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DECOMPOSITIONS OF BOSONIC MODULES OF
LIE ALGEBRAS W1+∞ AND W1+∞(glN)∗∗∗

HU Naihong∗ LIU Dong∗∗

Abstract

A bosonic construction (with central charge c = 2) of Lie algebras W1+∞ and
W1+∞(glN ), as well as the decompositions into irreducible modules are described. And
for W1+∞, when restricted to its Virasoro subalgebra Vir, a bosonic construction and
the same decomposition for Vir are obtained.
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§ 1 . Introduction

Spinor representations for the affine Lie algebras were first developed by Frenkel [2]
and Kac-Peterson [7] independently. The idea is to use a Clifford algebra with infinitely
many generators to construct certain quadratic elements, which, together with the identity
element, span an orthogonal affine Lie algebra. Thereafter, Feingold-Frenkel [1] constructed
the so-called fermionic or bosonic representations for all classical affine Lie algebras by using
Clifford or Weyl algebras with infinitely many generators. Gao [6] constructed fermionic and

bosonic representations for the extended affine Lie algebra ˜glN (Cq).
As we know, the Lie algebra D̂−, as the universal central extension of the Lie algebra of

differential operators on the circle (cf. [7]), has appeared in various models of two-dimension
-al quantum field theory and integrable systems (see the references in [4, 8]). A systematic
study of the quasifinite highest weight representation theory of the Lie algebra D̂−, which
is often referred to as W1+∞ algebra by physicists, has been investigated by Kac et al (cf.
[8, 4]).

In this paper, motivated by [6], we construct a bosonic representation for the Lie algebra
W1+∞, as well as the Lie algebra W1+∞(glN ), and then decompose such bosonic modules
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both for W1+∞ and W1+∞(glN ). In particular, we obtain the same decomposition of bosonic
realization for the Virasoro algebra with central charge c = 2.

Throughout this paper, Z, N and C denote the set of integers, non-negative integers and
complex numbers, respectively.

Let C[ t, t−1 ] be the algebra of Laurent polynomials over C, and D = DiffC[ t, t−1 ] the
associative algebra of all differential operators over C[ t, t−1 ], whose a C-basis is {tmDn |
m ∈ Z, n ∈ N} with multiplication:

(taDb) · (tcDd) =
b∑

i=0

(
b

i

)
cita+cDb+d−i,

where D = t∂, ∂ = d/dt.
Let D− be the Lie algebra of D under Lie bracket given by

[tm1Dn1 , tm2Dn2 ] =
n1∑
i=0

(
n1

i

)
mi

2 t
m1+m2Dn1+n2−i −

n2∑
j=0

(
n2

j

)
mj

1 t
m1+m2Dn1+n2−j

for all m1, m2 ∈ Z, n1, n2 ∈ N.
Li [11] proved dimH2(D−,C) = 1 (also see [7, 8, 13]). In this paper, we will adopt

a convenient form of a specific 2-cocycle on D−, which is due to Kac and Radul (see the
formula (1.5.5) in [8]) up to a sign. More precisely, we take f(D) = Dn2 , g(D) = Dn1 and
φ(tm1Dn1 , tm2Dn2) := 1

2 ψ(tm2Dn2 , tm1Dn1) in the notation of [8]. So we have the following

Lemma 1.1. (cf. [8]) Any non-trivial 2-cocycle on D− is equivalent to φ:

φ(tm1Dn1 , tm2Dn2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if m1 = 0,

(−1)n1+1δm1+m2,0
1
2

m1∑
i=1

(m1 − i)n1 in2 , if m1 > 0,

(−1)n1δm1+m2,0
1
2

−1∑
i=m1

(m1 − i)n1 in2 , if m1 < 0.

Let W1+∞ denote the universal (one-dimensional) central extension D̂− of the Lie algebra
D− by the above modified 2-cocycle φ. With this modified 2-cocycle φ, we particularly have
Vir := SpanC{Lm = tmD, c | m ∈ Z} as the (standard) Virasoro subalgebra of W1+∞,

where its Lie bracket is given as follows
(
since

m∑
i=1

(m− i)i = 1
6 (m− 1)m(m+ 1) for m > 0

)
[Lm, Ln] = (n−m)Lm+n +

1
12

(m− 1)m(m+ 1)δm+n,0c, [c, Lm] = 0.

§ 2 . Bosonic Module and Its Decomposition of W1+∞

Define S to be the unital associative algebra with infinitely many generators: a(n), a∗(n)
(n ∈ Z) with relations

[ a(n), a(m) ] = [ a∗(n), a∗(m) ] = 0, (2.1)
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[ a(n), a∗(m) ] = −δn+m,0. (2.2)

We define the normal ordering as follows:

: a(n)a∗(m) :=

{
a(n)a∗(m), n ≤ m,

a∗(m)a(n), n > m
(2.3)

for n, m ∈ Z. Set

θ(n) =

{
1, n > 0,

0, n ≤ 0.
(2.4)

Then
a(n)a∗(m) =: a(n)a∗(m) : − δn+m,0 θ(n−m) (2.5)

and

[ a(m)a∗(n), a(p) ] = δn+p,0 a(m),

[ a(m)a∗(n), a∗(p) ] = −δm+p,0 a
∗(n) (2.6)

for m, n, p ∈ Z.
Let S+ be the subalgebra generated by a(n), a∗(0), a∗(m) for n, m > 0. Let S− be the

subalgebra generated by a(0), a(n), a∗(m) for n, m < 0. Those generators in S+ are called
annihilation operators while those in S− are called creation operators. Let V be a simple
S-module containing an element v0, called a “vacuum vector”, and satisfying

S+v0 = 0. (2.7)

So all annihilation operators kill v0 and

V = S−v0. (2.8)

Now we may construct a class of bosons on V . For any m ∈ Z, n ∈ N, set

f(m,n) =
∑
i∈Z

(−i)n : a(m− i)a∗(i) : . (2.9)

Although f(m,n) are infinite sums, they are well-defined as operators on V . Indeed, for any
vector v ∈ V = S−v0, only finitely many terms in (2.9) can make a non-zero contribution
to f(m,n)v.

Lemma 2.1. For m, p, s ∈ Z, n ∈ N,

[ f(m,n), a(p) ] = pna(m+ p), (2.10)

[ f(m,n), a∗(p) ] = −(−m− p)na∗(m+ p), (2.11)

[ f(m,n), a(p)a∗(s) ] = pna(m+ p)a∗(s) − (−m− s)na(p)a∗(m+ s). (2.12)

Proof. Since

[ f(m,n), a(p) ] =
∑
i∈Z

(−i)n[ : a(m− i)a∗(i) :, a(p) ]

=
∑
i∈Z

(−i)n[ a(m− i)a∗(i), a(p) ]

= pna(m+ p),
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(2.10) is true. The proof of (2.11) is similar, and (2.12) follows from (2.10) and (2.11).

Proposition 2.1. For m1, m2 ∈ Z, n1, n2 ∈ N, we have

[ f(m1, n1), f(m2, n2) ] =
n1∑
i=0

(
n1

i

)
mi

2 f(m1 +m2, n1 + n2 − i)

−
n2∑

j=0

(
n2

j

)
mj

1 f(m1 +m2, n1 + n2 − j)

+ ϕ(f(m1, n1), f(m2, n2)),

where ϕ is given by

ϕ(f(m1, n1), f(m2, n2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if m1 = 0,

(−1)n1+1δm1+m2,0

m1∑
i=1

(m1 − i)n1 in2 , if m1 > 0,

(−1)n1δm1+m2,0

−1∑
i=m1

(m1 − i)n1 in2 , if m1 < 0.

Proof. By Lemma 2.1, we have

[ f(m1, n1), f(m2, n2) ]

=
[
f(m1, n1),

∑
t∈Z

(−t)n2 : a(m2−t)a∗(t) :
]

=
[
f(m1, n1),

∑
t∈Z

(−t)n2a(m2−t)a∗(t)
]

=
∑
t∈Z

(−t)n2(m2−t)n1a(m1+m2−t)a∗(t) −
∑
t∈Z

(−m1−t)n1(−t)n2a(m2−t)a∗(m1+t)

=
∑
t∈Z

(−t)n2(m2−t)n1 : a(m1+m2−t)a∗(t) : −
∑
t∈Z

(−m1−t)n1(−t)n2 : a(m2−t)a∗(m1+t) :

− δm1+m2,0

(∑
t∈Z

(m2−t)n1(−t)n2θ(m1+m2−2t) −
∑
t∈Z

(−m1−t)n1(−t)n2θ(m2−m1−2t)
)

=
n1∑
i=0

(
n1

i

)
mi

2 f(m1+m2, n1+n2−i) −
n2∑

j=0

(
n2

j

)
mj

1 f(m1+m2, n1+n2−j)

− δm1+m2,0

(∑
t∈Z

(−m1−t)n1(−t)n2θ(−2t) −
∑
t∈Z

(−m1−t)n1(−t)n2θ(−2m1−2t)
)

=
n1∑
i=0

(
n1

i

)
mi

2 f(m1+m2, n1+n2−i) −
n2∑

j=0

(
n2

j

)
mj

1 f(m1+m2, n1+n2−j)

+ δm1+m2,0

∑
t∈Z

(−θ(−2t) + θ(−2m1−2t))(−m1−t)n1(−t)n2

=
n1∑
i=0

(
n1

i

)
mi

2 f(m1+m2, n1+n2−i) −
n2∑

j=0

(
n2

j

)
mj

1 f(m1+m2, n1+n2−j)

+ ϕ
(
f(m1, n1), f(m2, n2)

)
,
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where the last equality is given by

∑
t∈Z

(−θ(−2t) + θ(−2m1 − 2t))(−m1 − t)n1(−t)n2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, m1 = 0,

−
m1∑
t=1

(t−m1)n1tn2 , m1 > 0,

−1∑
t=m1

(t−m1)n1tn2 , m1 < 0.

The proof is completed.

Let T = f(0, 0). Then Lemma 2.1 gives

[T, a(n) ] = a(n), [T, a∗(n) ] = −a∗(n) (2.13)

for all n ∈ Z. For any v = a(n1) · · · a(ns)a∗(m1) · · · a∗(ml)v0 ∈ V , noting that Tv0 = 0, one
has

Tv = (s− l)v. (2.14)

According to Proposition 2.1 and Lemma 2.1, we obtain

Theorem 2.1. V is a module for the Lie algebra W1+∞ with central charge c = 2 under
the action given by

π(tmDn) = f(m,n), π(c) = 2 id

for all m ∈ Z, n ∈ N. Moreover,
V =

⊕
k∈Z

Vk

is completely reducible, where Vk is an eigenspace with eigenvalue k of operator T , and each
component Vk is irreducible as a W1+∞-module.

Proof. Note that ϕ(f(m1, n1), f(m2, n2)) = 2φ(tm1Dn1 , tm2Dn2). Hence, Proposition
2.1 shows that V is a W1+∞-module with central charge c = 2. On the other hand, Lemma
2.1 indicates that each eigenspace Vk of operator T is W1+∞-stable. In what follows, we
shall prove that Vk is also irreducible under the actions of all f(m,n)’s.

To this end, we need introduce some notation. Fix a k ∈ Z, for any s ∈ N such that
s+ k ≥ 0, set v(s)

k := a(0)s a∗(−1)s+k.v0 and

V
(s)
k := SpanC{ a(n1) · · · a(ns)a∗(m1) · · · a∗(ms+k).v0 | ni ≤ 0,mj < 0 }.

It is clear that Vk =
⊕

s∈N,s+k≥0

V
(s)
k . On the other hand, if we define the weight by

wt(tmDn) = m,

which induces a principle Z-gradation of W1+∞:

W1+∞ =
⊕
j∈Z

W1+∞(j),
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then we have a triangular decomposition of W1+∞ as follows

W1+∞ = W(−)
1+∞

⊕
W(0)

1+∞
⊕

W(+)
1+∞ ,

where W(−)
1+∞={tmDn | m < 0, n ∈ N}, W(0)

1+∞={Dn | n ∈ N}, W(+)
1+∞={tmDn | m > 0, n ∈

N}.
Lemma 2.1 shows that Vk is a weight module with respect to the abelian subalgebra

W(0)
1+∞. Since for a fixed m �= 0,

F (k,m) := [ f(0, k), f(m, 0) ]−mf(m, 0) =
k−1∑
j=1

(
k

j

)
mj f(m, k − j),

the actions of f(m, 1), · · · , f(m,n − 1) on V can be expressed as some combinations of
F (k,m)’s for k = 2, · · · , n, where F (k,m)’s (k = 2, · · · , n) acting on the weight module Vk

essentially depend on the action of f(m, 0) owing to f(0, k) ∈ W(0)
1+∞. Therefore, it suffices

to consider the actions of f(m, 0)’s in the analysis of irreducibility of Vk. By Lemma 2.1, it
is easily seen that V (s)

k is W(+)
1+∞-stable, and { v(s)

k | s ∈ N, s+ k ≥ 0 } is the complete set of
singular vectors of W1+∞-module Vk ( here v ∈ V is called singular if W(+)

1+∞.v = 0 ) ( since
v
(s)
k is a unique (C-linear independent) singular vector in V

(s)
k according to the acting rule

of f(m, 0) for m > 0 ).
Finally, noticing that

f(−1, 0)(v(s)
k ) ≡ v

(s+1)
k (modV (s)

k ), f(m, 0)(V (s)
k ) ⊆ V

(s)
k + V

(s+1)
k for m < 0,

we see that Vk is irreducible owing to

f(−m, 0). f(m, 0). v(s)
k = [ f(−m, 0), f(m, 0) ]. v(s)

k = mv
(s)
k �= 0,

by Proposition 2.1.

Corollary 2.1. V =
⊕
k∈Z

Vk is a completely reducible module for the Virasoro algebra

Vir with central charge c = 2 under the action given by

π(Lm) = f(m, 1), π(c) = 2 id

for all m ∈ Z. Each component Vk is also irreducible for Vir.

Proof. Lemma 2.1 indicates that L0 = f(0, 1) acts diagonalizably on the weight W1+∞-
module V . The proof of irreducibility of the weight W1+∞-module Vk (see the proof of
Theorem 2.1) is reduced to considering the actions of operators f(m, 0)’s for m ∈ Z. Now
the same observation applies to the proof of irreducibility of the weight Vir-module Vk

provided that we note the formula:

f(m, 1) =
1

2m
[ f(0, 2), f(m, 0) ]− m

2
f(m, 0) for m �= 0

derived from Proposition 2.1.
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Remark 2.1. In the Virasoro algebra Vir, the operator L0 is usually called the energy
operator by physicists (cf. [9]). In [9], only positive-energy representations (that is, L0 is
diagonal and all its eigenvalues are nonnegative) were discussed there and all irreducible
positive-energy representations are proven to be of the form V (c, h) with h ≥ 0 (see Remark
3.5 in [9], here h is the eigenvalue of L0, the highest weight module V (c, h) is the irreducible
quotient of the Vema Vir-module M(c, h)). The negative-energy representations of Vir,
which are related to the Dirac positron theory, was pointed out to be interesting but lack of
investigation there (see [9, Section 4.2]). In our case, Corollary 2.1 affords some negative-
energy representations for Vir.

On the other hand, [8] classified positive-energy representations with finite degeneracies
of the Lie algebra W1+∞, while our bosonic construction in Theorem 2.1 then gives some
negative-energy representations for W1+∞. We conclude this section with the following
interesting question.

Question 2.1. For any v = a(n1) · · · a(ns)a∗(m1) · · · a∗(ms+k).v0 ∈ V
(s)
k with n1 ≤

n2 ≤ · · · ≤ ns ≤ 0 and m1 ≤ m2 ≤ · · · ≤ ms+k < 0, if set

n(s) = −
s∑

i=1

ni −
s+k∑
j=1

mj ,

then we get a natural Z-gradation of the irreducible module Vk as below

Vk =
⊕
n∈Z

( ⊕
n(s)=n,s≥0,s+k≥0

Vk

(
n(s)

) )
.

Therefore, we have a corresponding q-character chq(Vk):

chq(Vk) =
∑
n∈Z

dimV (n)k q
n,

where V (n)k =
⊕

n(s)=n,s≥0,s+k≥0

Vk(n(s)). The question is how to deduce the explicit formula

for chq(Vk) via using some kind of partition functions.

§ 3 . Bosonic Module and Its Decomposition of W1+∞(glN)

Let MN(C) be the N × N matrix algebra, glN (C) = MN (C)− the general linear Lie
algebra over C, then glN (D) := glN (C)⊗CD is the general linear Lie algebra with coefficients
in D. Let eij be the N × N matrix unit with 1 in the (i, j)-entry and 0 elsewhere, then
glN (D) has a basis

{eij ⊗ tmDl | m ∈ Z, l ∈ N, 1 ≤ i, j ≤ n}.

Consider the subsequent central extension ĝlN (D) by C of the Lie algebra glN (D), also
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denoted by W1+∞(glN ) ( since W1+∞(glN ) = W1+∞ when N = 1 ).

[ eij ⊗ tm1Dn1 , ekl ⊗ tm2Dn2 ] = δjkeil ⊗
n1∑
i=0

(
n1

i

)
mi

2 t
m1+m2Dn1+n2−i

− δilekj ⊗
n2∑

j=0

(
n2

j

)
mj

1 t
m1+m2Dn1+n2−j

+ Φ
(
eij ⊗ tm1Dn1 , ekl ⊗ tm2Dn2

)
c

for all m1,m2 ∈ Z, n1, n2 ∈ N and 1 ≤ i, j, k, l ≤ N , where Φ is given by

Φ(eij ⊗ tm1Dn1 , ekl ⊗ tm2Dn2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if m1 = 0,

(−1)n1+1δj,kδi,lδm1+m2,0
1
2

m1∑
i=1

(m1 − i)n1in2 , if m1 > 0,

(−1)n1δj,kδi,lδm1+m2,0
1
2

−1∑
i=m1

(m1 − i)n1in2 , if m1 < 0.

Now we give a representation of the Lie algebra W1+∞(glN ).
Define S(N) to be the unital associative algebra with infinite many generators: ai(n),

a∗j (n) (n ∈ Z, 1 ≤ i, j ≤ N) with the relations

[ ai(n), aj(m) ] = [ a∗i (n), a∗j (m) ] = 0, (3.1)

[ ai(n), a∗j (m) ] = −δi,jδn+m,0. (3.2)

We define the normal ordering as follows:

: ai(n)a∗j (m) :=

{
ai(n)a∗j (m), n ≤ m,

a∗j (m)ai(n), n > m
(3.3)

for n,m ∈ Z, 1 ≤ i, j ≤ N .
Similarly to (2.5)–(2.6), we have

ai(n)a∗j (m) =: ai(n)a∗j (m) : − δi,jδn+m,0θ(n−m), (3.4)

[ ai(m)a∗j (n), ak(p) ] = δj,kδn+p,0ai(m),

[ ai(m)a∗j (n), a∗k(p) ] = −δi,kδm+p,0a
∗
j (n) (3.5)

for m, n, p ∈ Z, 1 ≤ i, j, k ≤ N .
Let S(N)+ be the subalgebra generated by ai(n), a∗i (n), a∗i (0) for n > 0 and 1 ≤ i ≤ N .

Let S(N)− be the subalgebra generated by ai(0), ai(n), a∗i (n) for n < 0 and 1 ≤ i ≤ N .
Those generators in S(N)+ are called annihilation operators while those in S(N)− are called
creation operators. Let V (N) be a simple S(N)-module containing an element v0, called a
“vacuum vector”, and satisfying

S(N)+v0 = 0. (3.6)
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So all annihilation operators kill v0 and

V (N) = S(N)−v0. (3.7)

Now we may construct a class of bosons on V (N). For any m ∈ Z, n ∈ N and 1 ≤ i, j ≤
N , set

fi,j(m,n) =
∑
k∈Z

(−k)n : ai(m− k)a∗j (k) : (3.8)

Although fi,j(m,n) are infinite sums, they are well-defined as operators on V (N). Since,
for any vector v ∈ V (N) = S(N)−v0, only finitely many terms in (3.8) can make a non-zero
contribution to fi,j(m,n)v.

Lemma 3.1. For m, p, s ∈ Z, n ∈ N and 1 ≤ i, j, k ≤ N ,

[ fi,j(m,n), ak(p) ] = δj,kp
nai(m+ p), (3.9)

[ fi,j(m,n), a∗k(p) ] = −δi,k(−m− p)na∗j (m+ p), (3.10)

[ fi,j(m,n), ak(p)a∗l (s) ] = δj,kp
na(m+ p)a∗(s) − δi,l(−m− s)na(p)a∗(m+ s). (3.11)

Proof. The proof is similar to that of Lemma 2.1.

Proposition 3.1. For m1,m2 ∈ Z, n1, n2 ∈ N and 1 ≤ i, j, k, l ≤ N , we have

[ fi,j(m1, n1), fk,l(m2, n2) ] = δj,k

n1∑
i=0

(
n1

i

)
mi

2fi,l(m1 +m2, n1 + n2 − i)

− δi,l

n2∑
j=0

(
n2

j

)
mj

1fk,j(m1 +m2, n1 + n2 − j)

+ Ψ(fi,j(m1, n1), fk,l(m2, n2)),

where Ψ is given by

Ψ(fi,j(m1, n1), fk,l(m2, n2))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if m1 = 0,

(−1)n1+1δj,kδi,lδm1+m2,0

m1∑
i=1

(m1 − i)n1 in2 , if m1 > 0,

(−1)n1δj,kδi,lδm1+m2,0

−1∑
i=m1

(m1 − i)n1 in2 , if m1 < 0.

Proof. The proof is similar to that of Proposition 2.1.

Let T =
N∑

i=1

fi,i(0, 0). Then one can easily show that

[T, aj(n) ] = aj(n), [T, a∗j (n) ] = −a∗j(n) (3.12)

for all n ∈ Z, 1 ≤ j ≤ N . For any

v = ai1(n1) · · · ais(ns)a∗j1(m1) · · · a∗jt
(mt)v0
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from V (N), noting that Tv0 = 0, one has

Tv = (s− t)v. (3.13)

Noting that

Ψ(fi,j(m1, n1), fk,l(m2, n2)) = 2 Φ(eij ⊗ tm1Dn1 , ekl ⊗ tm2Dn2),

we may prove similarly

Theorem 3.1. V (N) is a level 2 module for the Lie algebra W1+∞(glN ) under the
action given by

π(eij ⊗ tmDn) = fi,j(m,n), π(c) = 2 id

for all m ∈ Z, n ∈ N and 1 ≤ i, j ≤ N . Moreover,

V (N) =
⊕
k∈Z

Vk

is completely reducible, where Vk is an eigenspace with eigenvalue k of operator T , and each
component Vk is irreducible as a W1+∞(glN )-module.
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