EMBEDDINGS OF SIMPLE TWO-FOLD BALANCED INCOMPLETE BLOCK DESIGNS WITH BLOCK SIZE FOUR***

WANG JINHUA^{*} SHEN HAO^{**}

Abstract

The necessary and sufficient conditions for the existence of simple incomplete block design (v, w; 4, 2)-IPBDs are determined. As a consequence, the necessary and sufficient conditions for the embeddings of simple two-fold balanced incomplete block designs with block size 4 are also determined.

Keywords Block design, Simple, Embedding 2000 MR Subject Classification 05B05, 05B15

§1. Introduction

A balanced incomplete block design $B(k, \lambda; v)$ is an ordered pair (X, \mathcal{A}) where X is a set of v points and \mathcal{A} is a collection of subsets (called blocks) of X such that |B| = k for each block $B \in \mathcal{A}$, and each pair of distinct points of X is contained in exactly λ blocks. A $B(k, \lambda; v)$ is called simple and denoted by $NB(k, \lambda; v)$ if it contains no repeated blocks.

Let (X, \mathcal{A}) be a $B(k, \lambda; v), Y \subset X, |Y| = w$ and $\mathcal{B} \subset \mathcal{A}$. If (Y, \mathcal{B}) is a $B(k, \lambda; w)$, then it is called a subdesign of (X, \mathcal{A}) , or it is embedded in (X, \mathcal{A}) . An incomplete pairwise balanced design $(v, w; k, \lambda)$ -IPBD is an ordered triple (X, Y, \mathcal{A}) where X is a v-set, Y is a w-subset (called a hole) of X and \mathcal{A} is a collection of subsets (called blocks) of X such that $|\mathcal{B}| = k$ and $|\mathcal{B} \cap Y| \leq 1$ for each $\mathcal{B} \in \mathcal{A}$ and each pair of distinct points of X, not both in Y, is contained in exactly λ blocks. A $(v, w; k, \lambda)$ -IPBD is called simple if it contains no repeated blocks. It is obvious that we can get an NB (k, λ, v) containing an NB (k, λ, w) as a subdesign by filling an NB (k, λ, w) in the hole of size w in a simple $(v, w; k, \lambda)$ -IPBD.

By some simple counting argument, the following conditions are necessary for the embedding of an NB $(k, \lambda; w)$ in an NB $(k, \lambda; v)$:

$$v \ge (k-1)w+1,$$

$$\lambda v(v-1) \equiv \lambda w(w-1) \equiv 0 \pmod{k(k-1)},$$

Manuscript received November 6, 2003.

^{*}School of Sciences, Nantong University, Nantong 226007, Jiangsu, China. E-mail: jhwang@ntu.edu.cn

^{**}Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, China.

E-mail: haoshen@sjtu.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No.10471093).

$$\lambda(v-1) \equiv \lambda(w-1) \equiv 0 \pmod{(k-1)},$$

$$\lambda \le \binom{w-2}{k-2}.$$
 (1.1)

For given k and λ , any positive integers v, w satisfying the above conditions are called admissible.

The embeddings of simple triple systems for arbitrary λ was completely determined by Shen [6]: An NB(3, λ ; w) can be embedded in some NB(3, λ ; v) if and only if v and w are admissible. However, for arbitrary $\lambda \geq 2$, the embedding problem of NB(4, λ ; v)s is still open. Rees and Rodger [3] proved that there exists a B(4, 2; v) containing a B(4, 2; w) as a subdesign if and only if $v \equiv w \equiv 1 \pmod{3}$ and $v \geq 3w+1$, but the embedding may contain repeated blocks.

The main purpose of this paper is to give a complete solution to the existence problem of simple (v, w; 4, 2)-IPBDs. As a consequence, we have determined the necessary and sufficient conditions for the embeddings of NB(4, 2; v)s. Our techniques are a construction from self-orthogonal Latin squares with holes in Section 2 and a construction from incomplete pairwise balanced designs with index unity in Section 3.

§2. Simple (v, w; 4, 2)-IPBDs with $v - w \equiv 0 \pmod{6}$

A group divisible design (k, λ) -GDD is an ordered triple $(X, \mathcal{G}, \mathcal{A})$ where \mathcal{G} is a partition of a set X (of points) into subsets called groups, \mathcal{B} is a set of subsets of X (called blocks) such that for each $B \in \mathcal{B}, |B| = k$ and a group and a block contain at most one common point, every pair of points from distinct groups occurs in exactly λ blocks. The type of the GDD is the multiset $\{|G|: G \in \mathcal{G}\}$. We also use an exponential notation to describe types: so type $t_1^{n_1} t_2^{n_2} \cdots t_k^{n_k}$ denotes n_i occurrences of $t_i, 1 \leq i \leq k$. A (k, 1)-GDD of type m^k is called a transversal design and denoted by TD(k, m). It is well known that the existence of a TD(k, m) is equivalent to the existence of k - 2 mutually orthogonal Latin squares of order m. A (k, λ) -GDD is called simple if it contains no repeated blocks. Obviously, a simple (k, λ) -GDD of type 1^v is just an NB $(k, \lambda; v)$.

We shall need the following construction for simple IPBDs from simple GDDs whose proof is clear.

Construction 2.1. Let k and λ be positive integers and let d be a nonnegative integer. Suppose that the following designs exist:

(1) a simple (k, λ) -GDD of type $t_1 t_2 \cdots t_n$;

(2) a simple $(t_i + d, d; k, \lambda)$ -IPBD for $1 \le i \le n - 1$.

Then there exists a simple $(v, w; k, \lambda)$ -IPBD, where $v = \sum_{1 \le i \le n} t_i + d$ and $w = t_n + d$.

To apply the above lemma, we shall also need holey self-orthogonal Latin squares to get the required GDDs. Let $\mathcal{H} = \{X_1, X_2, \cdots, X_n\}$ be a partition of a set X and $|X_i| = t_i, 1 \leq i \leq n$. A holey self-orthogonal Latin square of type $\prod_{1 \leq i \leq n} t_i$, denoted by HSOLS $(\prod_{1 \leq i \leq n} t_i)$, is an $|X| \times |X|$ array L, indexed by X, satisfying the following properties:

(1) Every cell of L either contains an element of X or is empty.

(2) Every element of X occurs at most once in any row or column of L.

(3) The subarrays indexed by $X_i \times X_i$ are empty for $1 \le i \le n$ (these subarrays are called holes).

(4) An element $x \in X$ occurs in row or column y if and only if $(x, y) \in (X \times X) \setminus \bigcup_{1 \le i \le n} (X_i \times X_i)$.

(5) The superposition of L and its transpose L^T yields all ordered pairs in $(X \times X) \setminus \bigcup_{1 \le i \le n} (X_i \times X_i)$.

It is clear that an $HSOLS(1^n)$ is just an idempotent self-orthogonal Latin square of order n. For simple GDD, we have the following construction from HSOLS.

Lemma 2.1. Suppose that there exists an $\text{HSOLS}(t_1t_2\cdots t_n)$. Then there exists a simple (4,2)-GDD of type $(3t_1)(3t_2)\cdots(3t_n)$.

Proof. Let *L* be an HSOLS $(t_1t_2\cdots t_n)$ on the set *X* with hole set $\mathcal{H} = \{X_1, X_2, \cdots, X_n\}$ where $|X_i| = t_i, 1 \leq i \leq n$, and L^T be its transpose. Furthermore, let us denote the (x, y)-entry in *L* by $x \circ y$ and the (x, y)-entry in L^T by $y \circ x$ for each ordered pair $(x, y) \in (X \times X) \setminus \bigcup_{1 \leq i \leq n} (X_i \times X_i)$. Let $\mathcal{G} = \{X_i \times Z_3 \mid 1 \leq i \leq n\}$ and $\mathcal{B} = \{(x, g), (y, g), (x \circ y, g + 1), (y \circ x, g + 1) \mid x \in X_i, y \in X_j, 1 \leq i < j \leq n, g \in Z_3\}$ (addition is mod 3 for the second coordinate). Then $(X \times Z_3, \mathcal{G}, \mathcal{B})$ is a simple (4, 2)-GDD of type $(3t_1)(3t_2)\cdots(3t_n)$.

Without loss of generality, let $x \in X_i, y \in X_j$ and $1 \le i < j \le n$. For each pair $\{(x,g), (y,g)\}$, by the self-orthogonality of L, we have a unique pair r, s such that $r \circ s = x$ and $s \circ r = y$, where $r \in X_{i_1}, s \in X_{j_1}, 1 \le i_1 < j_1 \le n$ and $(i, j) \ne (i_1, j_1)$. Therefore, the pair $\{(x,g), (y,g)\}$ occurs in exactly two blocks $\{(x,g), (y,g), (x \circ y, g+1), (y \circ x, g+1)\}$ and $\{(r,g-1), (s,g-1), (x,g), (y,g)\}$. Considering the pair $\{(x,g), (y,g+1)\}$, by the definition of L, we suppose $x \circ r = y$ and $s \circ x = y$ where $r \in X_{i_1}, s \in X_{i_2}, i_1 > i_2 > i$. Then the pair $\{(x,g), (y,g+1)\}$ occurs in exactly two blocks $\{(x,g), (r,g), (y,g+1), (r \circ x, g+1)\}$ and $\{(x,g), (s,g), (x \circ s, g+1), (y, g+1)\}$. This proves that $(X \times Z_3, \mathcal{G}, \mathcal{B})$ is a (4,2)-GDD. Moreover, let $B_1 = \{(x_1,g_1), (y_1,g_1), (x_1 \circ y_1,g_1+1), (y_1 \circ x_1,g_1+1)\}$, $B_2 = \{(x_2,g_2), (y_2,g_2), (x_2 \circ y_2,g_2+1), (y_2 \circ x_2,g_2+1)\}$ and $B_1, B_2 \in \mathcal{B}$. If $B_1 = B_2$, then $g_1 \equiv g_2$ (mod 3) or $g_1 \equiv g_2 + 1 \pmod{3}$, but $g_1 \equiv g_2 + 1 \pmod{3}$ and $B_1 \equiv B_2$, then $g_1 \equiv g_2 \pmod{3}$. This shows that there is no repeated blocks in \mathcal{B} . The proof is completed.

Corollary 2.1. There exists a simple (4,2)-GDD of type $6^n(3u)^1$ for $n \ge 4, n \ge 1+u$.

Proof. Applying Lemma 2.1, since there exists an $\text{HSOLS}(2^n u^1)$ for $n \ge 4, n \ge 1 + u$ from [7], we obtain a simple (4, 2)-GDD of type $6^n (3u)^1$.

The following result is from [2].

Lemma 2.2. There exists an NB(4,2; v) if and only if $v \equiv 1 \pmod{3}$, $v \geq 7$.

Now we obtain the main result of this section.

Lemma 2.3. Let v and w be positive integers, $v \ge 3w + 1$, and suppose that either $v, w \equiv 1, 7 \pmod{12}$ or $v, w \equiv 4, 10 \pmod{12}$. Then there exists a simple (v, w; 4, 2)-IPBD

with 3 possible exceptions (v, w) = (16, 4), (22, 4) and (25, 7).

Proof. When w = 1 and $v \equiv 1,7 \pmod{12}$, there exists a simple (v, 1; 4, 2)-IPBD by Lemma 2.2. Now let $w = 3u + 1, u \ge 1$. By the hypotheses, we can always write $v = 6n + 3u + 1, n \ge 1 + u$ and $n \ge 4$. Hence there exists a simple (4, 2)-GDD of type $6^n(3u)^1$ by Corollary 2.1. Further by applying Construction 2.1 with d = 1 and Lemma 2.2, we get the required designs.

§3. Simple (v, w; 4, 2)-IPBDs with $v - w \equiv 3 \pmod{6}$

In this section, we shall use a technique of permuting IPBD with index unity to produce a simple IPBD with index two. The following result is needed.

Lemma 3.1. (cf. [4]) There exists a (v, w; 4, 1)-IPBD if and only if $v \ge 3w + 1$ and either $v, w \equiv 1, 4 \pmod{12}$, or $v, w \equiv 7, 10 \pmod{12}$.

The following lemma is a generalization of Theorem 1 in [5], and it is a useful tool for constructing simple IPBDs. Let X, Y, Z be three disjoint sets, where |X| = v - w, |Y| = w, |Z| = m. Let S be the symmetric group on $X \cup Y \cup Z$ and $\pi \in S$ be a permutation. For each subset $M = \{x_1, x_2, \dots, x_k\}$ of $X \cup Y \cup Z$, let $\pi(M) = \{\pi(x_1), \pi(x_2), \dots, \pi(x_k)\}$. Further let G be the subgroup of S fixing Y and z for each $z \in Z$. Then we have the following lemma.

Lemma 3.2. Suppose that $(X \cup Y \cup Z, Y \cup Z, A)$ is a simple $(v + m, w + m; k, \lambda_1)$ -IPBD, $(X \cup Y, Y, B)$ is a simple $(v, w; k, \lambda_2)$ -IPBD and v, w, k, λ_1 and λ_2 satisfy the following inequality:

$$\lambda_1 \lambda_2 (k-2)! (v-w) \{ kw(v-w-k+1) + (v-(k-1)w-1)^2 \} (v-w-k)!$$

< $k(k-1)(v-w-1)!.$ (3.1)

Then there exists a permutation $\pi \in G$ such that $\pi(\mathcal{A}) \cap \mathcal{B} = \phi$, where $\pi(\mathcal{A}) = \{\pi(\mathcal{A}) \mid \mathcal{A} \in \mathcal{A}\}.$

Proof. Let $\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{11} \cup \mathcal{A}_{12}$, $\mathcal{B} = \mathcal{B}_0 \cup \mathcal{B}_1$, where $\mathcal{A}_0 = \{A \in \mathcal{A} \mid |A \cap (Y \cup Z)| = 0\}$, $\mathcal{A}_{11} = \{A \in \mathcal{A} \mid |A \cap Y| = 1\}$, $\mathcal{A}_{12} = \{A \in \mathcal{A} \mid |A \cap Z| = 1\}$, $\mathcal{B}_0 = \{B \in \mathcal{B} \mid |B \cap Y| = 0\}$, and $\mathcal{B}_1 = \{B \in \mathcal{B} \mid |B \cap Y| = 1\}$. By simple counting argument, we have

$$\begin{aligned} |\mathcal{A}_0| &= \frac{\lambda_1 (v - w) [v - (k - 1)w - 1 - (k - 2)m]}{k(k - 1)}, \\ |\mathcal{A}_{11}| &= \frac{\lambda_1 w (v - w)}{k - 1}, \qquad |\mathcal{A}_{12}| = \frac{\lambda_1 m (v - w)}{k - 1}, \\ |\mathcal{B}_0| &= \frac{\lambda_2 (v - w) [v - (k - 1)w - 1]}{k(k - 1)}, \qquad |\mathcal{B}_1| = \frac{\lambda_2 w (v - w)}{k - 1} \end{aligned}$$

Since S is the symmetric group on $X \cup Y \cup Z$, and G is the subgroup of S fixing Y and z for each $z \in Z$, we see that |G| = w!(v - w)! and for any $\pi \in G$, $(X \cup Y \cup Z, Y \cup Z, \pi(\mathcal{A}))$ is also a $(v + m, w + m; k, \lambda_1)$ -IPBD.

Now for two given blocks $A \in \mathcal{A}$ and $B \in \mathcal{B}$, if $|A \cap Y| \neq |B \cap Y|$, then there does not exist $\pi \in G$ such that $\pi(A) = B$. If $|A \cap Y| = |B \cap Y| = 0$ and $|A \cap Z| \neq 0$, then there does not exist $\pi \in G$ such that $\pi(A) = B$. If $|A \cap Y| = |B \cap Y| = 0$ and $|A \cap Z| \neq 0$, then there the number of such permutations π is k!w!(v - w - k)!. If $|A \cap Y| = |B \cap Y| = 1$, then the number of such permutations is (k - 1)!(w - 1)!(v - w - k + 1)!.

Let n be the number of permutations $\pi \in G$ such that

$$|\pi(\mathcal{A}) \cap \mathcal{B}| \ge 1.$$

Then

$$\begin{split} n &\leq \lambda_1 \lambda_2 (v-w)^2 [v-(k-1)w-1] [v-(k-1)w-1-(k-2)m] \frac{k!w!(v-w-k)!}{k^2(k-1)^2} \\ &+ \lambda_1 \lambda_2 w^2 (v-w)^2 \frac{(k-1)!(w-1)!(v-w-k+1)!}{(k-1)^2} \\ &= \lambda_1 \lambda_2 (k-2)!(v-w)^2 \{kw(v-w-k+1) \\ &+ [v-(k-1)w-1] [v-(k-1)w-1-(k-2)m] \} \frac{w!(v-w-k)!}{k(k-1)} \\ &\leq \lambda_1 \lambda_2 (k-2)!(v-w)^2 \{kw(v-w-k+1)+(v-(k-1)w-1)^2 \} \frac{w!(v-w-k)!}{k(k-1)} \\ &\leq w!(v-w)!. \end{split}$$

Thus there exists a permutation $\pi \in G$ such that $\pi(\mathcal{A})$ and \mathcal{B} share no common blocks, that is, $\pi(\mathcal{A}) \cap \mathcal{B} = \phi$.

For $k = 4, \lambda_1 = \lambda_2 = 1$, (3.1) is just the following inequality: $(v - w)\{4w(v - w - 3) + (v - 3w - 1)^2\} < 6(v - w - 1)(v - w - 2)(v - w - 3).$

Lemma 3.3. Let v and w be positive integers, $v \ge 3w + 1$ and $(v, w) \ne (4, 1)$. Then v and w satisfy (3.2).

Proof. Since $v, w > 0, v \ge 3w + 1$, and $(v, w) \ne (4, 1)$, we have

$$(v - 3w - 1) \ge 0,$$
 $(v + w - 5) \ge 0.$

Therefore, we get

$$(v - 3w - 1)^2 \le 2(v - 3w - 1)(v - w - 3).$$

Adding 4w(v-w-3) to both sides of the above inequality, we have

$$0 < 4w(v - w - 3) + (v - 3w - 1)^{2} \le 2(v - w - 1)(v - w - 3).$$

Since 0 < v - w < 3(v - w - 2), we get the desired inequality.

Lemma 3.4. Let v and w be positive integers, $(v, w) \neq (4, 1)$ and m = 0 or 6. If there exist a (v + m, w + m; 4, 1)-IPBD and a (v, w; 4, 1)-IPBD, then there exists a simple $(v + \frac{m}{2}, w + \frac{m}{2}; 4, 2)$ -IPBD.

(3.2)

Proof. Let sets X, Y and $Z = \{\infty_1, \infty_2, \dots, \infty_m\}$ satisfy |X| = v - w, |Y| = w and $X \cap Y \cap Z = \phi$. Let S be the symmetric group on $X \cup Y \cup Z$, and let G be the subgroup of S fixing Y and z for each $z \in Z$. Further let $(X \cup Y \cup Z, Y \cup Z, A)$ be a (v + m, w + m; 4, 1)-IPBD and $(X \cup Y, Y, \mathcal{B})$ be a (v, w; 4, 1)-IPBD. By Lemma 3.1, we have $v \ge 3w + 1$, thus v and w satisfy (3.2). Applying Lemma 3.2 with $k = 4, \lambda_1 = \lambda_2 = 1$, we see that there exists a permutation $\pi \in G$ such that $\pi(\mathcal{A}) \cap \mathcal{B} = \phi$.

Let

$$\mathcal{A}_Z = \{ A \in \pi(\mathcal{A}) \mid |A \cap Z| = 1 \},$$
$$\mathcal{P}_i = \{ A \in \mathcal{A}_Z \mid \infty_i \in A \}, \qquad 1 \le i \le m$$

and set

$$\mathcal{Q}_j = \{\{a, b, c, \infty_j\} \mid \{a, b, c, \infty_{m/2+j}\} \in \mathcal{P}_{m/2+j}\}, \qquad 1 \le j \le \frac{m}{2}.$$

Then

$$\left(X \cup Y \cup \{\infty_1, \infty_2, \cdots, \infty_{\frac{m}{2}}\}, Y \cup \{\infty_1, \infty_2, \cdots, \infty_{\frac{m}{2}}\}, \mathcal{B} \cup \pi(\mathcal{A}) \cup \left(\bigcup_{1 \le i \le \frac{m}{2}} (\mathcal{P}_i \cup \mathcal{Q}_i)\right) \setminus \mathcal{A}_Z\right)$$

is a simple $(v + \frac{m}{2}, w + \frac{m}{2}; 4, 2)$ -IPBD. The proof is completed.

Now we are in a position to provide our main results of this section.

Lemma 3.5. Let v and w be positive integers. If $v \ge 3w + 1$, $(v, w) \ne (4, 1)$, and either $v, w \equiv 1, 4 \pmod{12}$, or $v, w \equiv 7, 10 \pmod{12}$, then there exists a simple (v, w; 4, 2)-IPBD.

Proof. Apply Lemma 3.1 and Lemma 3.4 with m = 0.

Lemma 3.6. Let v and w be positive integers. If $v \ge 3w + 7$, and v, w satisfy one of the following conditions:

(1) $v \equiv 1 \pmod{12}$, and $w \equiv 10 \pmod{12}$;

(2) $v \equiv 4 \pmod{12}$, and $w \equiv 7 \pmod{12}$;

(3) $v \equiv 7 \pmod{12}$, and $w \equiv 4 \pmod{12}$;

(4) $v \equiv 10 \pmod{12}$, and $w \equiv 1 \pmod{12}$.

Then there exists a simple (v, w; 4, 2)-IPBD.

Proof. From the hypotheses and Lemma 3.1, we have a (v + 3, w + 3; 4, 1)-IPBD and a (v - 3, w - 3; 4, 1)-IPBD. Applying Lemma 3.4 with m = 6, we obtain the desired design.

§4. Main Results

Before concluding this study, we first deal with the remaining cases in Lemma 2.3. Noting that the case with (v, w) = (16, 4) is covered by Lemma 3.5, we can now restrict our attention to the cases with (v, w) = (22, 4) and (25, 7).

Lemma 4.1. There exists a simple (25, 7; 4, 2)-IPBD.

Proof. We first construct a simple (4, 2)-GDD of type 2^4 on $X = \{1, 2, \dots, 8\}$. The groups are $X_i = \{1 + 2i, 2 + 2i\}, 0 \le i \le 3$ and the blocks are listed as follows:

- $\{1,3,5,7\}, \{2,3,6,7\}, \{1,4,5,8\}, \{2,4,6,8\},\$
- $\{1, 3, 6, 8\}, \{2, 3, 5, 8\}, \{1, 4, 6, 7\}, \{2, 4, 5, 7\}.$

Then give each point of this GDD weight 3. Since there exists a TD(4,3), this forms a simple (4,2)-GDD of type 6⁴. Employing Construction 2.1 with d = 1 and Lemma 2.2, we obtain the required design.

In order to handle with the case (v, w) = (22, 4), we recall the concept of Kirkman triple system. A parallel class of a $B(k, \lambda; v)$ (X, \mathcal{A}) is a subset \mathcal{P} of \mathcal{A} such that \mathcal{P} is a partition of X. A $B(k, \lambda; v)$ (X, \mathcal{A}) is said to be resolvable if \mathcal{A} can be partitioned into parallel classes. It is well known that a resolvable B(3, 1; v) is called a Kirkman triple system (KTS(v)).

Lemma 4.2. There exists a simple (22, 4; 4, 2)-IPBD.

Proof. From [1], there exist two KTS(15)s (X, \mathcal{A}) and (X, \mathcal{B}) such that \mathcal{A} and \mathcal{B} have exactly one common block $\{a, b, c\}$. Let $\mathcal{A} = \bigcup_{0 \le i \le 6} \mathcal{P}_i, \mathcal{B} = \bigcup_{0 \le i \le 6} \mathcal{Q}_i$ and $\mathcal{P}_0 \cap \mathcal{Q}_0 = \{a, b, c\}$, where \mathcal{P}_i and \mathcal{Q}_i are parallel classes of (X, \mathcal{A}) and (X, \mathcal{B}) , respectively, and let (Y, \mathcal{C}) be an NB(4, 2; 7) from Lemma 2.2, where $Y = \{\infty_0, \infty_1, \cdots, \infty_6\}$. Furthermore, let

$$\begin{aligned} \mathcal{P}_{i}^{'} &= \{\{x_{1}, x_{2}, x_{3}, \infty_{i}\} \mid \{x_{1}, x_{2}, x_{3}\} \in \mathcal{P}_{i}\}, \qquad 0 \leq i \leq 6, \\ \mathcal{Q}_{i}^{'} &= \{\{x_{1}, x_{2}, x_{3}, \infty_{i}\} \mid \{x_{1}, x_{2}, x_{3}\} \in \mathcal{Q}_{i}\}, \qquad 0 \leq i \leq 6, \end{aligned}$$

and set

$$\mathcal{A}' = \bigcup_{0 \le i \le 6} \mathcal{P}'_i \setminus \{\{a, b, c, \infty_0\}\},\$$
$$\mathcal{B}' = \bigcup_{0 \le i \le 6} \mathcal{Q}'_i \setminus \{\{a, b, c, \infty_0\}\}.$$

Then $(X \cup Y, \{a, b, c, \infty_0\}, \mathcal{A}' \cup \mathcal{B}' \cup \mathcal{C})$ is a simple (22, 4; 4, 2)-IPBD.

We are now in a position to give our conclusions.

Theorem 4.1. There exists a simple (v, w; 4, 2)-IPBD if and only if $v \ge 3w + 1, v \ge 7$ and $v, w \equiv 1 \pmod{3}$.

Proof. The necessity is obvious by simple counting argument. Now we prove the sufficiency. In fact, the necessary condition is equivalent to the following cases:

(1) $v \ge 3w + 1, v, w \equiv 1 \pmod{3}$ and $v - w \equiv 0 \pmod{6}$,

(2) $v \ge 3w + 1, v, w \equiv 1 \pmod{3}, v - w \equiv 3 \pmod{6}$ and $(v, w) \ne (4, 1)$.

Combining Lemmas 2.3, 3.5, 3.6, 4.1 and 4.2, the conclusion then follows.

As an immediate consequence of Theorem 4.1, we have the main theorem of this paper.

Theorem 4.2. There exists an NB(4,2; v) containing an NB(4,2; w) as a subdesign if and only if $v \ge 3w + 1, w \ge 7$ and $v, w \equiv 1 \pmod{3}$.

Proof. Filling an NB(4,2;w) in the hole of size w in a simple (v,w;4,2)-IPBD from Theorem 4.1 gives the desired design.

Acknowledgement. The authors would like to thank the referees for their helpful comments.

References

- [1] Colbourn, C. J. & Rosa, A., Triple systems, Clarendon Press, Oxford, 1999.
- [2] Phelps, K. T. & Rosa, A., Recursive constructions and some properties of two-fold designs with block size four, J. Australian Math. Soc. (Series A), 44(1988), 64–70.
- [3] Rees, R. & Rodger, C. A., Subdesigns in complementary path decomposition and incomplete two-fold designs with block size four, Ars Combin., 35(1993), 117–122.
- [4] Rees, R. & Stinson, D. R., On the existence of incomplete designs with block size four having one hole, Utilitas Math., 35(1989), 119–152.
- [5] Shen, H., On the existence of simple and indecomposable block designs with size 4, J. Combin. Math. Combin. Comput., 8(1990), 31–38.
- [6] Shen, H., Embeddings of simple triple systems, Science in China, Series A, 35(1992), 283–291.
- [7] Xu, Y. & Zhu, L., Existence of frame SOLS of type $2^n u^1$, J. Combin. Design, **3**(1995), 115–133.