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Abstract

In this paper the author constructs a solution of parabolic stochastic partial differ-
ential equation with random initial conditions by Kolmogorov’s criterion.
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§1. Introduction

Consider the following stochastic partial differential equation:

ou  0%u ?wW
with Dirichlet boundary conditions
u(t,0) = u(t, 1) =0, (1.2)
or Neumann boundary conditions
Ju Ju
—(t,0) = —(t,1) = 1.
CR(4,0) = Gt 1) =0, (13)

and initial condition u(0,z) = ug(x). Here {W(t,z), (t,x) € [0,T] x [0,1]} is the space-
time white noise, the coefficients b(z) and o(x) are Lipschitz functions on R, ug(z) is some
real-valued function defined on [0, 1].

This kind of equations were investigated by many authors. The existence and uniqueness
of the solution were discussed under different assumptions for the coefficients. These results
can be found in [1, 5, 6, 8, 9, 19].

For ordinary stochastic differential equation with anticipative initial condition, several
techniques such as Skorohod’s integral (cf. [4]), Stratonovich’s integral (cf. [13]) and forward
integral (cf. [18]) are applied. It is worthy to say that Malliavin and Nualart in [11] gave
a substitution formula using quasi sure analysis technique. Following this, in [21] a similar
result was proved in two parameter case. Recently, Tindel [20] proved the existence of a
solution for the equation (1.1) with a random initial condition
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u(0, x, w) ka (1.4)

where ¢, () = v/2sin(kmz). His proof was based on forward integral and some flow proper-
ties for the stochastic heat equation. Here we define another anticipative stochastic integral
borrowing the method of Malliavin and Nualart [11], which is different from Stratonovich’s
integral. Actually, the Stratonovich’s integral does not make sense in this case because
of an “infinite trace” phenomenon (cf. [20]). Then we construct a solution for the equa-
tion (1.1) with Dirichlet or Neumann boundary conditions and anticipating initial condition
u(0, z,w) = uo(z, £(w)), where ug(z, h) is a real function on [0, 1] x RY satisfying some regu-
larity assumptions, and ¢ is any R%-valued random variable. Our argument is based on the
Kolmogorov’s continuity criterium (see [15, 11, 17]). This leads to a substitution formula
(see Corollary 3.1 below) for the stochastic integral. The main difficulty in the proof (see
Proposition 3.1) is to obtain the speed of the convergence. That will be overcome by using
different scales to discretizing the time and space variables.

This paper is organized as follows: in Section 2, we will give some necessary notions and
notations, in Section 3 we shall prove our main result.

§2. Preliminary

Let (Q,F,{Ft}t>0,P) be a complete probability space. The space-time white noise
is defined as a zero mean Gaussian random field W = W(B); B € B([0,T] x [0,1]) on
(Q, F,{Fi}t>0, P) such that

(i) EW(A)W(B)] =AXANB), A,B € B([0,T] x [0,1]) and A is the Lebesgue measure.

(ii) For every C' € B([0,1]), the process {W([0,t] x C);t € [0,T]} is an F-Brownian
motion.

We use W(t, z) to denote W ([0,¢] x [0, x]). A stochastic process {u(t,x); (t,z) € [0,T] x
[0,1]} is said Fi-adapted if u(t, x) is Fy-measurable for any (¢, z) € [0,7T] x [0, 1].

In the following we only discuss the Neumann boundary condition. The conclusion for
Dirichlet boundary still holds.

It is well-known that the equation (1.1) is formed because of the lack of 2 d 7 dx A rigorous
meaning of this equation is given by means of weak solution. That is, we say that a con-
tinuous adapted process {u(t, z); (t,z) € [0,T] x [0, 1]} solves the equation (1.1) if for each
¢ € C%([0,1]) with ¢/(0) = ¢/(1) = 0, it holds

/01 u(t, z)o(x)dx 7/ x)dx +/ / (z)dzds

// $(x)W(ds,dx)  forall t € [0,T],

where the last integral is the stochastic It&’s integral (cf. [19]). It is shown in Wash [19]
that the continuous adapted process u solves (1.1) if and only if u satisfies

u(t,x) = /01 Gi(z,y)uo(y)dy + /Ot /01 Gie—s(@,y)b(u(s,y))dyds
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where G¢(z,y) is the fundamental solution of the heat equation with Neumann boundary
conditions (1.3). The kernel Gy(z,y) has the following explicit formula:

Gt(m,y):J%Mniw{exp(—W)—i—exp(—W)}. (2.2)

The existence and uniqueness of solution for this kind of equation were given by Walsh [19]
under Lipschitz continuity assumptions on b and o. Various assumptions on the coefficients
are referred to [1, 5, 6, 8, 9].

The following result is taken from the paper [2, Lemma A2].

Proposition 2.1. Let (Ha, || - |

w,,) be the a-order Hélder continuous function space,

i.e.,
|lul|a == sup Ju(z) = uly)| uiy)| < 4o00.
z#y€[0,1] |37 - y|
For0 < a< %, if ug € Hy, then we have
1
| [ (Guta o) - Gulogun(ldy| < Cle = 5127, (2.3)
0
1
| [ (a2l = Gaty 2punlz)de] < Clo =yl (24)
0

Here the constant C depends on ||ug|o in such a way that if ||ug||a remains bounded, so does

Cl[uolla)-
We also need the following property of Green’s functions (cf. [2, 6, 12, 19]).

Proposition 2.2.

Gulo)l < Zep (- 10, (2.5)
) [P Qo () g
e (),
/ t / (G 2) = Guly, )Pdads < Ol — P, (2.8
/Ot /01 |Grys(2,y) = Gr(a,y)Pdydr < C - sB0/2, (2.9)
/Ot /01 |Gy (a,y)| dyds < C - 1@/, (2.10)

where § € (1,3), C is a universal constant.

Proof. These inequalities follow from the following observation:

Gi(z,y) = \/4%{ exp (— %)—I—exp (— %)—i—exp (— W) }—I—L(t,x,y),

where L(¢,z,y) is a smooth function on [0, 7] x [0,1] x [0, 1].
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8§ 3. Main Result and Its Proof

For the sake of simplicity, in this section we will take the parameter set [0, 1]2, and use
the following notations:

W (s,y) = 8" -4 W (s, yt) = W(s, yn) — W(sn, yib) + W (sn, yn)],

" CEESN 47y +1 [47y)
s+ S +
SI:Ta Sn = ]n ) y:::glin’ Yn = 4ny .

Consider the equation (1.1) with Lipschitz coefficients b, o and random initial condition
u(0,z) = ug(w, &), where ¢ is a R? valued random variable, ug(z, h) is a real function on
[0,1] x R? satisfying

(C1) [luo(+, h)|la < c(h) for some 0 < a < %, where c(h) is a locally bounded function on
R,

(C2) For any R € N and hq, hy € B(0, R), the ball in R? with radius R,

|ug(x, h1) — uo(x, ho)| < Mplhy — ha|®

for some Mp > 0 and the same « as in (C1).
Remark 3.1. It is clear that these two conditions contain (1.4).

When the initial condition is random, the solution w(t,z) (if it exists) must be non-

adapted. Therefore it is necessary to give a definition for stochastic integral appearing in
(2.1).

Definition 3.1. We will say that a real valued measurable process {p(s, z;w)} is G-Ité
integrable if the sequence

Anp) = /0 /0 G (2, 9) (5, 9) W (5, ) dyds

converges in probability, where

Sn

Pn(s,y, w) = 8”/ p(r,y, w)dr (3.1)

Sn

and s,, = (s, —8 ™)V 0. The limit is denoted by

/Ot /01 Gi—s(@,9)¢(s,y) o W(ds, dy).

Now we can give the following definition.

Definition 3.2. A measurable process u(t,x) is called a solution for the equation (1.1)
if it satisfies

ult, z) = / Go(e, y)uoy)dy + / / Go_ (2, y)b(u(s, y))dyds
+ /0 /0 Gir—a(z, y)o(u(s, y)) o W(ds, dy),
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where the initial condition ug(x,w) is random.

We now show that if ¢ is adapted, this integral coincides with It6’s integral. Henceforth,
we make a convention: C denotes a positive constant independent of n, whose value may
change from one place to another one.

Proposition 3.1. Let ¢ be a measurable adapted process. Assume that for some p > 3,
1,1
/ / Elo(s, y)[*Pdyds < oo,
o Jo

2p

then

EAn(sO)—/O /0 Gi—s(w,y)p(s, y)W (ds, dy)

1,1 sno ryd 2
<02 P=3)/2 4 C/ / E’32”/ / o(r, z)dzdr — ¢(s,y) pdyds. (3.2)
0 Jo Sn n

In particular,

/ / Gi—s(2,y)p(s,y) o W(ds, dy) = / / Gi—s(,y)p(s,y)W(ds, dy).

Proof. Define

Iat eyl
/ Gi—r(x,2)pn(r, 2)dzdr.
y

s
S

n n

Then «,(s,y) is a measurable adapted process, and

o= [ [ outeamiasan

Set t* = [Bn(tg#. Then 27" <t —t* < 27" 4+ 87" < 27"+, We make the following

decomposition:

An(@) - / / Gt,S(CL',y)(p(S,y)W(dS,dy)

/ / an(s,y)W(ds,dy) — / / Gi—s(x,y)p(s, y)W (ds, dy)
" / / [an(5,9) — Go_o (2, 9) (s, 9)]WV (ds, dy)

=1; — I +1s.

By Burkhélder’s inequality, Holder’s inequality and (2.10), we have
th el »
B < CE( [ [ laus.)Pdyds)
t= Jo
th 1 stat pyt »
< CIE(/ / (32”/ / |Gt—r(x, 2)n(r, z)|2dzdr)dyds)
t= Jo Sn n
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t 1 9 P
- CE(/ / |Gi—s(x,y)pn(s, y)] dyd5>
t* JO

t 1 p—l t 1
<c( [ [ GistwnProvayas) ([ [ Bon(s.fravas)
g
< Clt 1|72 / / Elp(s,y) *dyds) < G202,

Similarly, we also have
E[LL|?P < ¢2 "P=3)/2,
For I3, by Burkholder’s inequality we have
t* 1 »
B < CE( [ [ jan(s0) - Geoslw)(o,)Pdyds)”
o Jo
Note that for 0 < s < t*,
an(sa y) - ths(xa Z/)SD(S, y)

sty
_39n / / (Crr(2,9) — Gos(@, 9)|on(r, 2)ddr

sty
132 / / (Grer(,2) — Crr (2, 9)]pn(r, =)dzdr
Sn Y

n

ERaETAY
+ Gt—s(xa y) |:32n/ / @n(ra Z)dZdr - 410(57 y)

=J1+J2+ Js.

By the inequality (2.7), we obtain
sty
mi<s2 [ 16 - sl )l a2 dzdr
= 32”/ /y aGt 58(33 y)‘ r(e)‘ Non (r, 2)|dzdr
W s 2
<32 / / |3/2 “Nn (1, 2)|dzdr

<27%n/2. 32"/ / [on (1, 2)|dzdr,

where in the second step the use of Taylor’s formula yields 7(6) € [s,, s;7]. The last step is
due to r € [sp, s}], and |t — r(0)] > 27"
Similarly, by the inequality (2.6) we have

st oyt
175] < 327 / / (Gt (@,y) — G o, 2)] - | gn (1, 2)| dzdr

yn aGt r(x y)
= 32" o (r, 2)|dzd
=32 / / oy ‘y:z(&)‘ | on (1, 2)|dzdr
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—Z|

st oyt

< 32" /5 / T < |on(r, 2)|dzdr
storut

<27 32”/ / lon (1, 2)|dzdr,

where 2(0) € [yn, y,]-
Moreover,

Sn YT
Yo=Geseg) 32 [ [ ot e - ol

Sn Y Yn

t* pl p t* rl p
E|J3|QP<C2*2”’7]E(/O /0 |gan(r,z)|2dyds) +CE</O /0 |J3|2dyds)
el 1
<027 4 C(/ / |Gt,5(x,y)|2p/(p_1)dyds>p
o Jo
t* pl Sn yj; 2p
/ / IE‘?)Q”/ / o(r, z)dzdr — ¢(s,y)
0 Jo Sn JYn
1 1 Sn y;ﬁ' 2p
< 02_2”p+0/ / E‘SZ"/ / o(r, z)dzdr — @(s,y)‘ dyds,
0 Jo Sn JYn

which gives the desired estimate.

Hence

dyds

For fixed h € R?, we denote by u(t, x;ug(-,h)) (or simply u(t,x;h)) the unique solution
of (2.1) with initial condition (0, x) = ug(x, h) (cf. [19]). Let

or(s,y;h) = 8" /9 a(u(r,y;uo(-, h)))dr.

Sn

Define
n(t, x; h) / / Gi_s(z,y)a™ (s,y; W)Wy (s, y)dyds, (3.3)

v(t,x; h) / / Gi—s(z,y)o(u(s,y; uo(-, h)))W(ds, dy). (3.4)

Then this paper is mainly devoted to proving the following result.

Theorem 3.1. Under the assumptions (Cl) and (C2), for any R € N, define

Ap = {w : lim sup |vn (t, 23 h) — v(t,z; h)| = O}.
00 (¢,2,h)€[0,1]2x B(0,R)

Then the set A = |J A% is a null set, where B(0, R) denotes the open ball in R? with radius
ReN
R.

From this theorem, we can deduce that

Corollary 3.1. We have the following substitution formula:

| [ Gstemotuts. i m)wias.anl,
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t 1
:/O /o Gi_s(x,y)o(u(s,y;uo(-, €))) o W(ds, dy).

Hence u(t, z;uo( -, €)) is a solution of the stochastic equation (1.1) in the sense of Definition
3.2, where ug(z, h) satisfies (C1) and (C2), & is any R%-valued random variable.

Proof. For any € > 0 and R > 0, we have
lim P{|on(t,2,€) —v(t,z,€)| = €}
n—oo
< lim Plloa(t,2,8) —v(t, 2,8 - Le<ny = ¢} + P{E = R}
< lim P{ sup |op(t,z,h) —o(t,z, h)| > e} + P{{ > R}

n—oeo h€B(0,R)
=P{{>R}—0 as R — oo.

We begin our proof with the following lemma.

Lemma 3.1. For any p > 1722(1 and 0 < s <t < 1,2,y € [0,1],h,h" € B(0, R), we have

sup Elu(t, z; k) — u(s,z; h)|[*? < C|t — s|P?,
z€[0,1], he B(0,R)

sup  Elu(t,z5h) — ult,y; h)** < Cla — gy,
t€[0,1], he B(0,R)
sup  Elu(t,x;h) —u(t,z; h')[*P < Clh — B'|*P°.
(t,x)€l0,1]2

Proof. First of all, by a standard argument we have (cf. [19, 12])

sup E|u(t, z; h)|** < Cg. (3.5)
(t,x)€[0,1]?,h€B(0,R)

Let us look at the first inequality. From (2.1) we have
1 t pl
wlt, 2 h)—u(s, 23 h) = / (Gl ) — G, ) oy, )y + / / Gy (2 y)b(u(r, y; h))dydr
0 s JO
s 1
+/0 /0 (Gi—r(2,y) — Gs—r(2,9)|b(u(r, y; h))dydr
t 1
4 / / G (,y)or(u(r, y; b)) W (dr, dy)
s 0

s 1
+ / / (Cor(2,9) — G (2, )] (ulr, y: 1)) W (dr, dy)

=L +L+I3+1+ 5.
Since c(h) is bounded on B(0, R), the estimation (2.3) gives
11| < CJt — s|*/2. (3.6)

Obviously, by (2.10), (3.5) and the linear growth of b we have

t 1 2p—1 t 1
B <C( [ [ 1P @ Vagar)" ([ [ Elbut g myPragar)
s JO s JO
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< Ot — 5?7172, (3.7)
Similarly, by (2.9) we have
E|I3)%P < C|t — s|?P~1/2, (3.8)

By Burkhélder’s inequality we have

t 1 p
B < ce( [ [ |Gt_,«<x,y>|2|o<u<r,y;h>>|2dydr)

<o [ [ 1errreaar)™ ([ [ slotutromprasar)

< Ot — s|P71/2, (3.9)
By the same reason we have
E|l5|%P < C|t — s|P~1/2, (3.10)

Combining (3.6)—(3.10) gives the first estimates.
The second one can be proved by the same method as the first one. Finally, we deal with
the third one. We also have

u(t,a;h) = u(t, ;1) / Gz, y) oy, h) — o (y, 1) dy
/m/‘Gtsxy (u(s,y; h)) = b(u(s, y; h'))|dyds
" / / Groalay)lo(us, y; 1)) — o(u(s, ys )W (ds, dy).
o Jo
Applying the condition (C2), we can deduce that
t el
Elu(t, z; h) — u(t, z; h)|*P < Clh — b/ |?P* + C/ / Elu(s,y; h) — u(s,y; h')|*Pdyds.
o Jo

Set g(t) := sup [Elu(s,x;h) — u(s,x; h’)|?P. Then we have
s<t,z€[0,1]

t
g(t) < Clh — K|*P> + C/ g(s)ds
0

Gronwall’s inequality produces the desired estimate.
Basing on this lemma and the estimate in Proposition 3.1, we immediately have

Theorem 3.2. For any p > 3, we have the following estimate for the speed of the
convergence

sup E|v,, (t, x; h) — v(t, z; h) [P < €220 (3.11)
(t,z)€[0,1]2,h€ B(0,R)

where 3 := (3 — %) A(32).
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Proof. By the estimate (3.2) and Lemma 3.1, we have

E|Un(t7x; h) - ’U(t, 3 h)|2p

1 1 Sn yi’ 2
< 02*”<P*3>/2+c/ / ]E‘32”/ / [0 (u(r, z; b)) —a(u(s,y;h))]dzdr‘ " dyds
0 0 s

n n

1 1 Sn y,f
<o MP=3/2 4 C/ / (32"/ / Elu(r, z; h) — u(s, y; h)|2pdzdr)dyds
0 Jo Sn n
< CQ—n(p—S)/Q + Cz—Bnpoz + 02—4npoz < CQ—anﬁ,
where 3 is given in the theorem.

We also need the following estimates.
Lemma 3.2. For anyp >3 and 0 < s <t < 1,(z,y) € [0,1)%,h,h’ € B(0, R), we have
sup E|vp (£, 25 h) — v (s,y: )P < C(|t — s|P7V/2 4 o — y[P~3 + |h = B/ [?P),  (3.12)

n
Efv(t, @3 h) = o(s,y; )PP < C(|t = s|P7D72 4 | — P~ + |h = 1']PP). (3.13)
Proof. It is sufficient to prove the following three estimates for the first inequality:

sup sup  Efun(t,a3h) — va(s, 23 h)| P < Ot — 5| 77172,
n z€[0,1],he B(0,R)

sup  sup  Elvn(t,x1h) — va(t,y; h) [P < Cla —y|P 2,
n t€[0,1],heB(0,R)

sup  sup  E|v,(t,z;h) — v, (t,z; 0 [*P < C|h — B/ [?P2.
n (t,2)€[0,1]?

We only prove the first one. The others are analogous. By the definition (3.3) we have

Un (t, ;3 h) — vy (s, x; h)
/ / Gi—r(x,y)on(r, y,h)Wn(r, y)dydr
+/0 /0 (Grr(@,y) = Gorr(@,y) o (r, y; D)W (r, y)dydr

=1 + L.
By Burkholder’s inequality for discrete martingale, we obtain
2p

(i41)87™ p(j+1)a ™ _
E[L 7 = E| > n / Gur ()0 (r, s ) dydr| W, (187", 4~

sVi8—™n

tAG+1)8™" p(j+1)4™" 24p
/ / Gir(z,y)oy, (r,y; h)dydr‘ }
s J

Vig—n ja—n

E { 3 32n
%,J

t 1
<ce[[ | |Gt_,«<x,y>a::<r,y;mﬁdydr}”

// |Gt 7nxy|2p/(” 1)dydr //IE|U T,y h |2pdydr>
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< Ot — s|P1/2,

The last step is due to the linear growth of ¢ and Lemma 3.1.
Similarly, we can get

E|L|% < C|t — s|P~1)/2,
The second one (3.13) is proved in a similar way.
Proof of Theorem 3.1. We introduce the following process:

v(t,x; h), r=0;

1 1 1\-1
Ziryteh) = { valbash) + (1= ) (g = 1) o (tash) = va(t s h);
1 1

<r<-— n € N.
n+1 S’

By Lemma 3.2 we obtain
E|Z(r,t,z,h) — Z(r,s,y, )| < C(|s — t|P~V/2 4|z — y[P~3 4 |n — W'|?P?). (3.14)
Now we can check by Theorem 3.2 that
E|Z(r,t,z,h) — Z(r',t,x, h)|*P < Clr —r'|*P. (3.15)

L L < <L by Minkowski’s inequality

. 1
In fact, assuming that m > n and RN <5 P

we have
E|Z(Ta tv xz, h) - Z(?“/, tv &€, h)|2p

<(Jzo -2, « & (e -2(ean),

2p
Qp)

<o((r- Ao s 5 o (o ) omlm + 1)279) "

n+1 o
commptntne 12 () e B (E- )+ (B )”
k=n+1

< Clr— 7“’|2p.

+ HZ(%,t,x,h) —Z(r' t,z, h)

Hence we can take p large enough such that
E|(Z(r,t,x,h) = Z(r',5,9y,h"))[*
< C’(|7“ _ T/|d+3+e + |t _ S|d+3+e 4 |a: _ y|d+3+€ + |h _ h/|d+3+e)

for some € > 0 and (s,t) € [0,1])%, (z,y) € [0,1]%,h, 1’ € B(0, R).
Lastly, by Kolmogorov’s continuity criterium, there is an integrable random variable
C(w) such that

sup | Z(r,t,x,h) — Z(r' t, 2, h)| < C(w)|r —r'|°, a.s.,
(t,z,h)€[0,1]2x B(0,R)
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where § € (0, ﬁ) In particular, taking ' = 0,r = % we have

sup |on (t, , h) — v(t,z,h)| < C(w)n=°, a.s.
(t,z,h)€[0,1]2x B(0,R)

Therefore A% is a null set and the proof is completed.

Acknowledgement. The author is very grateful to Professor Jiagang Ren for his helpful
discussions and suggestions.

References

[1] Bally, V., Gyongy, I. & Pardoux, E., White noise driven parabolic SPDES with measure drift, J. Funct.
Anal., 120(1994), 484-510.

[2] Bally, V., Millet, A. & Sanz-Sole, M., Approximation and support theorem in Holder norm for parabolic
stochastic partial differential equations, Annals of Prob., 23(1995), 178-222.

[3] Bally, V. & Pardoux, E., Malliavin calculus for white noise driven parabolic SPDEs, Potential Analysis,
9(1998), 27-64.

[4] Buckdahn, R., Skorohod stochastic differential equations of diffusion type, Prob. Theory Rela. Fields,
93(1992), 297-323.

[5] Donati-Martin, C. & Pardoux, E., White noise driven SPDEs with reflection, Prob. Theory Relat.
Fields, 95(1993), 1-24.

[6] Gyongy, L., Existence and uniqueness result for semilinear stochastic partial differential equations,
Stoch. Proc. and Their Appl., 73(1998), 271-299.

[7] Gyongy, L., Lattice Approximations for stochastic quasi-linear parabolic partial differential equations
driven by space-time white noise, Potential Analysis, 9(1998), 1-25 .

[8] Gyongy, I. & Pardoux, E., On quasi-linear stochastic partial differential equations, Probab. Theory
Relat. Fields, 94(1993), 413-425.

[9] Gyongy, I. & Pardoux, E., On the regularization effect of space white noise on quasi-linear parabolic
partial differential equations, Probab. Theory Relat. Fields, 97(1993), 211-229.

[10] Ikeda, N. & Watanabe, S., Stochastic Differential Equations and Diffusion Process, Amsterdam, North-
Holland, 1981.

[11] Malliavin, P. & Nualart, D., Quasi sure analysis and Stratonovich anticipative stochastic differential
equations, Probab. Theory Relat. Fields, 96(1993), 45-55.

[12] Nualart, D., The Malliavin Calculus and Related Topics, Springer-Verlag, 1995.

[13] Ocone, D. & Pardoux, E., A generalized It6-Ventzell formula, Application to a class of anticipating
stochastic differential equations, Ann. Inst. Henri Poincaré, 25(1989), 39-71.

[14] Pardoux, E. & Zhang, T., Absolute continuity of the law of the solution of parabolic SPDE, J. Funct.
Anal., 112(1993), 447-458.

[15] Ren, J., Analyse quasi-sure des equations differentielles stochastic, Bull. Sci. Math., 114(1990), 187—
214.

[16] Ren, J., On some estimates in quasi sure limit theorem for SDE’s, Bull. Sci. Math., 122(1998), 585-602.

[17] Ren, J. & Zhang, X., Quasi sure analysis of two parameter stochastic differential equation, Stochastics
and Stochastics Reports, 72:(3-4)(2002), 251-276.

[18] Russo, F. & Vallois, P., Forward, backward and symmetric stochastic integration, Prob. Theory Rela.
Fields, 97(1993), 403-421.

[19] Walsh, J. B., An introduction to stochastic partial differential equations, Lecture Notes in Math.,
1180, Springer, 1986, 266-437.

[20] Tindel, S., Stochastic parabolic equations with anticipative initial condition, Stochastics and Stochas-
tics Reports, 62(1998), 1-20.

[21] Zhang, X. & Zhou, S., Stratonovich anticipative stochastic differential equations in the plane, Stochas-
tics and Stochastics Reports, 69(2000), 105-121.



