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SOBOLEV INEQUALITY ON
RIEMANNIAN MANIFOLDS∗∗
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Abstract

Let M be an n dimensional complete Riemannian manifold satisfying the doubling
volume property and an on-diagonal heat kernel estimate. The necessary-sufficient
condition for the Sobolev inequality ‖f‖q ≤ Cn,,ν,p,q(‖∇f‖p + ‖f‖p) (2 ≤ p < q < ∞)
is given.
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§ 1 . Introduction

Let M be an n dimensional complete Riemannian manifold, ρ be the geodesic distance
on M , and dμ be Riemannian measure. Denote by B(x, r) the geodesic ball of center x ∈ M

and radius r > 0, and by V (x, r) its Riemannian volume.
One says that M satisfies the doubling volume property if there exists a constant D0

such that

V (x, 2r) ≤ D0V (x, r), ∀x ∈ M, r > 0. (1.1)

We denote ν = log2D0.
Let Δ be the Laplace-Beltrami operator on M , H(x, y, t) be the heat kernel on M .
Using the boundedness of the potential (I + (−Δ)

1
2 )−1 and the Riesz transform, Li [ 1 ]

obtained that for 1 < p < q < ∞, the Sobolev inequality

‖f‖q ≤ Cn,p,q(‖∇f‖p + ‖f‖p), ∀ f ∈ Hp
1 (M) (1.2)

holds on a complete manifold with non-negative Ricci curvature if and only if

{
inf

x∈M
V (x, 1) > 0,

1
p − 1

n ≤ 1
q < 1

p .
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In this note, we replace the condition RicciM ≥ 0 by the doubling volume property and
an upper bounds for the heat kernel. We obtain the following result:

Theorem 1.1. Let M be an n dimensional complete Riemannian manifold satisfying
the doubling volume property (1.1) and the heat kernel H(x, y, t) at M satisfies

H(x, x, t) ≤ C

V (x,
√

t )
, ∀x ∈ M, t > 0 (1.3)

for some C > 0. Then for 2 ≤ p < q < ∞, the Sobolev inequality

‖f‖q ≤ Cn,ν,p,q(‖∇f‖p + ‖f‖p), ∀ f ∈ Hp
1 (M) (1.4)

holds for some constant Cn,ν,p,q > 0 if and only if{
inf

x∈M
V (x, 1) > 0,

1
p − 1

n ≤ 1
q < 1

p .

Our assumption on M , apart from the doubling volume property, is the heat kernel
estimate (1.3). From this on-diagonal estimate, the corresponding off-diagonal estimate
automatically follows (see [5, Theorem 1.1]): for any α ∈ (0, 1

4 ),

H(x, y, t) ≤ Cα√
V (x,

√
t )V (y,

√
t )

e−α ρ2(x,y)
t , ∀x, y ∈ M, t > 0 (1.5)

for some Cα > 0.

With the doubling volume property, this implies that for any α ∈ (0, 1
4 ),

H(x, y, t) ≤ C′
α

V (x,
√

t )
e−α ρ2(x,y)

t (1.6)

for some C′
α > 0. Indeed B(y,

√
t ) ⊂ B(x,

√
t + ρ(x, y)). Now an obvious consequence of the

doubling volume property is

V (x, θr) ≤ D0θ
νV (x, r), ∀ θ > 1. (1.7)

Therefore

V (y,
√

t ) ≤ V (x,
√

t + ρ(x, y)) ≤ c
(
1 +

ρ(x, y)√
t

)ν

V (x,
√

t ),

and the estimate follows.
In fact, we should have ν ≥ n. Since lim

r→0

V (x,r)
rn = Ωn > 0, we have (see (1.7))

V (x, 1)rν

D0
≤ V (x, r) ≤ Cnrn, r � 1.

Example 1.1. The assumptions of Theorem 1.1 are satisfied on manifolds where a
parabolic Harnack principle holds (see [6, Chapter 5]).

It is easy to construct manifolds that satisfy the assumptions of Theorem 1.1, but where
the parabolic Harnack principle is false. A typical example is the following (see [3]) : take
two copies of IR2\B(0, 1), and glue them smoothly along the unit circles.

By [6, Theorem 5.6.4 and Theorem 5.6.5], we conclude that the parabolic Harnack prin-
ciple is satisfied on manifolds with non-negative Ricci curvature. Thus Theorem 1.1 is an
extension of the result in [1] when 2 ≤ p < +∞.
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§ 2 . Proof of Theorem 1.1

We consider the potential (I + (−Δ)
1
2 )−1. For 1 ≤ p ≤ ∞ and ∀f ∈ Lp(M), we have

Tf
Δ= (I + (−Δ)

1
2 )−1f(x) =

∫ ∞

0

e−t

∫
M

P (x, y, t)f(y)dydt, (2.1)

where P (x, y, t) is the Poisson kernel on M , i.e.,

P (x, y, t) =
1√
π

∫ ∞

0

e−ss−
1
2 H

(
x, y,

t2

4s

)
ds =

1√
π

∫ ∞

0

e−
t2
4s s−

3
2 H(x, y, s)ds.

Proposition 2.1. There exists some constant Cp > 0 such that

‖Tf‖Lp(M) ≤ Cp‖f‖Lp(M), ∀ f ∈ Lp(M).

Proof. By Theorem 3.5 in [2],
∫

M
H(x, y, t) ≤ 1, so

∫
M

P (x, y, t) ≤ 1. Therefore T is
Lp (1 ≤ p ≤ ∞) bounded.

Next, we will show that T is also bounded from Lp(M) to Lq(M) for 1
p − 1

n = 1
q . Let

k(x, y) =
1√
π

∫ ∞

0

te−t

∫ ∞

0

e−
t2
4s s−

3
2 H(x, y, s)dsdt, (2.2)

k1(x, y) =
1√
π

∫ ∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2 H(x, y, s)dsdt, (2.3)

k2(x, y) =
1√
π

∫ ∞

0

te−t

∫ ∞

1

e−
t2
4s s−

3
2 H(x, y, s)dsdt, (2.4)

T1f(x) Δ= (I + (−Δ)
1
2 )−1

1 f(x) =
∫

M

k1(x, y)f(y)dμ(y),

T2f(x) Δ= (I + (−Δ)
1
2 )−1

2 f(x) =
∫

M

k2(x, y)f(y)dμ(y).

Clearly

k(x, y) = k1(x, y) + k2(x, y), (2.5)

Tf(x) =
∫

M

k(x, y)f(y)dμ(y) = T1f(x) + T2(x). (2.6)

First, we state the following two lemmas.

Lemma 2.1. Let M be a complete Riemannian manifold satisfying the same assumptions
of Theorem 1.1. Let inf

x∈M
V (x, 1) = δ > 0, 1 < p < q < ∞, 1

q = 1
p − 1

n . Then T1 is of type

(p, q), i.e. T1 is bounded from Lp(M) to Lq(M).

Lemma 2.2. Let M be a complete Riemannian manifold satisfying the same assumptions
of Theorem 1.1. Let inf

x∈M
V (x, 1) = δ > 0, 1 < p < q < ∞, 1

q = 1
p − 1

n . Then T2 is of type

(p, q).

Next, once we established Lemmas 2.1–2.2, with the (p, p) boundedness of T (see Propo-
sition 2.1) and Marcinkiewicz interpolation theorem (see [4] for example), we obtain
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Theorem 2.1. Let M be a complete Riemannian manifold satisfying the same assump-
tions of Theorem 1.1. Let 1 < p, q < ∞, and inf

x∈M
V (x, 1) > 0, 1

p − 1
n ≤ 1

q ≤ 1
p . Then T is

of type (p, q).

Furthermore, we can get

Theorem 2.2. Let M be a complete Riemannian manifold satisfying the same assump-
tions of Theorem 1.1. Then for 2 ≤ p < ∞, there exists a constant Cn,p > 0, such that

‖(−Δ)
1
2 f‖p ≤ Cn,p‖∇f‖p, ∀f ∈ C∞

0 (M).

Proof. Let 1
p + 1

p′ = 1. Then for all g ∈ C∞
0 (M),

((−Δ)
1
2 f, g) = (f, (−Δ)

1
2 g) = (f, (−Δ)(−Δ)−

1
2 g) = (∇f,∇(−Δ)−

1
2 g).

Since the Riesz transform ∇(−Δ)−
1
2 is Lr bounded for 1 < r ≤ 2 (see [3, Theorem 1.1]),

|((−Δ)
1
2 f, g)| ≤ ‖∇f‖p‖∇(−Δ)−

1
2 g‖p′ ≤ Cn,p‖∇f‖p‖g‖p′.

Thus ‖(−Δ)
1
2 f‖p ≤ Cn,p‖∇f‖p.

Now we prove Lemmas 2.1–2.2. To this end, we give the following two lemmas which are
needed in the proof of Lemma 2.1.

Lemma 2.3. For any a > 0, let ga(θ) =

{
θn, 0 < θ ≤ 1,

θa, θ > 1.
Then there exists a constant

Cn,a > 0, such that

h∑
k=−∞

e−
2k

5 ga(2
k
2 ) ≤ Cn,a

∫ 2h+1

0

e−
t
5 ga(

√
t )

t
dt. (2.7)

Proof. One can easily see that λ(t) = e−
2t

5 ga(2
t
2 ) is a continuous and piecewise

monotone function. Its maximum is obtained at

m=

{
0, a < 2

5 ,

log2
5
2a, a ≥ 2

5 .

For h ≥ m − 1, we have

h∑
k=−∞

e−
2k

5 ga(2
k
2 ) ≤

∫ h+1

−∞
e−

2t

5 ga(2
t
2 )dt + e−

2m

5 ga(2
m
2 )

≤
∫ h+1

−∞
e−

2t

5 ga(2
t
2 )dt +

C′
a∫ 0

−∞ e−
2t

5 2
nt
2 dt

∫ 0

−∞
e−

2t

5 2
nt
2 dt

≤ Cn,a

∫ h+1

−∞
e−

2t

5 ga(2
t
2 )dt ≤ Cn,a

∫ 2h+1

0

e−
t
5 ga(

√
t )

t
dt. (2.8)

While for h < m − 1,

h∑
k=−∞

e−
2k

5 ga

(
2

k
2
) ≤

∫ h+1

−∞
e−

2t

5 ga

(
2

t
2
)
dt ≤

∫ 2h+1

0

e−
t
5 ga(

√
t )

t
dt. (2.9)
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Combining (2.8) and (2.9), we get the conclusion.

For simplicity, we denote g(θ) = gν(θ).

Lemma 2.4. Let M be a complete Riemannian manifold satisfying condition (1.1).
Then for any x ∈ M, 0 < s < 1, and κ > 0,

∫
ρ(x,y)≤κ

e−
ρ2(x,y)

5s dμ(y) ≤ Cn,νV (x,
√

s )
∫ √

2κ

0

e−
ρ2

5s g
(

ρ√
s

)
ρ

dρ.

Proof. Since

lim
t→0

V (x, t)
tn

= Ωn > 0, (2.10)

there exists an r0 > 0, such that C1 ≤ V (x,s)
sn ≤ C2 for s ∈ (0, r0). Therefore for any

r ∈ (0, r0] and θ ∈ (0, 1),

V (x, θr)
V (x, r)

≤ Cnθn. (2.11)

On the other hand, for any r ∈ (r0, 1], θ ∈ (0, 1),

V (x, θr)
V (x, r)

=
V (x, θr)
V (x, θr0)

· V (x, r0)
V (x, r)

· V (x, θr0)
V (x, r0)

≤ D0

( r

r0

)ν

θn ≤ Cn,νθn. (2.12)

For θ ∈ (0,∞), we denote χ(θ) = sup
x∈M,0<r≤1

V (x,θr)
V (x,r) . Then it follows from (1.7), (2.11) and

(2.12) that χ(θ) ≤ Cn,νg(θ).
Let h be selected such that 2h

√
s ≤ κ < 2h+1

√
s. Thus

∫
ρ(x,y)≤κ

e−
ρ2(x,y)

5s dμ(y) ≤
h∑

k=−∞

∫
2

k
2
√

s<ρ(x,y)≤2
k+1
2

√
s

e−
ρ2(x,y)

5s dμ(y)

≤
h∑

k=−∞
e−

2k

5 (V (x, 2
k+1
2
√

s ) − V (x, 2
k
2
√

s ))

≤ Cn,νV (x,
√

s )
h∑

k=−∞
e−

2k

5 g(2
k
2 ). (2.13)

By Lemma 2.3,

∫
ρ(x,y)≤κ

e−
ρ2(x,y)

5s dμ(y) ≤ Cn,νV (x,
√

s )
∫ √

2κ

0

e−
ρ2
5s g

(
ρ√
s

)
ρ

dρ.

And the lemma is proved.

Proof of Lemma 2.1. Let

k1,1(x, y) =

{
k1(x, y), ρ(x, y) ≤ κ,

0, ρ(x, y) > κ,
k1,∞(x, y) =

{
0, ρ(x, y) ≤ κ,

k1(x, y), ρ(x, y) > κ,
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where κ is to be determined.
Let

T1,1f(x) =
∫

M

k1,1(x, y)f(y)dμ(y), T1,∞f(x) =
∫

M

k1,∞(x, y)f(y)dμ(y).

As long as we can show that T1 is of weak type (p, q), it is also of (p, q) by Marcinkiewicz
interpolation. To this aim, we need to prove

μ{x ∈ M : ‖T1f(x)‖ > 2λ} ≤ Cn,p,q,ν
1
λq

, (2.14)

where ‖f‖p = 1.

Clearly

μ{x ∈ M : |T1f(x)|>2λ} ≤ μ{x ∈ M : |T1,1f(x)|>λ} + μ{x ∈ M : |T1,∞f(x)|>λ}. (2.15)

By interpolation,

‖T1,1f(x)‖p ≤ sup
x∈M

∫
M

k1,1(x, y)dμ(y). (2.16)

By Lemma 2.4 and (1.6),

∫
M

k1,1(x, y)dμ(y) ≤
∫ ∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2

∫
ρ(x,y)≤κ

e−
ρ2(x,y)

5s

V (x,
√

s )
dμ(y)dsdt

≤ Cn,ν

∫ +∞

0

te−t

∫ 1

0

e−
t2

4s
s−

3
2

∫ √
2κ

0

e−
ρ2

5s g
(

ρ√
s

)
ρ

dρdsdt

≤ Cn,ν

∫ √
2κ

0

1
ρ

∫ ∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2 e−

ρ2
5s g

( ρ√
s

)
dsdtdρ

≤ Cn,ν

∫ √
2κ

0

1
ρ

∫ ∞

0

e−t

∫ ∞

t2
e−

s
4 s−

1
2 e−

sρ2

5t2 g
(ρ

√
s

t

)
dsdstdρ

≤ Cn,ν

∫ √
2κ

0

1
ρ

∫ ∞

0

e−
s
4 s−

1
2

∫ √
s

0

e−te−
sρ2

5t2 g
(ρ

√
s

t

)
dtdsdρ

≤ Cn,ν

∫ √
2κ

0

1
ρ

∫ ∞

0

e−
s
4

∫ ∞

0

e−
√

sρ
l e−

l2
5 g(l)

ρ

l2
dldsdρ.

Since g(l) ∼ ln for l → 0+, and g(l) ∼ lν for l → +∞,∫
M

k1,1(x, y)dμ(y) ≤ Cn,νκ. (2.17)

By (2.16) and (2.17),

μ{x ∈ M, |T1,1f(x)| > λ} ≤ Cn,ν
κp

λp
. (2.18)

On the other hand,

|T1,∞f(x)| ≤ sup
x∈M

(∫
M

kp′
1,∞(x, y)dμ(y)

) 1
p′

, (2.19)
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where 1
p′ = 1 − 1

p .

By (2.10), there exists an r0 > 0, such that for any s ∈ (0, r0), V (x,
√

s ) ≥ cns
n
2 . By

(1.7) and ν ≥ n, for s ∈ (r0, 1],

V (x, 1)
V (x,

√
s )

≤ D0

( 1√
s

)n( 1√
s

)ν−n

≤ D0

( 1√
s

)n( 1
r0

)ν−n

≤ Cn,νs−
n
2 .

Therefore

V (x,
√

s) ≥ Cn,νmin(δ, 1)s
n
2 , ∀ 0 < s ≤ 1. (2.20)

It follows from (2.20) and [3, Lemma 2.1] that

(∫
M

kp′
1,∞(x, y)dμ(y)

) 1
p′ ≤ C

∫ +∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2

(∫
ρ(x,y)≥κ

Hp′
(x, y, s)dμ(y)

) 1
p′

dsdt

≤ C

∫ +∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2

V (x,
√

s )

(∫
ρ(x,y)≥κ

e−
p′ρ2(x,y)

5s dμ(y)
) 1

p′
dsdt

≤ C

∫ +∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2

V (x,
√

s )
e−

κ2
10s dsdt

≤ Cn,ν
1

min{δ, 1}
∫ +∞

0

te−t

∫ 1

0

e−
t2
4s s−

3
2− n

2p e−
κ2
10s dsdt.

In a way Similar to the estimate of (2.17), we have

(∫
M

kp′
1,∞(x, y)dμ(y)

) 1
p′ ≤ Cp,n,ν

1
min{δ, 1}κ1−n

p .

By (2.19),

|T1,∞f(x)| ≤ Cp,n,ν
1

min{δ, 1}κ1−n
p . (2.21)

Let κ > 0 be selected such that

λ = Cp,n,ν
1

min{δ, 1}κ1−n
p = Cp,n

1
min{δ, 1}κ−n

q .

Then

κ = Cp,n,,ν,δλ
− q

n (2.22)

and (2.14) is obtained from (2.15), (2.18), (2.21) and (2.22). The lemma is proved.

Proof of Lemma 2.2. Write 1
r = 1 + 1

q − 1
p = 1 − 1

n = n−1
n . By Hölder’s inequality,

|T2f(x)| ≤
∫

M

k2(x, y)|f(y)|dy

≤
{ ∫

M

kr
2(x, y)|f(y)|pdy

} 1
q ·

{∫
M

kr
2(x, y)dy

}1− 1
p ·

{∫
M

|f(y)|pdy
} 1

n

.
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Thus

‖T2f‖q ≤ sup
x∈M

{∫
M

kr
2(x, y)dy

} 1
r ‖f‖p. (2.23)

By Mincowski’s inequality, we have(∫
M

kr
2(x, y)dy

) 1
r ≤ 1√

π

∫ ∞

0

e−
t2
4s s−

3
2

(∫
M

Hr(x, y, s)dy
) 1

r

dsdt.

Since V (x,
√

s ) ≥ V (x, 1) ≥ δ for s ≥ 1,( ∫
M

Hr(x, y, s)dμ(y)
) 1

r ≤ Cδ.

Therefore (∫
M

kr
2(x, y)dμ(y)

) 1
r ≤ Cδ

∫ ∞

0

te−t

∫ ∞

1

e−
t2
4s s−

3
2 dsdt ≤ Cδ.

Combining the above with (2.23), we get the lemma.

Proof of Theorem 1.1. By Theorem 2.1 and Theorem 2.2, we get the sufficient part
of Theorem 1.1. Now let f(y) = max{t − ρ(x, y), 0}. Then

‖f‖q ≥
( t

2

)
V

(
x,

t

2

) 1
q

, ‖f‖p ≤ t V (x, t)
1
p , ‖∇f‖p ≤ V (x, t)

1
p .

Hence

V (x, t)
1
p− 1

q ≥ Cn,p,q
t

1 + t
, ∀ t > 0. (2.24)

Thus it follows from (2.10) and (2.24) that

tn( 1
p− 1

q ) ≥ Cn,p,q
t

1 + t
, ∀ t � 1.

This means that 1
p − 1

q ≤ 1
n .

Choosing t = 1 in (2.24), we get V (x, 1) ≥ Cn,p,q, ∀x ∈ M. Therefore inf
x∈M

V (x, 1) > 0.

And we get the necessary part of Theorem 1.1.
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