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EMBEDDINGS OF SIMPLE TWO-FOLD
BALANCED INCOMPLETE BLOCK

DESIGNS WITH BLOCK
SIZE FOUR∗∗∗

WANG Jinhua∗ SHEN Hao∗∗

Abstract

The necessary and sufficient conditions for the existence of simple incomplete block
design (v,w; 4, 2)-IPBDs are determined. As a consequence, the necessary and sufficient
conditions for the embeddings of simple two-fold balanced incomplete block designs with
block size 4 are also determined.
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§ 1 . Introduction

A balanced incomplete block design B(k, λ; v) is an ordered pair (X,A) where X is a
set of v points and A is a collection of subsets (called blocks) of X such that |B| = k for
each block B ∈ A, and each pair of distinct points of X is contained in exactly λ blocks. A
B(k, λ; v) is called simple and denoted by NB(k, λ; v) if it contains no repeated blocks.

Let (X,A) be a B(k, λ; v), Y ⊂ X, |Y | = w and B ⊂ A. If (Y,B) is a B(k, λ; w), then it is
called a subdesign of (X,A), or it is embedded in (X,A). An incomplete pairwise balanced
design (v, w; k, λ)-IPBD is an ordered triple (X, Y,A) where X is a v-set, Y is a w-subset
(called a hole) of X and A is a collection of subsets (called blocks) of X such that |B| = k

and |B ∩ Y | ≤ 1 for each B ∈ A and each pair of distinct points of X , not both in Y , is
contained in exactly λ blocks. A (v, w; k, λ)-IPBD is called simple if it contains no repeated
blocks. It is obvious that we can get an NB(k, λ, v) containing an NB(k, λ, w) as a subdesign
by filling an NB(k, λ, w) in the hole of size w in a simple (v, w; k, λ)-IPBD.

By some simple counting argument, the following conditions are necessary for the em-
bedding of an NB(k, λ; w) in an NB(k, λ; v):

v ≥ (k − 1)w + 1,

λv(v − 1) ≡ λw(w − 1) ≡ 0 (mod k(k − 1)),
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λ(v − 1) ≡ λ(w − 1) ≡ 0 (mod (k − 1)),

λ ≤
(

w − 2
k − 2

)
. (1.1)

For given k and λ, any positive integers v, w satisfying the above conditions are called
admissible.

The embeddings of simple triple systems for arbitrary λ was completely determined by
Shen [6]: An NB(3, λ; w) can be embedded in some NB(3, λ; v) if and only if v and w are
admissible. However, for arbitrary λ ≥ 2, the embedding problem of NB(4, λ; v)s is still
open. Rees and Rodger [3] proved that there exists a B(4, 2; v) containing a B(4, 2; w) as a
subdesign if and only if v ≡ w ≡ 1 (mod 3) and v ≥ 3w+1, but the embedding may contain
repeated blocks.

The main purpose of this paper is to give a complete solution to the existence problem of
simple (v, w; 4, 2)-IPBDs. As a consequence, we have determined the necessary and sufficient
conditions for the embeddings of NB(4, 2; v)s. Our techniques are a construction from self-
orthogonal Latin squares with holes in Section 2 and a construction from incomplete pairwise
balanced designs with index unity in Section 3.

§ 2 . Simple (v, w; 4, 2)-IPBDs with v − w ≡ 0 (mod 6)

A group divisible design (k, λ)-GDD is an ordered triple (X,G,A) where G is a partition
of a set X (of points) into subsets called groups, B is a set of subsets of X (called blocks)
such that for each B ∈ B, |B| = k and a group and a block contain at most one common
point, every pair of points from distinct groups occurs in exactly λ blocks. The type of the
GDD is the multiset {|G| : G ∈ G}. We also use an exponential notation to describe types:
so type tn1

1 tn2
2 · · · tnk

k denotes ni occurrences of ti, 1 ≤ i ≤ k. A (k, 1)-GDD of type mk is
called a transversal design and denoted by TD(k, m). It is well known that the existence of a
TD(k, m) is equivalent to the existence of k − 2 mutually orthogonal Latin squares of order
m. A (k, λ)-GDD is called simple if it contains no repeated blocks. Obviously, a simple
(k, λ)-GDD of type 1v is just an NB(k, λ; v).

We shall need the following construction for simple IPBDs from simple GDDs whose
proof is clear.

Construction 2.1. Let k and λ be positive integers and let d be a nonnegative integer.
Suppose that the following designs exist:

(1) a simple (k, λ)-GDD of type t1 t2 · · · tn;
(2) a simple (ti + d, d; k, λ)-IPBD for 1 ≤ i ≤ n − 1.

Then there exists a simple (v, w; k, λ)-IPBD, where v =
∑

1≤i≤n

ti + d and w = tn + d.

To apply the above lemma, we shall also need holey self-orthogonal Latin squares to get
the required GDDs. Let H = {X1, X2, · · · , Xn} be a partition of a set X and |Xi| = ti, 1 ≤
i ≤ n. A holey self-orthogonal Latin square of type

∏
1≤i≤n

ti, denoted by HSOLS
( ∏

1≤i≤n

ti
)
,

is an |X | × |X | array L, indexed by X , satisfying the following properties:
(1) Every cell of L either contains an element of X or is empty.
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(2) Every element of X occurs at most once in any row or column of L.
(3) The subarrays indexed by Xi × Xi are empty for 1 ≤ i ≤ n (these subarrays are

called holes).
(4) An element x ∈ X occurs in row or column y if and only if (x, y) ∈ (X×X)\ ⋃

1≤i≤n

(Xi

×Xi).
(5) The superposition of L and its transpose LT yields all ordered pairs in (X×X)\ ⋃

1≤i≤n

(Xi × Xi).
It is clear that an HSOLS(1n) is just an idempotent self-orthogonal Latin square of order

n. For simple GDD, we have the following construction from HSOLS.

Lemma 2.1. Suppose that there exists an HSOLS(t1t2 · · · tn). Then there exists a simple
(4, 2)-GDD of type (3t1)(3t2) · · · (3tn).

Proof. Let L be an HSOLS(t1t2 · · · tn) on the set X with hole set H = {X1, X2, · · ·, Xn}
where |Xi| = ti, 1 ≤ i ≤ n, and LT be its transpose. Furthermore, let us denote the
(x, y)-entry in L by x ◦ y and the (x, y)-entry in LT by y ◦ x for each ordered pair (x, y) ∈
(X × X)\ ⋃

1≤i≤n

(Xi × Xi). Let G = {Xi × Z3 | 1 ≤ i ≤ n} and B = {(x, g), (y, g), (x ◦ y, g +

1), (y ◦ x, g + 1) | x ∈ Xi, y ∈ Xj , 1 ≤ i < j ≤ n, g ∈ Z3} (addition is mod 3 for the second
coordinate). Then (X × Z3,G,B) is a simple (4, 2)-GDD of type (3t1)(3t2) · · · (3tn).

Without loss of generality, let x ∈ Xi, y ∈ Xj and 1 ≤ i < j ≤ n. For each pair
{(x, g), (y, g)}, by the self-orthogonality of L, we have a unique pair r, s such that r ◦ s = x

and s ◦ r = y, where r ∈ Xi1 , s ∈ Xj1 , 1 ≤ i1 < j1 ≤ n and (i, j) 	= (i1, j1). Therefore, the
pair {(x, g), (y, g)} occurs in exactly two blocks {(x, g), (y, g), (x ◦ y, g + 1), (y ◦ x, g + 1)}
and {(r, g − 1), (s, g − 1), (x, g), (y, g)}. Considering the pair {(x, g), (y, g + 1)}, by the
definition of L, we suppose x ◦ r = y and s ◦ x = y where r ∈ Xi1 , s ∈ Xi2 , i1 > i2 > i.
Then the pair {(x, g), (y, g + 1)} occurs in exactly two blocks {(x, g), (r, g), (y, g + 1), (r ◦
x, g + 1)} and {(x, g), (s, g), (x ◦ s, g + 1), (y, g + 1)}. This proves that (X × Z3,G,B) is a
(4, 2)-GDD. Moreover, let B1 = {(x1, g1), (y1, g1), (x1 ◦ y1, g1 + 1), (y1 ◦ x1, g1 + 1)}, B2 =
{(x2, g2), (y2, g2), (x2 ◦y2, g2 +1), (y2 ◦x2, g2 +1)} and B1, B2 ∈ B. If B1 = B2, then g1 ≡ g2

(mod 3) or g1 ≡ g2 + 1 (mod 3), but g1 ≡ g2 + 1 (mod 3) and B1 = B2 imply g2 ≡ g1 + 1
(mod 3), hence 2 ≡ 0 (mod 3), a contradiction. So if B1 = B2, then g1 ≡ g2 (mod 3). This
shows that there is no repeated blocks in B. The proof is completed.

Corollary 2.1. There exists a simple (4, 2)-GDD of type 6n(3u)1 for n ≥ 4, n ≥ 1 + u.

Proof. Applying Lemma 2.1, since there exists an HSOLS(2nu1) for n ≥ 4, n ≥ 1 + u

from [7], we obtain a simple (4, 2)-GDD of type 6n(3u)1.
The following result is from [2].

Lemma 2.2. There exists an NB(4, 2; v) if and only if v ≡ 1 (mod 3), v ≥ 7.

Now we obtain the main result of this section.

Lemma 2.3. Let v and w be positive integers, v ≥ 3w + 1, and suppose that either
v, w ≡ 1, 7 (mod 12) or v, w ≡ 4, 10 (mod 12). Then there exists a simple (v, w; 4, 2)-IPBD
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with 3 possible exceptions (v, w) = (16, 4), (22, 4) and (25, 7).

Proof. When w = 1 and v ≡ 1, 7 (mod 12), there exists a simple (v, 1; 4, 2)-IPBD
by Lemma 2.2. Now let w = 3u + 1, u ≥ 1. By the hypotheses, we can always write
v = 6n + 3u + 1, n ≥ 1 + u and n ≥ 4. Hence there exists a simple (4, 2)-GDD of type
6n(3u)1 by Corollary 2.1. Further by applying Construction 2.1 with d = 1 and Lemma 2.2,
we get the required designs.

§ 3 . Simple (v, w; 4, 2)-IPBDs with v − w ≡ 3 (mod 6)

In this section, we shall use a technique of permuting IPBD with index unity to produce
a simple IPBD with index two. The following result is needed.

Lemma 3.1. (cf. [4]) There exists a (v, w; 4, 1)-IPBD if and only if v ≥ 3w + 1 and
either v, w ≡ 1, 4 (mod 12), or v, w ≡ 7, 10 (mod 12).

The following lemma is a generalization of Theorem 1 in [5], and it is a useful tool for
constructing simple IPBDs. Let X, Y, Z be three disjoint sets, where |X | = v − w, |Y | =
w, |Z| = m. Let S be the symmetric group on X ∪ Y ∪ Z and π ∈ S be a permutation.
For each subset M = {x1, x2, · · · , xk} of X ∪ Y ∪ Z, let π(M) = {π(x1), π(x2), · · · , π(xk)}.
Further let G be the subgroup of S fixing Y and z for each z ∈ Z. Then we have the
following lemma.

Lemma 3.2. Suppose that (X ∪ Y ∪ Z, Y ∪ Z,A) is a simple (v + m, w + m; k, λ1)-
IPBD, (X∪Y, Y,B) is a simple (v, w; k, λ2)-IPBD and v, w, k, λ1 and λ2 satisfy the following
inequality:

λ1λ2(k − 2)!(v − w){kw(v − w − k + 1) + (v − (k − 1)w − 1)2}(v − w − k)!

< k(k − 1)(v − w − 1)!. (3.1)

Then there exists a permutation π ∈ G such that π(A) ∩ B = φ, where π(A) = {π(A) | A ∈
A}.

Proof. Let A = A0 ∪A11 ∪A12, B = B0 ∪B1, where A0 = {A ∈ A | |A∩ (Y ∪Z)| = 0},
A11 = {A ∈ A | |A ∩ Y | = 1}, A12 = {A ∈ A | |A ∩ Z| = 1}, B0 = {B ∈ B | |B ∩ Y | = 0},
and B1 = {B ∈ B | |B ∩ Y | = 1}. By simple counting argument, we have

|A0| =
λ1(v − w)[v − (k − 1)w − 1 − (k − 2)m]

k(k − 1)
,

|A11| =
λ1w(v − w)

k − 1
, |A12| =

λ1m(v − w)
k − 1

,

|B0| =
λ2(v − w)[v − (k − 1)w − 1]

k(k − 1)
, |B1| =

λ2w(v − w)
k − 1

.

Since S is the symmetric group on X ∪ Y ∪ Z, and G is the subgroup of S fixing Y and
z for each z ∈ Z, we see that |G| = w!(v −w)! and for any π ∈ G, (X ∪ Y ∪Z, Y ∪Z, π(A))
is also a (v + m, w + m; k, λ1)-IPBD.
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Now for two given blocks A ∈ A and B ∈ B, if |A ∩ Y | 	= |B ∩ Y |, then there does not
exist π ∈ G such that π(A) = B. If |A ∩ Y | = |B ∩ Y | = 0 and |A ∩ Z| 	= 0, then there
does not exist π ∈ G such that π(A) = B. If |A ∩ Y | = |B ∩ Y | = 0 and |A ∩ Z| = 0, then
the number of such permutations π is k!w!(v − w − k)!. If |A ∩ Y | = |B ∩ Y | = 1, then the
number of such permutations is (k − 1)!(w − 1)!(v − w − k + 1)!.

Let n be the number of permutations π ∈ G such that

|π(A) ∩ B| ≥ 1.

Then

n ≤ λ1λ2(v − w)2[v − (k − 1)w − 1][v − (k − 1)w − 1 − (k − 2)m]
k!w!(v − w − k)!

k2(k − 1)2

+ λ1λ2w
2(v − w)2

(k − 1)!(w − 1)!(v − w − k + 1)!
(k − 1)2

= λ1λ2(k − 2)!(v − w)2{kw(v − w − k + 1)

+ [v − (k − 1)w − 1][v − (k − 1)w − 1 − (k − 2)m]}w!(v − w − k)!
k(k − 1)

≤ λ1λ2(k − 2)!(v − w)2{kw(v − w − k + 1) + (v − (k − 1)w − 1)2}w!(v − w − k)!
k(k − 1)

< w!(v − w)!.

Thus there exists a permutation π ∈ G such that π(A) and B share no common blocks,
that is, π(A) ∩ B = φ.

For k = 4, λ1 = λ2 = 1, (3.1) is just the following inequality:

(v − w){4w(v − w − 3) + (v − 3w − 1)2} < 6(v − w − 1)(v − w − 2)(v − w − 3). (3.2)

Lemma 3.3. Let v and w be positive integers, v ≥ 3w + 1 and (v, w) 	= (4, 1). Then v

and w satisfy (3.2).

Proof. Since v, w > 0, v ≥ 3w + 1, and (v, w) 	= (4, 1), we have

(v − 3w − 1) ≥ 0, (v + w − 5) ≥ 0.

Therefore, we get
(v − 3w − 1)2 ≤ 2(v − 3w − 1)(v − w − 3).

Adding 4w(v − w − 3) to both sides of the above inequality, we have

0 < 4w(v − w − 3) + (v − 3w − 1)2 ≤ 2(v − w − 1)(v − w − 3).

Since 0 < v − w < 3(v − w − 2), we get the desired inequality.

Lemma 3.4. Let v and w be positive integers, (v, w) 	= (4, 1) and m = 0 or 6. If
there exist a (v + m, w + m; 4, 1)-IPBD and a (v, w; 4, 1)-IPBD, then there exists a simple
(v + m

2 , w + m
2 ; 4, 2)-IPBD.
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Proof. Let sets X, Y and Z = {∞1,∞2, · · · ,∞m} satisfy |X | = v − w, |Y | = w and
X ∩ Y ∩Z = φ. Let S be the symmetric group on X ∪ Y ∪Z, and let G be the subgroup of
S fixing Y and z for each z ∈ Z. Further let (X ∪Y ∪Z, Y ∪Z,A) be a (v +m, w +m; 4, 1)-
IPBD and (X ∪ Y, Y,B) be a (v, w; 4, 1)-IPBD. By Lemma 3.1, we have v ≥ 3w + 1, thus v

and w satisfy (3.2). Applying Lemma 3.2 with k = 4, λ1 = λ2 = 1, we see that there exists
a permutation π ∈ G such that π(A) ∩ B = φ.

Let

AZ = {A ∈ π(A) | |A ∩ Z| = 1},
Pi = {A ∈ AZ | ∞i ∈ A}, 1 ≤ i ≤ m,

and set

Qj = {{a, b, c,∞j} | {a, b, c,∞m/2+j} ∈ Pm/2+j}, 1 ≤ j ≤ m

2
.

Then
(
X ∪Y ∪{∞1,∞2, · · · ,∞m

2
}, Y ∪{∞1,∞2, · · · ,∞m

2
},B∪π(A)∪

( ⋃
1≤i≤m

2

(Pi ∪Qi)
)∖

AZ

)

is a simple (v + m
2 , w + m

2 ; 4, 2)-IPBD. The proof is completed.

Now we are in a position to provide our main results of this section.

Lemma 3.5. Let v and w be positive integers. If v ≥ 3w + 1, (v, w) 	= (4, 1), and either
v, w ≡ 1, 4 (mod 12), or v, w ≡ 7, 10 (mod 12), then there exists a simple (v, w; 4, 2)-IPBD.

Proof. Apply Lemma 3.1 and Lemma 3.4 with m = 0.

Lemma 3.6. Let v and w be positive integers. If v ≥ 3w + 7, and v, w satisfy one of
the following conditions:

(1) v ≡ 1 (mod 12), and w ≡ 10 (mod 12);
(2) v ≡ 4 (mod 12), and w ≡ 7 (mod 12);
(3) v ≡ 7 (mod 12), and w ≡ 4 (mod 12);
(4) v ≡ 10 (mod 12), and w ≡ 1 (mod 12).

Then there exists a simple (v, w; 4, 2)-IPBD.

Proof. From the hypotheses and Lemma 3.1, we have a (v + 3, w + 3; 4, 1)-IPBD and a
(v − 3, w − 3; 4, 1)-IPBD. Applying Lemma 3.4 with m = 6, we obtain the desired design.

§ 4 . Main Results

Before concluding this study, we first deal with the remaining cases in Lemma 2.3. Noting
that the case with (v, w) = (16, 4) is covered by Lemma 3.5, we can now restrict our attention
to the cases with (v, w) = (22, 4) and (25, 7).

Lemma 4.1. There exists a simple (25, 7; 4, 2)-IPBD.
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Proof. We first construct a simple (4, 2)-GDD of type 24 on X = {1, 2, · · · , 8}. The
groups are Xi = {1 + 2i, 2 + 2i}, 0 ≤ i ≤ 3 and the blocks are listed as follows:

{1, 3, 5, 7}, {2, 3, 6, 7}, {1, 4, 5, 8}, {2, 4, 6, 8},

{1, 3, 6, 8}, {2, 3, 5, 8}, {1, 4, 6, 7}, {2, 4, 5, 7}.
Then give each point of this GDD weight 3. Since there exists a TD(4, 3), this forms a
simple (4, 2)-GDD of type 64. Employing Construction 2.1 with d = 1 and Lemma 2.2, we
obtain the required design.

In order to handle with the case (v, w) = (22, 4), we recall the concept of Kirkman triple
system. A parallel class of a B(k, λ; v) (X,A) is a subset P of A such that P is a partition of
X . A B(k, λ; v) (X,A) is said to be resolvable if A can be partitioned into parallel classes.
It is well known that a resolvable B(3, 1; v) is called a Kirkman triple system (KTS(v)).

Lemma 4.2. There exists a simple (22, 4; 4, 2)-IPBD.

Proof. From [1], there exist two KTS(15)s (X,A) and (X,B) such that A and B have
exactly one common block {a, b, c}. Let A =

⋃
0≤i≤6

Pi, B =
⋃

0≤i≤6

Qi and P0∩Q0 = {a, b, c},
where Pi and Qi are parallel classes of (X,A) and (X,B), respectively, and let (Y, C) be an
NB(4, 2; 7) from Lemma 2.2, where Y = {∞0,∞1, · · · ,∞6}. Furthermore, let

P ′
i = {{x1, x2, x3,∞i} | {x1, x2, x3} ∈ Pi}, 0 ≤ i ≤ 6,

Q′
i = {{x1, x2, x3,∞i} | {x1, x2, x3} ∈ Qi}, 0 ≤ i ≤ 6,

and set
A′

=
⋃

0≤i≤6

P ′
i\{{a, b, c,∞0}},

B′
=

⋃
0≤i≤6

Q′
i\{{a, b, c,∞0}}.

Then (X ∪ Y, {a, b, c,∞0},A′ ∪ B′ ∪ C) is a simple (22, 4; 4, 2)-IPBD.

We are now in a position to give our conclusions.

Theorem 4.1. There exists a simple (v, w; 4, 2)-IPBD if and only if v ≥ 3w + 1, v ≥ 7
and v, w ≡ 1 (mod 3).

Proof. The necessity is obvious by simple counting argument. Now we prove the
sufficiency. In fact, the necessary condition is equivalent to the following cases:

(1) v ≥ 3w + 1, v, w ≡ 1 (mod 3) and v − w ≡ 0 (mod 6),
(2) v ≥ 3w + 1, v, w ≡ 1 (mod 3), v − w ≡ 3 (mod 6) and (v, w) 	= (4, 1).

Combining Lemmas 2.3, 3.5, 3.6, 4.1 and 4.2, the conclusion then follows.

As an immediate consequence of Theorem 4.1, we have the main theorem of this paper.

Theorem 4.2. There exists an NB(4, 2; v) containing an NB(4, 2; w) as a subdesign if
and only if v ≥ 3w + 1, w ≥ 7 and v, w ≡ 1 (mod 3).
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Proof. Filling an NB(4, 2; w) in the hole of size w in a simple (v, w; 4, 2)-IPBD from
Theorem 4.1 gives the desired design.

Acknowledgement. The authors would like to thank the referees for their helpful
comments.
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