η is a positive number. Then we consider the
Cauchy problem (1.3) with the initial data (πϕ

0 , uϕ
0 )T = (π0, u0ϕ)T ∈ Hm(Rn). There exists

a solution (πϕ, uϕ)T ∈ C([0, Tex), Hm(Rn)) ∩ C1([0, Tex), Hm−1(Rn)), that is, (πϕ, uϕ)T is
a classical solution of (1.3) on [0, Tex). Note that (0, ū)T is also a classical solution of (1.3)
with initial data (0, u0)T .

For every ε > 0, we set M = sup
0≤t≤Tex−ε

(γ−1
2 |πϕ|∞ + |uϕ|∞), T = min{Tex − ε, η

2M − ε}.
Let

Ω = {(x, t) | 0 ≤ t ≤ T, x ∈ B(O, R + η + Mt)},
we define

(π, u)T =

{
(πϕ, uϕ)T in Ω,

(0, ū)T in Ωc = (Rn × [0, T ])\Ω.

Then we will prove that (π, u)T is a solution of Cauchy problem (1.3), (3.1) on [0, T ] with
initial data (π0, u0)T . In fact, (π, u)T is a solution of (1.3) in Ω and Ωc. We need only to
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prove that (π, u)T is continuous across the lateral boundary M of Ω. Set

D = {(x, t) | 0 ≤ t ≤ T, x ∈ B(x0, η − Mt), x0 ∈ S(O, R + η)}.

We will prove that (πϕ, uϕ)T and (0, ū)T are equal on domain D, and it is easily deduced that
M lies in the interior of D. Since (πϕ, uϕ)T and (0, ū)T belong to Hm on every horizontal
section of D, so if they are equal on D, then (π, u)T is a solution of Cauchy problem of (1.3),
(3.1) on [0, T ]. We will utilize the local uniqueness of the equations (1.3) to prove this. See
Proposition 1 in [2] and the proof after it, we omit the detail, since the term −α(t)u does
not influence this property. And the solution (π, u)T satisfies

(π, u − ū)T ∈ C([0, T ), Hm(Rn)) ∩ C1([0, T ), Hm−1(Rn)).

3.3. Estimates for the approximate solution

Under the assumptions (H1), (H2), we have obtained the global classical solution of the
approximate equations. Furthermore, the solution has the following property.

Proposition 3.1. Suppose that u0 satisfies (H1), (H2). Then the global solution ū saits-
fies

( i ) Dū(x, t) =
(

I
1+G(t) + K(x,t)

(1+G(t))2

)
g(t), for all x ∈ R

n, t ≥ 0,

( ii ) |D2ū|∞ ≤ C(1 + G(t))−3g(t),

(iii) ‖Dlū‖0 ≤ Clg(t)(1 + G(t))n/2−l−1, 2 ≤ l ≤ m + 1,

where K(x, t) is a function matrix of n × n and |K(x, t)|∞ ≤ C̃, constants C, Cl, C̃ only
depend on n, m, δ, ‖u0‖X.

Before the proof of this proposition, we give the following lemma.

Lemma 3.1. Suppose that u0 satisfies (H1), (H2). Then
( i) there exists a constant K = K(δ, ‖Du0‖∞), such that |(Du0)−1|∞ ≤ K;
(ii) also there exists a constant L = L(δ, ‖Du0‖∞), such that |(I + G(t)Du0)−1|∞ ≤

L
1+G(t) .

We omit the proof of this lemma, see Remark 1 of [2]. The difference is that G(t) replaces
t.

Proof of Proposition 3.1. We differentiate (3.3) with respect to x0 to obtain

(I + G(t)Du0(x0))Dū(X(x0, t), t) = Du0(x0)g(t),

so

Dū(X(x0, t), t) = (I + G(t)Du0(x0))−1Du0(x0)g(t). (3.6)

Let

Dū(X(x0, t), t) =
( I

1 + G(t)
+

K(x0, t)
(1 + G(t))2

)
g(t),

where K(x0, t) = (1 + G(t))2(I + G(t)Du0(x0))−1Du0(x0) − (1 + G(t))I. Since Du0 ∈ L∞,
by Lemma 3.1(ii), K(x0, t) is bounded when G(t) is bounded. And if G(t) is large enough,
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we have |(G(t))−1(Du0(x0))−1|∞ � 1, so

K(x0, t) =
(1 + G(t))2

G(t)
(I + (G(t))−1(Du0(x0))−1)−1 − (1 + G(t))I

=
(1 + G(t))2

G(t)

(
I − (Du0(x0))−1

G(t)
+ O

( 1
(G(t))2

))
− (1 + G(t))I

=
1 + G(t)

G(t)
I −

(1 + G(t)
G(t)

)2

(Du0(x0))−1 + O
( 1

G(t)

)
.

That is, if G(t) is large enough, then K(x0, t) is bounded. So K(x0, t) is also bounded for
all x0, t and K(x, t) is bounded for all x, t. So we have proved (i).

Differentiate the equality (3.6) with respect to x0. In a way similar to the proof of
Proposition 2(iii) in [2], replacing I + tDū with I + G(t)Dū, we can obtain

|D2ū|∞ ≤ C(1 + G(t))−3g(t),

where g(t) comes from g(t) in the right-hand side of (3.6). Differentiating (3.6) with respect
to Dk

x0
, also by the the same induction as the proof of Proposition 2(ii) in [2], we can prove

(iii). (1 + G(t))n/2 in the conclusions is brought about by the Jacobi determinant of the
transformation x → X(x0, t). We omit the proof.

3.4. Energy estimates

Now we estimate (π, u− ū) ∈ Hm(Rn) in order to obtain the global existence of classical
solution. Let w = u − ū. By (1.3) and (3.2) we know that (π, w) satisfies⎧⎪⎨⎪⎩

(∂t + u · ∇)π +
γ − 1

2
πdivw = −ū · ∇π − γ − 1

2
πdivū,

(∂t + (w · ∇))w +
γ − 1

2
π∇π = −(ū · ∇)w − (w · ∇)ū − α(t)w.

(3.7)

Let U = (π, w)T , U = (0, ū)T , Ũ = (0, w)T . Then we write (3.7) into

∂tU +
n∑

i=1

Ai(U)∂xiU = −B(DU, U) −
n∑

i=1

ūi∂xiU − α(t)Ũ , (3.8)

where

B(DU, U) =

(
γ−1

2 πdivū

(w · ∇)ū

)
. (3.9)

Define

Yk =
( ∫

Rn

DkU · DkUdx
)1/2

, Z(t) =
m∑

k=0

(1 + G(t))kYk, (3.10)

where we introduce the powers (1+G(t))k in Z(t) to balance the different decay rates of Yk,
which are suggested by ū. Since U(t), Z(t) ∈ Hm(Rn), m > 1+ n

2 , we have DlU ∈ L∞, l ≤ 1.
Before we give the energy estimates, we cite some known results on Gagliardo-Nirenberg type
inequalities (see Theorem on page 125 in [8]) and write them as the following Lemmas 3.2
and 3.3.
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Lemma 3.2. (Gagliardo-Nirenberg Inequality) Suppose that z ∈ Hi(Rn) ∩ L∞(Rn),
and integers i, j satisfy 0 ≤ j ≤ i. Then ∂jz ∈ L2i/j(Rn) and there exists a constant C only
depending on n, i, j such that

|∂jz|2i/j ≤ C|z|1−j/i
∞ ‖Diz‖j/i

0 . (3.11)

Lemma 3.3. Suppose that z ∈ Hi(Rn) and i > n
2 . Let θ = n

2i . Then

|z|∞ ≤ C‖z‖1−θ
0 ‖Diz‖θ

0. (3.12)

From Lemma 3.3, we can deduce easily the following lemma.

Lemma 3.4. Since U(t) ∈ Hm(Rn), m > 1+ n
2 , there exists a constant C > 0 depending

on n, m only, such that

|DlU(t)|∞ ≤ C(1 + G(t))−l−n/2Z(t), l = 0, 1.

We now estimate Yk. Differentiate (3.8) with respect to Dk and make inner product with
DkU , then integrate it on R

n to obtain

1
2

d

dt

∫
Rn

DkU · DkU(x, t)dx + α(t)
∫

Rn

Dkw · Dkw(x, t)dx

=
∫

Rn

Rk(U)(x, t)dx +
∫

Rn

Sk(U, U)(x, t)dx. (3.13)

Here we have utilized the symmetry of Ai to integrate by parts, and

Rk(U) =
1
2

n∑
i=1

DkU · ∂xiA
i(U)DkU

− DkU ·
n∑

i=1

(Dk(Ai(U)∂xiU) − Ai(U)∂xiD
kU), (3.14)

Sk(U, U) = −DkU · DkB(DU, U) +
1
2

n∑
i=1

∂xi ū
iDkU · DkU

− DkU ·
n∑

i=1

(Dk(ūi∂xiU) − ūi∂xiD
kU). (3.15)

We now devote ourselves to estimating some integrals of Rk(U) and Sk(U, U). The conclu-
sions are given as a series of lemmas.

Lemma 3.5. There exist constants C1, C > 0 depending on n, m only, such that∣∣∣ ∫
Rn

Rk(U)(x, t)dx
∣∣∣ ≤ C1|DU |∞Y 2

k ≤ C(1 + G(t))−1−n/2Z(t)Y 2
k .

The proof of Lemma 3.5 is the same as the proof of estimate of Rk in [2] by using
Gagliardo-Nirenberg inequality (3.11) and Hölder inequality. We omit the proof.

We estimate the integral of Sk(U, U) similar to [2], we divide Sk(U, U) into two parts:
S1

k(U, U) containing the terms in the derivatives of ū of first order, and the remaining part
S2

k(U, U). We first estimate the integral of S1
k(U, U).
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Lemma 3.6. There exists a constant C′ > 0 depending on n, m, γ, δ, ‖u‖X only, such
that ∫

Rn

S1
k(U, U)(x, t)dx +

k + r

1 + G(t)
g(t)Y 2

k ≤ C′YkZ(1 + G(t))−k−2g(t).

Proof. From (3.15) we know that S1
k(U, U) has the following form

S1
k(U, U) = −DkU · B(DU, DkU) +

1
2

n∑
i=1

∂xi ū
iDkU · DkU

−
∑

β1β2...βk

∂k
β1β2···βk

U ·
k∑

j=1

n∑
i=1

∂βj ū
i∂k−1

β1···βj−1βj+1···βk
∂xiU, (3.16)

where ∂βj means the differentiation with respect to one component of x. By Proposition
3.1(i) we can estimate the integrals as follows∫

Rn

−DkU · B(DU, DkU)dx = −
∫

Rn

(
Dkπ

γ − 1
2

Dkπdivū +
n∑

i,j=1

Dkwi∂xi ū
jDkwj

)
dx

= −
∫

Rn

(γ − 1
2

|Dkπ|2 ng(t)
1 + G(t)

+
g(t)

1 + G(t)
|Dkw|2 + I1

)
dx,∫

Rn

1
2

n∑
i=1

∂xi ū
iDkU · DkUdx =

∫
Rn

( ng(t)
2(1 + G(t))

|DkU |2 + I2

)
dx,

−
∫

Rn

∑
β1β2···βk

∂k
β1β2···βk

U ·
k∑

j=1

n∑
i=1

∂βj ū
i∂k−1

β1···βj−1βj+1···βk
∂xiUdxv=−

∫
Rn

( kg(t)
1 + G(t)

|DkU |2+I3

)
dx,

where the integrals of I1, I2, I3 have the same estimate∣∣∣ ∫
Rn

Ijdx
∣∣∣ ≤ C

g(t)
(1 + G(t))2

Y 2
k .

Combining the estimates above we have∣∣∣ ∫
Rn

(
S1

k(U, U)(x, t)+
g(t)

1 + G(t)
|DkU |2

(
k− n

2

)
+

g(t)
1 + G(t)

(γ − 1
2

n|Dkπ|2 + |Dkw|2
))

dx
∣∣∣

≤ C′ g(t)
(1 + G(t))2

Y 2
k ≤ C′g(t)YkZ(1 + G(t))−k−2.

Let r = min{ γ−1
2 n − n

2 , 1 − n
2 }. From the last inequality we can deduce easily the estimate

needed.

Lemma 3.7. There exists a constant C′′ > 0 depending on n, m, γ, δ, ‖u‖X only such
that ∣∣∣ ∫

Rn

S2
k(U, U)(x, t)dx

∣∣∣ ≤ C′′YkZ(1 + G(t))−k−2g(t).

Proof. From (3.15) we know that S2
k(U, U) is the sum of the following terms (neglecting

γ−1
2 ) of the form ∂kU∂lU∂k+1−lU, l ≤ k − 1. We estimate it in two cases.
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(1) l = 0, 1. By Lemma 3.4 and Proposition 3.1 we have∣∣∣ ∫
Rn

∂kU∂lU∂k+1−lU(x, t)dx
∣∣∣ ≤ |∂lU |∞‖∂kU‖0‖∂k+1−lU‖0

≤ CYk(1 + G(t))−l−n/2Z(t)(1 + G(t))n/2−(k+2−l)g(t)

≤ CYkZg(t)(1 + G(t))−(k+2).

(2) 2 ≤ l ≤ k − 1. We use Gagliardo-Nirenberg inequality on ∂U and ∂2ū to obtain

|∂lU |2k−2
l−1

≤ C|DU |1−
l−1
k−2∞ ‖Dk−1U‖

l−1
k−2
0 ,

|∂k+1−lU |2 k−2
k−1−1

≤ C|D2U |1−
k−l−1

k−2∞ ‖DkU‖
k−l−1

k−2
0 .

Since 1
2 + l−1

2(k−2) + k−l−1
2(k−2) = 1, by Proposition 3.1, Lemma 3.4 and Hölder inequality, we

have∣∣∣ ∫
Rn

∂kU∂lU∂k+1−lU(x, t)dx
∣∣∣ ≤ ‖∂kU‖0|∂lU |2k−2

l−1
|∂k+1−lU |2 k−2

k−1−1

≤ CYk|DU |1−
l−1
k−2∞ ‖Dk−1U‖

l−1
k−2
0 |D2U |1−

k−l−1
k−2∞ ‖DkU‖

k−l−1
k−2

0

≤ C′′Yk((1 + G(t))−1−n/2Z)
k−l−1

k−2 ((1 + G(t))−k+1Z)
l−1
k−2

· ((1 + G(t))−3g(t))
l−1
k−2 ((1 + G(t))n/2−k−1g(t))

k−l−1
k−2

≤ C′′Yk(t)Z(t)g(t)(1 + G(t))−k−2.

Now we return to (3.13). Combining Lemmas 3.5–3.7 we have the following estimate

1
2

d

dt
(Yk(t)2) + α(t)

∫
Rn

Dkw · Dkw(x, t)dx +
k + r

1 + G(t)
g(t)Y 2

k

≤ C(1 + G(t))−1−n/2Z(t)Y 2
k + C′YkZ(1 + G(t))−k−2g(t), (3.17)

where we combine the constants C′, C′′ into a new constant C′. Neglecting α(t)
∫

Rn Dkw ·
Dkwdx, we get

dYk(t)
dt

+
k + r

1 + G(t)
g(t)Yk ≤ C(1 + G(t))−1−n/2Z(t)Yk + C′Z(1 + G(t))−k−2g(t).

Multiplying the above inequality by (1 + G(t))k, we have

d((1 + G(t))kYk(t))
dt

+
r

1 + G(t)
g(t)(1 + G(t))kYk

≤ C(1 + G(t))−1−n/2Z(t)(1 + G(t))kYk + C′Z(1 + G(t))−2g(t).

We sum the above inequalities from k = 0 to k = m to have

dZ(t)
dt

+
r

1 + G(t)
g(t)Z(t) ≤ C(1 + G(t))−1−n/2Z(t)2 + C′Z(t)(1 + G(t))−2g(t), (3.18)

where the constant C′ contains the multiplier m + 1.
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Now we will prove that Z(t) exists globally if Z(0) is small enough. We first give the
following lemma.

Lemma 3.8. Let α(t) = A
1+t , 0 < A < 1− 1

a or α(t) = O
(

A
(1+t)θ

)
(t → ∞), θ > 1, where

a = min{2, 1 + γ−1
2 n}. There exists a constant M > 0 depending on n, m, γ, δ, ‖u‖X and∫ ∞

0

(1 + G(t))−adt only such that if 0 < y(0) < 1
M , the solution of the following differential

equation ⎧⎪⎨⎪⎩
dy

dt
+

r

1 + G(t)
g(t)y = C(1 + G(t))−1−n/2y2 + C′y(1 + G(t))−2g(t),

y(0) = Z(0)

exists on [0, +∞).

Proof. We solve the differential equation to obtain

y(t) =
(1 + G(t))−r e

C′G(t)
1+G(t)

1
Z(0) −

∫ t

0
C(1 + G(s))−a e

C′G(s)
1+G(s) ds

.

Since 1 ≤ e
C′G(t)
1+G(t) ≤ eC′

, the convergence of the integral
∫∞
0 (1 + G(s))−a e

C′G(s)
1+G(s) ds is

necessary for the global existence of y(t), so
∫∞
0 (1 + G(s))−ads must converge. If

∫∞
0 (1 +

G(s))−ads converges, then∫ ∞

0

C(1 + G(s))−a e
C′G(s)
1+G(s) ds ≤ CeC′

∫ ∞

0

(1 + G(s))−ads = M.

When α(t) = A
1+t , 0 < A < 1 − 1

a or α(t) = O( A
(1+t)θ ), θ > 1, by (3.5) it is easy to prove

that
∫∞
0 (1+G(s))−ads converges. So if 0 < y(0) = Z(0) < 1

M , then y(t) exists globally and
there exists a constant C > 0 depending on n, m, γ, δ, ‖u‖X ,

∫∞
0

(1 + G(t))−adt and Z(0)
only, such that

0 < y(t) ≤ C(1 + G(t))−r , 0 ≤ t < ∞.

When Z(0) = ‖π0‖m < 1
M , from (3.18) and Lemma 3.8 we have

Z(t) ≤ y(t) ≤ C(1 + G(t))−r , 0 ≤ t < ∞. (3.19)

So Z(t) exists globally, and so does U = (π, u − ū)T ∈ Hm(Rn). Moreover we have the
following estimate from the definition of Z(t):

‖DkU(t)‖0 = Yk(t) ≤ C(1 + G(t))−k−r , 0 ≤ k ≤ m. (3.20)

Thus, we have proved (i) of Theorem 3.2. Combining Lemma 3.4 and (3.19) we get

|DlU(t)|∞ ≤ C(1 + G(t))−r−l−n/2 = C(1 + G(t))−a+(1−l), l = 0, 1. (3.21)

These are (ii), (iii) of Theorem 3.2. From the proof we also have the following corollary.

Corollary 3.1. Let α(t) ≥ 0 such that∫ +∞

0

(1 + G(t))−adt < ∞,
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where a = min{2, 1+ γ−1
2 n} > 1. If the assumptions on ρ0, u0 are the same as Theorem 3.1,

then the conclusions in Theorem 3.1 and Theorem 3.2 are valid.

3.5. Further conclusions

We first give a property of G(t), and then a uniqueness result of local in space and global
in time. Finally we give an improvement of Theorem 3.1.

Lemma 3.9. Let α(t) = A
1+t , 0 < A < 1 − 1

a or α(t) = O
(

A
(1+t)θ

)
(t → ∞), θ > 1.

There exists 0 < ε < a − 1, such that lim
t→∞ g(t)(1 + G(t))ε = ∞.

Proof. The proof is to check that when α(t) = O
(

A
(1+t)θ

)
, θ > 1, 0 < lim

t→∞ g(t) ≤
1, G(t) ∼ g(∞)t (t → ∞), then any ε ∈ (0, a− 1) will do; when α(t) = A

1+t , 0 < A < 1− 1
a ,

g(t) = 1
(1+t)A , G(t) = 1

1−A ((1 + t)1−A − 1) , then A
1−A < a− 1, so any ε ∈ ( A

1−A , a− 1
)

will
do.

With this lemma, we can prove similarly the following proposition as that in [2], we omit
the proof.

Proposition 3.2. Let α(t) = A
1+t , 0 < A < 1 − 1

a or α(t) = O( A
(1+t)θ ) (t → ∞), θ > 1.

Suppose that u0 satisfies (H1), (H2), ρ
(γ−1)/2
0 ∈ Hm(Rn) and is sufficiently small, suppρ0 is

compact. Let U = (π, u)T be the global solution of Cauchy problem (1.3), (3.1) in Theorem
3.1, ū is the solution of approximate problem (3.2). Suppose that V = (π̃, v)T is another
solution of the equations (1.3) and DV ∈ L∞(Rn × R+). For any ν ∈ (2 − a + ε, 1) and
R0 > 0, there exists T0 > 0, such that if U( · , T0) = V ( · , T0) on BT0 = B(O, R0(1+G(T0))ν),
then U ≡ V in the domain {(x, t) | |x − x(t)| ≤ R(t), t ≥ T0}. Here x(t) satisfies x′(t) =
u(x(t), t), x(T0) = O, R(t) = R0(1 + G(t))ν .

We can remove the assumption that suppρ0 is compact to obtain the same conclusions
in Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Let α(t) = A
1+t , 0 < A < 1 − 1

a or α(t) = O
(

A
(1+t)θ

)
(t → ∞), θ > 1.

Suppose that u0 satisfies (H1), (H2), ρ
(γ−1)/2
0 ∈ Hm(Rn) and is sufficiently small. Then

Cauchy problem (1.3), (3.1) has a global regular solution, and

(ρ(γ−1)/2, u − ū)T ∈ C([0,∞), Hm(Rn)) ∩ C1([0,∞), Hm−1(Rn)).

(ρ(γ−1)/2, u − ū) has the same estimates as in Theorem 3.2.

The proof is similar to that of Corollary 1 in [2], we omit the details.
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