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1 Introduction

In the Euclidean plane geometry, one has the well-known area formula of triangles which is

of basic importance because all the other basic theorems in quantitative plane geometry such

as Pythagoras’ theorem, similar triangle theorem, etc. can be deduced directly from such a

simple formula. In the case of solid geometry, the corresponding formula that the volume of a

cone should be equal to one third of its base area times its height had been realized for a long

time before a proof of such a basic formula was finally achieved by Eudoxus, using the method

of exhaustion invented by himself. His remarkable proof is, historically, the first application

of what, nowadays, called integration. In the case of n-dimensional Euclidean space, it is

straightforward to extend Eudoxus’ proof to show that the volume of a cone is equal to one

n-th of the (n− 1)-dimensional volume of its base times its height.

For a given point p in a given Riemannian manifoldMn, the local isometry group ofMn at p,

denoted by ISO(Mn, p), consists of those isometries fixing p. It is easy to see that the mapping

of such an isometry g ∈ ISO(Mn, p) to its induced action on TpM
n (i.e. dg|p) is an injective

isomorphism. Thus, ISO(Mn, p) can always be identified to a subgroup of O(n). The three

kinds of classical spaces (i.e. Euclidean, spherical and hyperbolic n-spaces) are exactly those

simply connected Riemannian manifolds whose local isometry groups are everywhere isomorphic

to the maximal possibility of O(n). In short, they are the three kinds of most symmetric

geometries. It is natural to expect that many basic formulas in Euclidean geometry such as the

volume formula of cones should have their useful generalizations in both the spherical and the

hyperbolic geometries, and such generalizations will always be a natural way of providing further
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understandings of these two additional kinds of most symmetric geometries of fundamental

importance.

In this paper, we shall first study the generalizations of the volume formula of cones in the

spherical (resp. hyperbolic) space and then further extending such volume formulas to that of

orthogonal multiple cones (cf. §5). Up to a scaling factor, it suffices to study the above problems

in the normalized cases of Sn(1) and Hn(−1), namely, of constant sectional curvatures of ±1

respectively.

We shall first derive the volume formulas of cones in Sn(1) (resp. Hn(−1)) for the beginning

cases of n = 2 and 3 in §2, and then proceed to solve the problem in its full generality of n ≥ 4

in §3 (cf. formulas (38), (38′), (39) and (39′) of Theorem 1).

In general, the volume of a cone in Sn(1) (resp. Hn(−1)) is given by the above mentioned

integral formulas, which is the integration of the weight function wn(k, ρ) (resp. w̃n(k, ρ)) of

(38′) (resp. (39′)) over the base Ω. In the most symmetric situation that the base, Ω, is a ball

of radius r centered at O, the integral formulas (38) and (39) can be explicitly integrated, thus

providing a family of simple volume functions for such a special family of cones that we shall

call them orthospindles. Such explicit integrations have been carried out in §4, and the volume

functions of orthospindles, denoted by ψn,1(k, r) (resp. ψ̃n,1(k, r)) will play the central role for

generalizing the volume formulas of cones to that of orthogonal double cones in §5 (cf. formulas

(67) and (67′) of Theorem 2).

In the study of Euclidean, spherical and hyperbolic geometries, cones naturally constitutes

a useful family of simple, basic objects, while orthogonal cone decomposition often providing

canonical ways of reducing the computation or estimation of volumes of more general geometric

bodies to that of cones. However, in the case of higher dimensional geometric problems, it is

often necessary to apply this kind of cone decomposition several times in order to obtain pieces

with certain kinds of technical simplicity. Therefore, it is useful and technically necessary to

further extend the volume formulas of cones and double cones to orthogonal multiple cones

(cf. §5 for the definition of orthogonal multiple cones). This is achieved in §6 and the main

results are stated as Theorem 3 and Theorem 4, in which the volume functions of multiple

orthospindles (denoted by ψn,ℓ and ψ̃n,ℓ) play the central role.

We refer to [2], [3], etc. for some of the applications of the volume formulas of this paper. In

fact, it was those applications which motivated the author to develop such a family of volume

formulas, because they are exactly what are needed in order to provide the kind of volume

estimates necessary for solving those problems of [2], [3], etc.

2 Volume Formulas of Cones in Sn(1) (Resp. Hn(−1))
for the Cases of n = 2 and 3

2.1 The case of n = 2

Even in the beginning case of n = 2, triangles in S2(1) (resp. H2(−1)) with the same base

length and the same height are no longer of the same area, but rather, its area will depend on

the relative position between its base interval and its height interval. Thus, one needs to have

an area formula taking account of the effect of their relative position. Due to the simplicity

of the area formula of spherical (resp. hyperbolic) triangles, it is quite simple to derive such a

formula as follows:
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Let AB and OC be the base interval and the height interval of a given spherical (resp.

hyperbolic) triangle △ABC, as indicated in Figure 1. Let x be the arclength parameter on
−−→
AB with its values at O, A, B equal to 0, a < b respectively. Set A(x) to be the oriented

area of △OXC. Then the area of △ABC is equal to A(b) − A(a). Therefore, it suffices to

compute A(x) in terms of x and k, namely, the area of a spherical (resp. hyperbolic) right-angle

triangle with x and k as the pair of side-lengths (adjacent to the right-angle). We state it as

the following lemma.

Lemma 1 Let A(x) (resp. Ã(x)) be the oriented area of the right-angle spherical (resp.

hyperbolic) triangle △OXC as indicated in Figure 1. Then

cosA(x) =
cos k + cosx

1 + cos k cosx
, sinA(x) =

sin k sinx

1 + cos k cosx
(1)(

resp. cos Ã(x) =
cosh k + coshx

1 + coshx coshx
, sin Ã(x) =

sinh k sinhx

1 + cosh k coshx

)
.

Proof Set ℓ (resp. ξ, β) to be the length (resp. the angles) of CX (resp. at C, X). Then,

by the laws of spherical and hyperbolic trigonometries,

A(x) = ξ + β − π

2

(
resp. Ã(x) =

π

2
− (ξ + β)

)
,

cos ℓ = cos k cosx (resp. cosh ℓ = cosh k coshx),

sinβ =
sin k

sin ℓ

(
resp. sinβ =

sinh k

sinh ℓ

)
,

cosβ =
tanx

tan ℓ

(
resp. cosβ =

tanhx

tanh ℓ

)
, etc.

(2)

Therefore

cosA(x) = sin(ξ + β) = sin ξ cosβ + cos ξ sinβ

=
1

sin ℓ tan ℓ
{sinx tanx+ sin k tan k}

=
cos k cosx

sin2 ℓ
{sinx tanx+ sin k tan k}

=
(1− cos k cosx)(cos k + cosx)

(1 + cos ℓ)(1− cos ℓ)
=

cos k + cosx

1 + cos k cosx
(3)

(
resp. cos Ã(x) =

cosh k + coshx

1 + cosh k coshx

)
(3̃)

and similar computations will also show that

sinA(x) =
sin k sinx

1 + cos k cosx

(
resp. sin Ã(x) =

sinh k sinhx

1 + cosh k coshx

)
.

Corollary The area of the spherical (resp. hyperbolic) triangle with height k and its base

interval [a, b] is given by the following formula, namely

A(b)−A(a) =

∫ b

a

A′(x)dx =

∫ b

a

sin k dx

1 + cos k cosx
, (4)
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(resp.)

Ã(b)− Ã(a) =

∫ b

a

Ã′(x)dx =

∫ b

a

sinh k dx

1 + cosh k coshx
. (4̃)

Proof The differentiation of (3) gives

− sinA(x)A′(x) =
− sinx(1 + cos k cosx) + (cos k + cosx) cos k sinx

(1 + cos k cosx)2

=
− sinx sin2 k

(1 + cos k cosx)2
. (5)

Therefore, by (1)

A′(x) =
sin k

1 + cos k cosx
. (5′)

Similar computations also show that

Ã′(x) =
sinh k

1 + cosh k coshx
. (6)

2.2 The case of S3(1)

In view of the fact that the volume functions of spherical (resp. hyperbolic) tetrahedra are

rather complicated and transcendental (cf. [1]), one expects that the volume formulas of cones

in S3(1) (resp. H3(−1)) will be considerably more difficult to obtain. Although the cases of

S3(1) and H3(−1) will, again, be achieved by a kind of parallel computations, it is better to

present them consecutively, instead of presenting them jointly as we did in §2.1. Therefore, we
shall first study the case of S3(1) in this subsection.

Let Ω be a domain inside the equatorial S2(1) and V be a point in the upper hemisphere.

We shall denote the cone in S3(1) with Ω as its base and V as its vertex by CV (Ω). In the

special case that V is situated at the north pole, the volume of CV (Ω) is simply equal to π
4

times the area of Ω. Thus, we shall only discuss the case that V is not situated at the north

pole in the following:

Let O be the (unique) intersection point of the longitude passing through V and the equator

S2(1), namely, OV is exactly the height interval of CV (Ω) and its length is the height of the

O A X B

C

β x

ℓk

ξ

Figure 1
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cone. Let (r, θ) be a chosen spherical polar coordinate system on S2(1) with O as the origin

and dσ be its “area element”, namely, dσ = sin r dr ∧ dθ as indicated in Figure 2. It follows

from the rotational symmetry of S3(1) with OV as the axis that the volume of CV (dσ) is equal

to a multiple of dσ (up to second order of infinitesimal) which only depends on the height k

and the distance between dσ and O (i.e. r). In other words, there exists a function w(k, r) such

that

volCV (dσ) ≡ w(k, r)dσ (mod o(dσ)), (7)

while the volume formula of CV (Ω) that we are seeking is given by

volCV (Ω) =

∫
Ω

w(k, r) sin r dr ∧ dθ. (8)

Anyhow, the task of finding out such a volume formula lies in the determination of such a

function w(k, r) satisfying (7).

Lemma 2 The function w(k, r) satisfying (7) is given by

w(k, r) =
sin k sec3 r

2(tan2 r + sin2 k)
3
2

{cos−1(cos k cos r)− cos k cos r
√
1− cos2 k cos2 r }. (9)

Proof Set Γ(r0, dr) to be the set of points on S2(1) whose polar coordinates satisfying

r0 ≤ r ≤ r0 + dr, as indicated by the shaded ring in Figure 2. Then

volCV (Γ(r0, dr)) ≡ 2πw(k, r0) sin r0 dr (mod dr2). (10)

Set ℓ(r) to be the hypotenuse-length of the right-angle spherical triangle with k and r as its

other two side-lengths and λ(r) to be the angle opposite to the side of length r. Then

cos ℓ(r) = cos k cos r, tanλ(r) =
tan r

sin k
. (11)

Differentiate the second equation of (11), one gets

dλ

dr

∣∣∣∣
r0

=
cos2 λ(r0) sec

2 r0
sin k

=
sin k sec2 r0

tan2 r0 + sin2 k
, (12)

V

O

k

r

CV (dσ)

dσ = sin r dr ∧ dθ

Figure 2
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while the amount of solid angle at the vertex of CV (Γ(r0, dr)) is equal to

2π sinλ(r0)
dλ

dr

∣∣∣∣
r0

dr =
2π sin k tan r0 sec

2 r0

(tan2 r0 + sin2 k)
3
2

dr (mod dr2). (13)

Note that, modulo dr2, the volume of CV (Γ(r0, dr)) is also equal to that of the portion of

the spherical ball of radius ℓ(r0) in S
3(1) center at V with exactly the same solid angle, while

the total volume of such a spherical ball of radius ℓ(λ0) is equal to

4π

∫ ℓ(r0)

0

sin2 ρ dρ = 2π(ℓ(r0)− sin ℓ(r0) cos ℓ(r0)). (14)

Therefore, it follows from the symmetry property of spherical balls that the volume of such a

portion is equal to

2π(ℓ(r0)− sin ℓ(r0) cos ℓ(r0))
2π

4π

sin k tan r0 sec
2 r0

(tan2 r0 + sin2 k)
3
2

dr (mod dr2). (15)

Hence, the equality between (15) and 2πω(k, r0) sin r0 dr modulo dr2 will readily give the for-

mula (9) for r = r0 (i.e. an arbitrary given value of r). This proves (9) holds in general.

Corollary The volume of CV (Ω) is given by the following integral formula, namely

volCV (Ω) =

∫
Ω

w(k, r) sin r dr ∧ dθ, (16)

where w(k, r) is given by (9).

2.3 The case of H3(−1)

The hyperbolic 3-space H3(−1) has the same kind of local symmetry as that of S3(1), while

the hyperbolic trigonometry has parallel laws and formulas as that of the spherical case. Thus,

it is quite straightforward to follow the same geometric ideas and to carry out the same kind of

computations as that of the previous subsection, in order to derive the corresponding volume

formula for cones in H3(−1).

Let Ω be a domain in a given hyperbolic plane H2(−1) and V be a point in the upper

half-space. The reflection symmetry of H3(−1) with respect to the given H2(−1) maps V to

V ′ in the lower half-space, while the unique geodesic interval V V
′
intersects perpendicularly

with H2(−1) at its middle point, say denoted by O. Again, let (r, θ) be a chosen hyperbolic

polar coordinate on H2(−1) centered at O and dσ̃ be its area element, dσ̃ = sinh r dr ∧ dθ. It

follows from the rotational symmetry of H3(−1) with the geodesic line of V V ′ as the axis that

there exists a function w̃(k, r) such that

volCV (dσ̃) ≡ w̃(k, r)dσ̃ (mod o(dσ̃)), (17)

while the volume formula of CV (Ω) in H3(−1) that we are seeking is given by

volCV (Ω) =

∫
Ω

w̃(k, r) sinh r dr ∧ dθ. (18)
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Lemma 2̃ The function w̃(k, r) for the above volume formula in H3(−1) is given by

w̃(k, r) =
sinh k sech3r

2(tanh2 r + sinh2 k)
3
2

{cosh−1(cosh k cosh r)

− cosh k cosh r
√
1− cosh2 k cosh2 r }. (19)

Proof Essentially, the proof of Lemma 2̃ is almost the same as that of Lemma 2. One

simply replaces those spherical trigonometric formulas used in the proof of Lemma 2 by their

corresponding ones in hyperbolic trigonometry.

3 Volume Formulas of Cones in Sn(1) (Resp. Hn(−1)) for n ≥ 4

3.1 The basic geometric setting

In this section, we shall proceed to derive the volume formula of cones in both the spherical

and the hyperbolic n-space for the general case of n ≥ 4. For the sake of simplicity both in

notations and presentations, we shall use the following set of notations in this section:

First of all, we shall denote Sn(1) (resp. Hn(−1)) simply by Σn (resp. Σ̃n), and a chosen,

fixed hyperplane in it by Σn−1 (resp. Σ̃n−1). Let Ω be a given region in Σn−1 (resp. Σ̃n−1)

and V a given point in the upper half-space. Then the cone with V as its vertex and Ω as its

base will again be denoted by CV (Ω). The reflection symmetry of Σn (resp. Σ̃n) with respect

to the chosen Σn−1 (resp. Σ̃n−1) maps V to V ′ in the lower half-space. In the unique special

case of Σn with V situated at the north pole (corresponding to Σn−1 as the equator), one has

the following very simple volume formula, namely

voln C
V (Ω) =

ωn+1

2ωn
voln−1(Ω) (if V is the north pole), (20)

where ωn+1 (resp. ωn) are the total volume of Σn (resp. Σn−1). Thus, we shall always assume

that V is not situated at the north pole in the case of Σn. Hence, there is a unique shortest

geodesic interval linking V to its symmetric point V ′, say denoted by V V
′
, which intersects

perpendicularly with Σn−1 (resp. Σ̃n−1) at its middle point O. We shall denote the local

isometry group of Σn (resp. Σ̃n) at V , i.e. ISO(Σn, V ) (resp. ISO(Σ̃n, V )), simply by O(n)

and its subgroup fixing all points on the geodesic line V V ′ simply by O(n− 1), which can also

be identified with ISO(Σn−1, O) (resp. ISO(Σ̃n−1, O)).

Set Rn−1 to be the tangent space of Σn−1 (resp. Σ̃n−1) at O and Sn−2(1) to be the unit

sphere in Rn−1, representing those unit tangent vectors. The exponential map based at O:

Exp : Rn−1 → Σn−1 (resp. Σ̃n−1) (21)

is bijective in the case of Σ̃n−1, while in the case of Σn−1, it maps the open ball of radius π

bijectively onto Σn−1 with the antipodal point of O deleted, but maps the whole sphere of radius

π into the antipodal point of O. Anyhow, we shall use the bijective part of the above exponential

map to transplant the Euclidean spherical coordinate system on Rn−1 onto Σn−1 \ {pt} (resp.

Σ̃n−1) and simply call them the spherical coordinate system of Σn−1 (resp. Σ̃n−1) with O as

the origin. We shall denote the spherical coordinate of a point P by (ρ, ξ), in which ρ is the

distance between O and P and ξ is the initial direction of the shortest geodesic interval linking

O toward P , i.e. ξ ∈ Sn−2(1).
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Let dσ (resp. dσ̃, dv) be the volume element of Σn−1 (resp. Σ̃n−1, Sn−2(1)). Then, it is

well known that
dσ|(ρ,ξ) = sinn−2 ρ dρ ∧ dv|ξ,

dσ̃|(ρ,ξ) = sinhn−2 ρ dρ ∧ dv|ξ.
(22)

Moreover, it follows directly from the O(n − 1)-symmetry that there exist suitable functions

wn(k, ρ) (resp. w̃n(k, ρ)), k = the length of OV , such that

volCV (dσ|(ρ,ξ)) ≡ wn(k, ρ)dσ|(ρ,ξ) (mod o(dσ|(ρ,ξ))),

volCV (dσ̃|(ρ,ξ)) ≡ w̃n(k, ρ)dσ̃|(ρ,ξ) (mod o(dσ̃|(ρ,ξ))),
(23)

while the volume formulas that we are seeking will be given by

volCV (Ω) =

∫
Ω

wn(k, ρ) sin
n−2 ρ dρ ∧ dv,

volCV (Ω) =

∫
Ω

w̃n(k, ρ) sinh
n−2 ρ dρ ∧ dv.

(24)

Of course, the task here is the actual determinations of wn(k, ρ) and w̃n(k, ρ) analytically.

3.2 The determinations of wn and w̃n via symmetry and
the method of infinitesimal symmetrization

Let S(ρ0, dρ) (resp. S̃(ρ0, dρ)) be the spherical shell in Σn−1 (resp. Σ̃n−1) centered at O

with thickness dρ and inside radius equal to ρ0, namely

S(ρ0, dρ) (resp. S̃(ρ0, dρ))

=
{
P (ρ, ξ); ρ0 ≤ ρ ≤ ρ0 + dρ, ξ ∈ Sn−2(1)

}
. (25)

Then, it is quite simple to see that

volCV (S(ρ0, dρ)) ≡ wn(k, ρ) · ωn−1 sin
n−2 ρ0 dρ (mod dρ2),

volCV (S̃(ρ0, dρ)) ≡ w̃n(k, ρ) · ωn−1 sinh
n−2 ρ0 dρ (mod dρ2).

(26)

Set ℓ(ρ) (resp. ℓ̃(ρ)) to be the hypotenuse-length of the right-angle spherical (resp. hyper-

bolic) triangle with k and ρ as its other two side-lengths and λ(ρ) (resp. λ̃(ρ)) to be the angle

opposite to the side of length ρ. Then, by the laws of spherical (resp. hyperbolic) trigonometry,

cos ℓ(ρ) = cos k cos ρ, cosh ℓ̃(ρ) = cosh k cosh ρ, (27)

tanλ(ρ) =
tan ρ

sin k
, tan λ̃(ρ) =

tanh ρ

sinh k
. (28)

Hence, by differentiating (28) with respect to ρ,

dλ

dρ

∣∣∣∣
ρ0

=
sin k sec2 ρ0

tan2 ρ0 + sin2 k
,

dλ̃

dρ

∣∣∣∣
ρ0

=
sinh k sech2ρ0

tanh2 ρ0 + sinh2 k
. (29)

Set Bn(ℓ(ρ0)) (resp. B̃n(ℓ̃(ρ0))) to be the ball of radius ℓ(ρ0) (resp. ℓ̃(ρ0)) in Σn (resp. Σ̃n)

centered at V . Then, it is not difficult to see that the volume of the portion of B(ℓ(ρ0)) (resp.
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B̃(ℓ̃(ρ0))) inside of the solid angle cone spanned by S(ρ0, dρ) (resp. S̃(ρ0, dρ)) and the volume

of CV (S(ρ0, dρ)) (resp. CV (S̃(ρ0, dρ))) are equal to each other modulo dρ2. Moreover, the

total volumes of Bn(ℓ(ρ0)) (resp. B̃n(ℓ̃(ρ0))) can be computed by the following integrations,

namely

volBn(ℓ(ρ0)) = ωn

∫ ℓ(ρ0)

0

sinn−1 ρ dρ,

vol B̃n(ℓ̃(ρ0)) = ωn

∫ ℓ̃(ρ0)

0

sinhn−1 ρ dρ,

(30)

(cf. Lemma 3 for their explicit (i.e. integrated) formula), while the volume of such a portion is

proportionate to the amount of its solid angle at the center V , which is given by

ωn−1 sin
n−2 λ(ρ0)

dλ

dρ

∣∣∣∣
ρ0

dρ ≡ ωn−1 sin k tan
n−2 ρ0 sec

2 ρ0 dρ

(tan2 ρ0 + sin2 k)
n
2

(mod dρ2),

(resp.) ωn−1 sin
n−2 λ̃(ρ0)

dλ̃

dρ

∣∣∣∣
ρ0

dρ ≡ ωn−1 sinh k tanh
n−2 ρ0 sech

2ρ0 dρ

(tanh2 ρ0 + sinh2 k)
n
2

(mod dρ2).

(31)

Lemma 3 Set ψn,0(r) (resp. ψ̃n,0(r)) to be the volume of the ball of radius r in Σn (resp.

Σ̃n). Then ψn,0(r) = ωnJn, ψ̃n,0(r) = ωnJ̃n, where Jn and J̃n are given by the following

formulas:

J2k =

k−1∑
i=0

(−1)i
1

2i+ 1

(
k − 1

i

)
−

k−1∑
i=0

(−1)i
1

2i+ 1

(
k − 1

i

)
cos2i+1 r,

J̃2k =
k−1∑
i=0

(−1)k−i−1

(
k − 1

i

)
1

2i+ 1
cosh2i+1 r −

k−1∑
i=0

(−1)k−i−1 1

2i+ 1

(
k − 1

i

)
,

J2k+1 =

(
k − 1

2

k

)
r − cos r

2k

{
sin2k−1 r +

2k − 1

2k − 2
sin2k−3 r

+
(2k − 1)(2k − 3)

(2k − 2)(2k − 4)
sin2k−5 r + · · ·+

(
k − 1

2

k − 1

)
sin r

}
,

J̃2k+1 = (−1)

(
k − 1

2

k

)
r +

cosh r

2k

{
sinh2k−1 r − 2k − 1

2k − 2
sinh2k−3 r

+
(2k − 1)(2k − 3)

(2k − 2)(2k − 4)
sinh2k−5 r + · · ·+ (−1)k−1

(
k − 1

2

k − 1

)
sinh r

}
. (32)

Proof Set

Jn =

∫ r

0

sinn−1 ρ dρ, J̃n =

∫ r

0

sinhn−1 ρ dρ. (33)

Then the above formulas of (32) are simply the results of explicit integrations. For example

J2k =

∫ r

0

sin2k−1 ρ dρ =

∫ 1

cos r

(1− u2)k−1du (u = cos ρ)

=

{ k−1∑
i=0

(−1)i
1

2i+ 1

(
k − 1

i

)
u2i+1

}∣∣∣∣1
cos r

, (34)
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which verifies (32)1. Similarly, one verifies (32)2 as follows:

J̃2k =

∫ r

0

sinh2k−1 ρ dρ =

∫ r

0

(cosh2 ρ− 1)k−1 sinh ρ dρ

=

∫ cosh r

1

(u2 − 1)k−1du (u = cosh ρ)

=

{ k−1∑
i=0

(−1)k−i−1

(
k − 1

i

)
u2i+1

2i+ 1

}∣∣∣∣cosh r

1

. (35)

Applying integration by parts to J2k+1 and J̃2k+1, one gets

J2k+1 =

∫ r

0

sin2k ρ dρ = − sin2k−1 r cos r + (2k − 1)

∫ r

0

sin2k−2 ρ cos2 ρ dρ

= − sin2k−1 r cos r + (2k − 1)J2k−1 − (2k − 1)J2k+1

⇒ J2k+1 =
1

2k
(− sin2k−1 r cos r) +

2k − 1

2k
J2k−1, (36)

J̃2k+1 =

∫ r

0

sinh2k ρ dρ = sinh2k−1 r cosh r − (2k − 1)

∫ r

0

sinh2k−2 ρ cosh2 ρ dρ

⇒ J̃2k+1 =
1

2k
sinh2k−1 r cosh r − 2k − 1

2k
J̃2k−1. (37)

Formulas (32)3 and (32)4 follow directly from the recursive formulas of (36) and (37) respec-

tively.

Theorem 1 The volume of a cone CV (Ω) in Σn, n ≥ 3, is given by

vol (CV (Ω)) =

∫
Ω

wn(k, ρ) sin
n−2 ρ dρ ∧ dv, (38)

where

wn(k, ρ) =
1

ωn
ψn,0(ℓ(ρ))

sin k secn ρ

(tan2 ρ+ sin2 k)
n
2

(38′)

and ψn,0(ℓ(ρ)) is given by Lemma 3 and (27).

The volume of a cone CV (Ω) in Σ̃n, n ≥ 3, is given by

vol (CV (Ω)) =

∫
Ω

w̃n(k, ρ) sinh
n−2 ρ dρ ∧ dv, (39)

where

w̃n(k, ρ) =
1

ωn
ψ̃n,0(ℓ̃(ρ))

sinh k sechnρ

(tanh2 ρ+ sinh2 k)
n
2

(39′)

and ψ̃n,0(ℓ̃(ρ)) is given by Lemma 3 and (27).

Proof The volume of the portion ofBn(ℓ(ρ0)) inside of the solid angle cone of CV (S(ρ0, dρ))
is proportionate to the amount of its solid angle given by (31). Therefore

wn(k, ρ0)ωn−1 sin
n−2 ρ0 dρ

≡ ψn,0(ℓ(ρ0)) ·
ωn−1

ωn
· sin k tan

n−2 ρ0 sec
2 ρ0

(tan2 ρ0 + sin2 k)
n
2

dρ (mod dρ2) (40)
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and hence (38′) and (38) follows readily.

The proof of (39′) and (39) is completely parallel to that of the spherical case, namely, it

follows from

w̃n(k, ρ0)ωn−1 sinh
n−2 ρ0 dρ

≡ ψ̃n,0(ℓ̃(ρ0)) ·
ωn−1

ωn
· sinh k tanh

n−2 ρ0 sech
2ρ0

(tanh2 ρ0 + sinh2 k)
n
2

dρ (mod dρ2). (4̃0)

4 The Volume Functions of Orthospindles

In the most symmetric situation that the base-region Ω is a ball of radius r center at O,

CV (Ω) is O(n− 1)-symmetric and one naturally expects that the volumes of such cones should

have a nice formula. We shall call this family of O(n − 1)-symmetric cones orthospindles and

apply the results of §2 and §3 to compute their volume functions.

An orthospindle in Σn (resp. Σ̃n) is uniquely determined, up to congruence, by its height k

and the radius r of its base. We shall denote the volume of such an orthospindle in Σn (resp.

Σ̃n) by ψn,1(k, r) (resp. ψ̃n,1(k, r)). Let ℓ(ρ), ℓ̃(ρ), λ(ρ) and λ̃(ρ) be the same as in §3.2. Then

volCV (S(ρ0, dρ)) ≡ ψn,0(ℓ(ρ0))
ωn−1

ωn
sinn−2 λ(ρ0)

dλ

dρ

∣∣∣∣
ρ0

dρ (mod dρ2), (41)

volCV (S̃(ρ0, dρ)) ≡ ψ̃n,0(ℓ̃(ρ0))
ωn−1

ωn
sinn−2 λ̃(ρ0)

dλ̃

dρ

∣∣∣∣
ρ0

dρ (mod dρ2). (4̃1)

Therefore, it suffices to compute the integrals over the interval of 0 ≤ ρ ≤ r with the RHS

of (41) (resp. (4̃1)) as the integrands. Moreover, it is natural to use λ instead of ρ for the

computation of such integrals, namely

Lemma 4 Let ψn,1(k, r) (resp. ψ̃n,1(k, r)) be the volumes of the orthospindles in Σn (resp.

Σ̃n) with k as the height and r as the base-radius. Set

λ0 = tan−1 tan r

sin k

(
resp. λ̃ = tan−1 tanh r

sinh k

)
,

ℓ(λ) = tan−1(tan k secλ) (resp. ℓ̃(λ) = tanh−1(tanh k secλ)).

(42)

Then

ψn,1(k, r) =
ωn−1

ωn

∫ λ0

0

ψn,0(ℓ(λ)) sin
n−2 λ dλ,

ψ̃n,1(k, r) =
ωn−1

ωn

∫ λ̃0

0

ψ̃n,0(ℓ̃(λ)) sin
n−2 λ dλ.

(43)

Proof Direct consequence of (41) and (4̃1), and the change of variables from ρ to λ.

Next let us proceed to actually compute the above integrals, beginning with the case of

n = 3.
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Case 1 n = 3.

ψ3,1(k, r) =
1

2

∫ λ0

0

ψ3,0(ℓ(λ)) sinλ dλ

= π

∫ λ0

0

{
tan−1 tan k

cosλ
− tan k cosλ

cos2 λ+ tan2 k

}
sinλ dλ

= π
(
− cosλ tan−1 tan k

cosλ

)∣∣∣∣λ0

0

= π(k − cosλ0 ℓ(λ0)), (44)

and similarly for the hyperbolic case, namely

ψ̃3,1(k, r) =
1

2

∫ λ̃0

0

ψ̃3,0(ℓ̃(λ)) sinλ dλ

= π

∫ λ̃0

0

{ tanh k cosλ

cos2 λ− tanh2 k
− tanh−1 tanh k

cosλ

}
sinλ dλ

= π
(
cosλ tanh−1 tanh k

cosλ

)∣∣∣∣λ̃0

0

= π(cos λ̃0 ℓ̃(λ̃0)− k). (45)

Case 2 n = 2m, m ≥ 2.

Let us first discuss the spherical subcase:

ψ2m,1(k, r) =
ω2m−1

ω2m

∫ λ0

0

ψ2m,0(ℓ(λ)) sin
2m−2 λ dλ

= ω2m−1

∫ λ0

0

J2m(ℓ(λ)) sin2m−2 λ dλ, (46)

where

J2m(ℓ(λ)) =
m−1∑
i=0

(−1)i

2i+ 1

(
m− 1

i

)
−

m−1∑
i=0

(−1)i

2i+ 1

(
m− 1

i

)(
cos k cosλ√

1− cos2 k sin2 λ

)2i+1

. (46′)

Therefore, it suffices to compute the integration of each term, namely∫ λ0

0

(
cos k cosλ√

1− cos2 k sin2 λ

)2i+1

sin2m−2 λ dλ, 0 ≤ i ≤ m− 1. (47)i

Set sinu = cos k sinλ. Then

du =
cos k cosλ dλ√
1− cosk sin2 λ

, sinu0 = cos k sinλ0 =
cos k sin r√

1− cos2 k cos2 r
. (48)

Thus, direct substitution and algebraic computation will show that the integral of (47)i is equal

to the following, namely∫ u0

0

tan2i u(sec2 k sin2 u)m−i−1(1− sec2 k sin2 u)idu, 0 ≤ i ≤ m− 1. (47′)i

Therefore, the computations of the above collection of integrals can easily be reduced to that

of the following, namely

Fi,j(u0) =

∫ u0

0

tan2i u sin2j u du. (49)
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In case both i and j are at least 1, one has

Fi,j(u0) =

∫ u0

0

tan2(i−1) u(sec2 u− 1) sin2j u du = Fi,j−1 − Fi−1,j . (50)

Hence, it is easy to write down Fi,j with positive i, j as an integer linear combination of thsoe

F ’s with either i or j being zero. Moreover,

F0,j(u0) =

∫ u0

0

sin2j u du = J2j+1(u0) (cf. Lemma 3),

Fi,0(u0) =

∫ u0

0

tan2i u du =

∫ u0

0

tan2(i−1) u sec2 u du− Fi−1,0(u0)

=
1

2i− 1
tan2i−1 u0 − Fi−1,0(u0).

(51)

Therefore, ψ2m,1(k, r) can be explicitly expressed as a linear combination of {J2j+1(u0) and

tan2i−1 u0, i, j ≤ n}, with trigonometric functions of k as the coefficients.

Next, let us consider the other subcase of ψ̃2m,1(k, r):

ψ̃2m,1(k, r) =
ω2m−1

ω2m

∫ λ0

0

ψ̃2m,0(ℓ̃(λ)) sin
2m−2 λ dλ = ω2m−1

∫ λ0

0

J̃2m(ℓ̃(λ)) sin2m−2 λ dλ, (52)

where

J̃2m(ℓ̃(λ)) =

m−1∑
i=0

(−1)m−i−1

2i+ 1

(
m− 1

i

)
cosh2i+1 ℓ̃(λ)−

m−1∑
i=0

(−1)m−i−1

2i+ 1

(
m− 1

i

)
. (52′)

Note that

cosh ℓ̃(λ) =
cosλ√

cos2 λ− tanh2 k
=

cosh k cosλ√
1− cosh2 k sin2 λ

. (53)

Therefore, the only difference between∫ λ0

0

(
cosh k cosλ√

1− cosh2 k sin2 λ

)2i+1

sin2(m−1) λ dλ, 0 ≤ i ≤ m− 1 (53)i

and that of (47)i is that cos k have been replaced by cosh k. Hence, the substitution sinu =

cosh k sinλ will again transform (53)i to∫ ũ0

0

tan2i u(sech2k sin2 u)m−i−1(1− sech2k sin2 u)idu, 0 ≤ i ≤ m− 1. (53′)i

Thus, the hyperbolic subcase is, indeed, parallel to the spherical subcase.

Case 3 n = 2m+ 1, m ≥ 2.

Again, let us first discuss the spherical subcase as follows:

ψ2m+1,1(k, r) = ω2m

∫ λ0

0

J2m+1(ℓ(λ)) sin
2m−1 λ dλ, (54)
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where

J2m+1(ℓ(λ)) =

(
m− 1

2

m

)
ℓ(λ)− cos ℓ(λ)

2m

{
sin2m−1 ℓ(λ) +

2m− 1

2m− 2
sin2m−3 ℓ(λ)

+
(2m− 1)(2m− 3)

(2m− 2)(2m− 4)
sin2m−5 ℓ(λ) + · · ·+

(
m− 1

2

m− 1

)
sin ℓ(λ)

}
,

ℓ(λ) = tan−1 tan k

cosλ
, cos ℓ(λ) =

cos k cosλ√
1− cos2 k sin2 λ

, sin ℓ(λ) =
sin k√

1− cos2 k sin2 λ
.

(54′)

Thus, it suffices to compute the following integrals separately, namely∫ λ0

0

tan−1 tan k

cosλ
sin2m−1 λ dλ, (55)

∫ λ0

0

cos ℓ(λ) sin2i+1 ℓ(λ) sin2m−1 λ dλ, 0 ≤ i ≤ m− 1. (56)i

Apply integration by parts to the integral of (55), one has∫ λ0

0

tan−1 tan k

cosλ
sin2m−1 λ dλ

=

{
tan−1 tan k

cosλ

m−1∑
i=0

(−1)i+1

2i+ 1

(
m− 1

i

)
cos2i+1 λ

}∣∣∣∣λ0

0

+

m−1∑
i=0

(−1)i

2i+ 1

(
m− 1

i

)
tan k

2

∫ λ0

0

cos2i λ · 2 cosλ sinλ dλ
cos2 λ+ tan2 k

. (57)

Set cos2 λ+ tan2 k = u, du = −2 cosλ sinλ dλ. Then∫ λ0

0

cos2i λ · 2 cosλ sinλ dλ
cos2 λ+ tan2 k

=

∫ sec2 k

tan2 k+cos2 λ0

1

u
(u− tan2 k)idu

=

{ i−1∑
j=0

(
i

j

)
(−1)j tan2j k

u(i−j)

(i− j)
+ (−1)i tan2i k lnu

}∣∣∣∣sec2 k

tan2 k+cos2 λ0

. (58)

Next let us compute the integrals of (56)i, 0 ≤ i ≤ m− 1.∫ λ0

0

cos ℓ(λ) sin2i+1 ℓ(λ) sin2m−1 λ dλ

=

∫ λ0

0

cosλ tan2i+1 k sin2m−1 λ dλ

(cos2 λ+ tan2 k)i+1

=
tan2i+1 k

2

∫ sec2 k

tan2 k+cos2 λ0

1

ui+1
(sec2 k − u)m−1du

=
tan2i+1 k

2

{∑
j ̸=i

(−1)j
(
m− 1

j

)
sec2(m−j−1) k

u(j−i)

(j − i)

+ (−1)i
(
m− 1

i

)
sec2(m−i−1) k lnu

}∣∣∣∣sec2 k

tan2 k+cos2 λ0

. (59)
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Specially, we list the explicit formula of ψ3,1(k, r) as follows

ψ3,1(k, r) = π(k − cosλ0 ℓ(λ0))

= π

(
k − sin k√

tan2 r + sin2 k
tan−1 tan r

√
tan2 r + sin2 k

sin k

)
. (60)

Remark As it turns out, it is always simpler to express ψn,1(k, r) (resp. ψ̃n,1(k, r)) as

functions of k and λ0 = tan−1 tan r
sin k instead of k and r. Therefore, from now on, we shall denote

the volume of spherical (resp. hyperbolic) orthospindles either by ψn,1(k, r) (resp. ψ̃n,1(k, r))

or by φn,1(k, λ0) (resp. φ̃n,1(k, λ0)).

5 Volume Formulas of Orthogonal Double Cones in Sn(1)
(Resp. Hn(−1)) for n ≥ 4

In the study of various geometric problems in both the spherical geometry and hyperbolic

geometry, cones constitutes a useful family of simple, basic objects, and suitably chosen de-

compositions of more general geometric objects into cones often provide some advantageous

ways of computing, understanding or estimating their volumes. However, in the case of higher

dimensions (i.e. n > 3), it is often necessary to apply such suitably chosen cone-decomposition

several times in order to obtain pieces with certain kind of technical simplicity. Therefore, it is

useful to extend the volume formula of cones to that of orthogonal multiple cones:

Orthogonal double cones: Let Σn be either Sn(1) orHn(−1), Σn−1 be a given hyperplane

in Σn, and Σn−2 be a given hyperplane of Σn−1. Let Ω be a given region in Σn−2 and V1 (resp.

V2) be given points of Σn−1 \Σn−2 (resp. Σn \Σn−1) such that V1V 2 is a shortest parth between

V2 and Σn−1. Then CV1(Ω) is a cone in Σn−1 and CV2(CV1(Ω)) is called an orthogonal double

cone with Ω as its base and V1, V2 as its successive vertices. (It is called “orthogonal” because

V1V 2 is orthogonal to Σn−1.)

Orthogonal ℓ-multiple cones: Let Σℓ and Σn−ℓ be a pair of ℓ-dimensional and (n− ℓ)-

dimensional subspaces in Σn, normal to each other at O. Let O ∈ Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σℓ be a

“flag” in Σℓ at O and {Vi, 1 ≤ i ≤ ℓ} be a chosen sequence of points such that Vi ∈ Σi \ Σi−1

and ViV i−1 is the shortest path from Vi to Σi−1, 1 ≤ i ≤ ℓ. Then, to a given region Ω ⊂ Σn−ℓ,

the following successive cone constructions

CV1(Ω), CV2(CV1(Ω)), · · · , CVℓ(CVℓ−1(· · · (CV2(CV1(Ω))) · · · ))

provide an orthogonal ℓ-multiple cone with Ω as its base and {OV 1, V1V 2, · · · , Vℓ−1V ℓ} as its

successive height-intervals while their lengths are called its successive heights, say denoted by

{ki, 1 ≤ i ≤ ℓ}. We shall denote the above multiple cone by CVℓ,··· ,V1(Ω).

In the well-known simple case of En (i.e. Euclidean n-space) the volume of such an or-

thogonal ℓ-multiple cone is equal to the product of its ℓ height and the (n − ℓ)-dimensional

volume of its base divided by n(n− 1) · · · (n− ℓ+1). In the study of problems of spherical and

hyperbolic geometries of higher dimensions, extensions of the volume formulas of cones to that

of orthogonal multiple cones will certainly provide a set of powerful tools of computing or esti-

mating volumes, which often constitutes a major difficulty in solving many higher dimensional

spherical or hyperbolic geometric problems.
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In this section, we shall generalize the volume formulas of cones to the next case of orthogonal

double cones. Here, we shall use (ρ, ξ) to denote the spherical coordinates on Σn−2 (resp. Σ̃n−2)

with O as the origin (cf. §3 for the spherical coordinate system on Σn−1 (resp. Σ̃n−1)). Let dσ

(resp. dσ̃, dv) be the volume element of Σn−2 (resp. Σ̃n−2, Sn−3(1)). Then, we have

dσ|(ρ,ξ) = sinn−3 ρ dρ ∧ dv|ξ,

dσ̃|(ρ,ξ) = sinhn−3 ρ dρ ∧ dv|ξ.
(61)

Let O(n−2) be the subgroup of isometries fixing all points of the Σ2 (resp. Σ̃2) normal to Σn−2

(resp. Σ̃n−2) at O. Then, it follows directly from the O(n−2)-invariance that there again exist

suitable functions wn,2(k1, k2, ρ) (resp. w̃n,2(k1, k2, ρ)) such that

volCV2,V1(dσ) ≡ wn,2(k1, k2, ρ)dσ|(ρ,ξ) (mod o(dσ|(ρ,ξ))),

volCV2,V1(dσ̃) ≡ w̃n,2(k1, k2, ρ)dσ|(ρ,ξ) (mod o(dσ̃|(ρ,ξ))),
(62)

while the volume formula of orthogonal double cones will be given by

volCV2,V1(Ω) =

∫
Ω

wn,2(k1, k2, ρ) sin
n−3 ρ dρ ∧ dv,

volCV2,V1(Ω) =

∫
Ω

w̃n,2(k1, k2, ρ) sinh
n−3 ρ dρ ∧ dv.

(63)

Set S(ρ0, dρ) (resp. S̃(ρ0, dρ)) to be the spherical shell in Σn−2 (resp. Σ̃n−2)) centered at

O with dρ as its thickness and ρ0 as its inside radius (cf. §3.2). Then, it again follows from the

O(n− 2)-symmetry that

volCV2,V1(S(ρ0, dρ)) ≡ wn,2(k1, k2, ρ0)ωn−2 sin
n−3 ρ0 dρ (mod dρ2),

volCV2,V1(S̃(ρ0, dρ)) ≡ w̃n,2(k1, k2, ρ0)ωn−2 sinh
n−3 ρ0 dρ (mod dρ2)

(64)

on the one hand, and on the other hand, it follows from the method of infinitesimal symmetriza-

tion, the volume of the above double cones of S(ρ0, dρ) (resp. S̃(ρ0, dρ)) is equal to that of the

portion of the spindle CV2(Bn−1(ℓ(ρ0))) (resp. C
V2(Bn−1(ℓ̃(ρ0)))) with the same span of solid

angle along V1V 2 as that of the above double cones, modulo dρ2, namely

Lemma 5 Set

ℓ(ρ0) = cos−1(cos k1 cos ρ0), λ(ρ0) = tan−1 tan ρ0
sin k1

,

ℓ̃(ρ0) = cosh−1(cosh k1 cosh ρ0), λ̃(ρ0) = tan−1 tanh ρ0
sinh k1

.

(65)

Then, modulo dρ2, the volumes of CV2,V1(S(ρ0, dρ)) (resp. CV2,V1(S̃(ρ0, dρ))) are also equal to

ψn,1(k2, ℓ(ρ0)) ·
ωn−2

ωn−1
sinn−3 λ(ρ0)

dλ

dρ

∣∣∣∣
ρ0

dρ,

(resp.) ψ̃n,1(k2, ℓ̃(ρ0)) ·
ωn−2

ωn−1
sinn−3 λ̃(ρ0)

dλ̃

dρ

∣∣∣∣
ρ0

dρ,

(66)
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V2

V1 O

k2

k1

λ̃(ρ0)

ℓ̃(ρ0)

ρ0

Ω

dσ
∣∣
(ρ0,ξ)

S̃(ρ0, dρ)

Bn−1(ℓ̃(ρ0))

CV1(S̃(ρ0, dρ))

CV2(Bn−1(ℓ̃(ρ0)))

Figure 3

where ψn,1(k2, ℓ(ρ0)) (resp. ψ̃n,1(k2, ℓ̃(ρ0))) are the volumes of the orthospindles in Σn (resp.

Σ̃n) with k2 as the height and ℓ(ρ0) (resp. ℓ̃(ρ0)) as the base-radii.

Theorem 2 The volume of CV2,V1(Ω) in Σn (resp. Σ̃n) is given by∫
Ω

wn,2(k1, k2, ρ) sin
n−3 ρ dρ ∧ dv,

(resp.)

∫
Ω

w̃n,2(k1, k2, ρ) sinh
n−3 ρ dρ ∧ dv,

(67)

where

wn,2(k1, k2, ρ) =
1

ωn−1
ψn,1(k2, ℓ(ρ))

sin k1 sec
n−1 ρ

(tan2 ρ+ sin2 k1)
n−1
2

,

(resp.) w̃n,2(k1, k2, ρ) =
1

ωn−1
ψ̃n,1(k2, ℓ̃(ρ))

sinh k1sech
n−1ρ

(tanh2 ρ+ sinh2 k1)
n−1
2

,

ℓ(ρ) = cos−1(cos k1 cos ρ), ℓ̃(ρ) = cosh−1(cosh k1 cosh ρ).

(67′)

Proof The proofs for the spherical case and the hyperbolic case are completely parallel.

Thus, we shall only exhibit the proof of the hyperbolic case in the following. Moreover, the

underlying geometric idea of such a proof is essentially the same as that of Theorem 1, namely,

via effective usage of symmetry and the method of infinitesimal symmetrization of the integrand.

However, due to the high dimensional geometric situation, such a geometric idea can only be

illustrated by the following much simplified diagram rather than a realistic picture. As indicated

in Figure 3, dσ
∣∣
(ρ0,ξ)

is an infinitesimal piece of volume element in Σ̃n−2, inside of the given

region Ω, S̃(ρ0, dρ) is the spherical shell in Σ̃n−2 centered at O and with thickness dρ, inner
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radius ρ0, consisting of all those O(n − 2)-orbits passing through dσ
∣∣
(ρ0,ξ)

. Moreover, ℓ̃(ρ0) is

the distance between V1 and (ρ0, ξ), while B̃n−1(ℓ̃(ρ0)) is the (n − 1)-ball of radius ℓ̃(ρ0) in

Σ̃n−1 centered at V1, which is, of course, O(n − 1)-symmetric. Therefore, the ratio between

the (n− 1)-dimensional volume of CV1(S̃(ρ0, dρ)) and that of B̃n−1(ℓ̃(ρ0)) is equal to the ratio

between the (n − 1)-dimensional solid angle spanned by S̃(ρ0, dρ) at V1 and the totality of

(n − 1)-dimensional solid angle (i.e. ωn−1). Hence, modulo dρ2, the n-dimensional volume of

the orthogonal double cone with S̃(ρ0, dρ) as its base is equal to ψ̃n,1(k2, ℓ̃(ρ0)) times that ratio,

namely

volCV2,V1(S̃(ρ0, dρ)) ≡ ψ̃n,1(k2, ℓ̃(ρ0)) ·
ωn−2

ωn−1
sinn−3 λ̃(ρ0)

dλ̃

dρ

∣∣∣∣
ρ0

dρ. (68)

Hence

wn,2(k1, k2, ρ) =
1

ωn−1
ψ̃n,1(k2, ℓ̃(ρ))

sinh k1 sech
n−1ρ

(tanh2 ρ+ sinh2 k1)
n−1
2

(69)

and

volCV2,V1(Ω) =

∫
Ω

w̃n,2(k1, k2, ρ) sinh
n−3 ρ dρ ∧ dv. (70)

This proves the hyperbolic case of Theorem 2, while that of the spherical case is completely

parallel to the above proof.

6 Volume Formulas of Orthogonal Multiple Spindles and
Multiple Cones in Sn(1) (Resp. Hn(−1))

Among all orthogonal ℓ-multiple cones in Σn (resp. Σ̃n), the special case that the region

Ω ⊂ Σn−ℓ (resp. Σ̃n−ℓ) happens to be an (n− ℓ)-ball centered at O is undoubtedly the simplest

and also the most symmetric one. We shall call such particularly nice multiple cones orthogonal

(n, ℓ)-spindles or (n, ℓ)-orthospindles. The volume of an orthogonal (n, ℓ)-spindle is, of course, a

function of its ℓ successive heights and the radius of its base, which already constitute a complete

set congruence invariants of such spindles. We shall denote this function by ψn,ℓ(k1, · · · , kℓ; r)
(resp. ψ̃n,ℓ(k1, · · · , kℓ; r)). For example, ψn,0(r) (resp. ψ̃n,0(r)) are just the volumes of the n-

balls of radius r in Σn (resp. Σ̃n); ψn,1(k1, r) (resp. ψ̃n,1(k1, r)) are the volumes of orthogonal

cones with height k and base-radius r in Σn (resp. Σ̃n) (cf. §4). Moreover, the results of §3
and §5 show that ψn,0(r) (resp. ψ̃n,0(r)) plays the central role in the derivation of the volume

formulas of cones in Σn (resp. Σ̃n), while ψn,1(k, r) (resp. ψ̃n,1(k, r)) also plays the central role

in the derivation of the volume formulas of orthogonal double cones in Σn (resp. Σ̃n).

In this section, we shall prove the same kind of volume formulas for orthogonal ℓ-multiple

cones as that of Theorem 2 for orthogonal double cones, in which the volume functions of or-

thogonal (n, ℓ−1)-spindles, i.e. ψn,ℓ−1 (resp. ψ̃n,ℓ−1) will again play the central role. Moreover,

such volume formulas will also provide an inductive way of computing ψn,ℓ (resp. ψ̃n,ℓ) via a

specific integral formula involving ψn,ℓ−1 (resp. ψ̃n,ℓ−1), namely

Theorem 3 Let ψn,ℓ−1(k1, · · · , kℓ−1, r) (resp. ψ̃n,ℓ−1(k1, · · · , kℓ−1, r)) be the volume func-

tions of orthogonal (n, ℓ − 1)-spindles in Σn (resp. Σ̃n). Then the volume of an orthogonal
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ℓ-multiple cone in Σn (resp. Σ̃n) is given by the following integral formulas,∫
Ω

wn,ℓ(k1, · · · , kℓ, ρ) sin(n−ℓ−1) ρ dρ ∧ dv,

(resp.)

∫
Ω

w̃n,ℓ(k1, · · · , kℓ, ρ) sinh(n−ℓ−1) ρ dρ ∧ dv,
(71)

where {ki, 1 ≤ i ≤ ℓ} are its successive heights, ρ is the distance between O and P (ρ, ξ) ∈ Ω,

dv is the volume element of S(n−ℓ−1)(1) at ξ and the “weight functions” wn,ℓ (resp. w̃n,ℓ) are

given as follows:

wn,ℓ(k1, · · · , kℓ, ρ) =
1

ωn−ℓ+1
ψn,ℓ−1(k2, · · · , kℓ, ℓ(ρ))

sin k1 sec
n−ℓ+1 ρ

(tan2 ρ+ sin2 k1)
n−ℓ+1

2

,

w̃n,ℓ(k1, · · · , kℓ, ρ) =
1

ωn−ℓ+1
ψ̃n,ℓ−1(k2, · · · , kℓ, ℓ̃(ρ))

sinh k1 sech
n−ℓ+1ρ

(tanh2 ρ+ sinh2 k1)
n−ℓ+1

2

,

ℓ(ρ) = cos−1(cos k1 cos ρ), ℓ̃(ρ) = cosh−1(cosh k1 cosh ρ).

(71′)

Proof In the beginning cases of ℓ = 1 and 2, Theorem 3 is exactly Theorem 1 and

Theorem 2 respectively. Thus, Theorem 3 is their generalization for the general case of ℓ ≤ n.

In fact, the following proof is also a straightforward generalization of that of Theorem 1 and

Theorem 2, namely, the above volume formulas (71) and (71′) can again be derived via the same

kind of effective usage of the O(n−ℓ)-symmetry and the method of infinitesimal symmetrization

of the integrand. Since the proofs for the spherical case and the hyperbolic case are completely

parallel, we shall only discuss here the proof of the hyperbolic case in the following:

Let (ρ, ξ), ξ ∈ Sn−ℓ−1(1), be the spherical coordinate system on Σ̃n−ℓ with O as the origin,

and dσ|(ρ0,ξ) be an infinitesimal piece of volume element inside of the given region Ω. It follows

from the O(n − ℓ)-symmetry (i.e. of successive cone construction) that the ratio between

the n-dimensional volume of the orthogonal ℓ-multiple cone with dσ|(ρ0,ξ) as its base and the

(n − ℓ)-dimensional volume of dσ|(ρ0,ξ), modulo o(dσ), only depends on the successive heights

{ki, 1 ≤ i ≤ ℓ} and the coordinate ρ0, namely, there exists a weight function w̃n,ℓ(k1, · · · , kℓ, ρ)
such that the volume of the orthogonal ℓ-multiple cone with Ω as its base is given by (71). The

remarkable part of Theorem 3 is that such a weight function is, in fact, given by the formula

(71′). Thus, the most crucial part of the proof is the derivation of (71′) by the method of

infinitesimal symmetrization.

Let dσ∗ be the (n − ℓ + 1)-dimensional solid angle spanned by dσ|(ρ0,ξ) at V1. Then, the

(n − ℓ + 1)-dimensional volume of the portion B̃n−ℓ+1(ℓ̃(ρ0)) inside of the solid angle cone of

dσ∗ is equal to dσ∗

ωn−ℓ+1
times the volume of B̃n−ℓ+1(ℓ̃(ρ0)) on the one hand, and on the other

hand, it is also equal to the (n − ℓ + 1)-dimensional volume of CV1(dσ|(ρ0,ξ)), modulo o(dσ).

Therefore, the n-dimensional volume of the orthogonal ℓ-multiple cone with dσ
∣∣
(ρ0,ξ)

as its base

is equal to that of the orthogonal (ℓ−1)-multiple cone with the above portion of B̃n−ℓ+1(ℓ̃(ρ0))

inside of dσ∗ as its base modulo o(dσ|(ρ0,ξ)), namely

w̃n,ℓ(k1, · · · , kℓ, ρ0) dσ|(ρ0,ξ) ≡ ψ̃n,ℓ−1(k2, · · · , kℓ, ℓ̃(ρ0))
dσ∗

ωn−ℓ+1
(mod o(dσ)). (72)
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Therefore, the derivation of (71′) is reduced to the computation of the ratio between dσ∗ and

dσ|(ρ0,ξ). The same kind of computation as that of §3.2 will again show that

dσ∗ ≡ sinh k1

sinhn−ℓ+1 ℓ̃(ρ)
dσ

∣∣∣∣
(ρ0,ξ)

. (73)

This proves Theorem 3 for the hyperbolic case, and that of the spherical case is completely

parallel to the above proof.

Applying Theorem 3 to the special case that Ω is the (n − ℓ)-ball of radius r centered at

O, one gets the following Theorem 4 which provides an inductive way of computing the basic

volume functions ψn,ℓ and ψ̃n,ℓ, namely

Theorem 4 Set

λ0 = tan−1 tan r

sin k1
, ℓ(λ) = tan−1(tan k1 secλ),

(resp.) λ̃0 = tan−1 tanh r

sinh k1
, ℓ̃(λ) = tanh−1(tanh k1 secλ).

(74)

Then

ψn,ℓ(k1, · · · , kℓ, r) =
ωn−ℓ

ωn−ℓ+1

∫ λ0

0

ψn,ℓ−1(k2, · · · , kℓ, ℓ(λ)) sinn−ℓ−1 λ dλ,

ψ̃n,ℓ(k1, · · · , kℓ, r) =
ωn−ℓ

ωn−ℓ+1

∫ λ̃0

0

ψ̃n,ℓ−1(k2, · · · , kℓ, ℓ̃(λ)) sinn−ℓ−1 λ dλ.

(75)

Proof Theorem 4 can be deduced from Theorem 3 by integration, using the simplification

provided by the O(n − ℓ)-symmetry of Ω in the case Ω = Bn−ℓ(r) centered at O. However, it

might as well to give a direct proof by the same method of infinitesimal symmetrization.

Let O(n− ℓ) be the isometry subgroup of Σn, fixing all points of the ℓ-dimensional normal

plane, Σℓ, of Σn−ℓ at O. Let

S(k1, · · · , kℓ;Bn−ℓ(r))

be an orthogonal (n, ℓ)-spindle with {ki, 1 ≤ i ≤ ℓ} as its successive heights and Bn−ℓ(r) as its

base, which is clearly O(n − ℓ)-invariant. Therefore, such a set can be concisely represented

by its image set at the level of the orbit space Σn
/
O(n − ℓ) (cf. Appendix). As indicated in

Figure 4, the orbit space, Σn
/
O(n−ℓ), equipped with the orbital distance metric is isometric to

a half space in Σℓ+1, while the image set of Bn−ℓ(r) (resp. S(k1, · · · , kℓ;Bn−ℓ(r))) is the interval

OP of length r on the half line Σn−ℓ
/
O(n − ℓ) (resp. the (ℓ + 1)-dimensional “orthoscheme”

which is exactly the convex hull of {P,O, V1, · · · , Vℓ} in Σℓ+1
+ , cf. Appendix).

Let S(ρ0, dρ) be the spherical shell in Σn−ℓ of inner radius ρ0 and thickness dρ, centered at

O, whose image in the orbit space is the sub-interval [ρ0, ρ0+dρ] on the interval OP . Thus, the

subdivision of OP into such infinitesimal segments corresponding to the subdivision of Bn−ℓ(r)

into such spherical shells of infinitesimal thickness. Note that the given orthogonal (n − ℓ)-

spindle is exactly the orthogonal ℓ-multiple cone with Bn−ℓ(r) as its base and {Vi, 1 ≤ i ≤ ℓ}
as its successive vertices. Therefore, the orthogonal ℓ-multiple cones with such spherical shells

of infinitesimal thickness as their bases and the same {Vi, 1 ≤ i ≤ ℓ} as their successive vertices

also constitutes a subdivision of the given (n, ℓ)-spindle. Hence, the volume of such an (n, ℓ)-



On the Volume Formulas of Cones and Orthogonal Multi-cones 21

Σn−ℓ
/
O(n− ℓ)

P

O

Vℓ

V2

V1

Bn−ℓ+1(ℓλ)
/
O(n− ℓ)

S(ρ0, dρ)
/
O(n− ℓ)

ρ0+dρ

ρ0

dλ

λ(ρ0)

ℓ(λ)

k2

k1

Figure 4

spindle is equal to the integration with the volumes of those ℓ-multiple cones of spherical shells

as the “integrand”, namely

vol(S(k1, · · · , kℓ, Bn−ℓ(r))) =

∫ r

0

vol (ℓ-multiple cones of S(ρ, dρ)). (76)

In integration, two integrands which are equal to each other modulo higher order infinitesimal

will always produce the same value of integration. The orthogonal ℓ-multiple cone of S(ρ0, dρ) is,
by definition, the orthogonal (ℓ−1)-multiple cone of CV1(S(ρ0, dρ)). If we replace CV1(S(ρ0, dρ))
by its subset lying inside of the (n − ℓ + 1)-ball of radius ℓ(λ) in Σn−ℓ+1 centered at V1, say

denoted by CV1
∗ (S(ρ0, dρ)), then it is easy to see that the volumes of their orthogonal (ℓ− 1)-

cones are equal to each other modulo dρ2. On the other hand, it follows from the O(n− ℓ+1)-

symmetry of the orthogonal (ℓ− 1)-fold cone construction, the ratio between the volume of the

orthogonal (ℓ− 1)-cone with CV1
∗ (S(ρ0, dρ)) as its base and that with Bn+ℓ+1(ℓ(λ)) as its base

(i.e. ψn,ℓ−1(k2, · · · , kℓ, ℓ(λ))) is equal to the ratio between the (n − ℓ + 1)-dimensional solid

angle spanned by S(ρ0, dρ) at V1 and the total amount ωn−ℓ+1, namely

ωn−ℓ sin
n−ℓ−1 λ(ρ0)

dλ

dρ

∣∣∣∣
ρ0

dρ

/
ωn−ℓ+1. (77)

Hence

ψn,ℓ(k1, · · · , kℓ, r) = volS(k1, · · · , kℓ, Bn−ℓ(r))

=

∫ r

0

vol (ℓ-multiple cones of S(ρ, dρ))

=

∫ r

0

vol ((ℓ− 1)-multiple cones of CV1
∗ (S(ρ, dρ)))
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=
ωn−ℓ

ωn−ℓ+1

∫ r

0

ψn,ℓ−1(k2, · · · , kℓ, ℓ(λ)) sinn−ℓ−1 λ
dλ

dρ
dρ

=
ωn−ℓ

ωn−ℓ+1

∫ λ0

0

ψn,ℓ−1(k2, · · · , kℓ, ℓ(λ)) sinn−ℓ−1 λ dλ. (78)

Examples: Explicit formulas of ψn,2 (resp. ψ̃n,2) for n = 3 and 4

The integral formulas of (75) in Theorem 4 provides a straightforward way of computing

ψn,ℓ and ψ̃n,ℓ inductively by integration. The starting cases of ψn,0(r) (resp. ψ̃n,0(r)) are given

by Lemma 3, and the beginning step of such an inductive computation, namely, from ℓ = 0

to ℓ = 1, has already been discussion in §4. In concluding this section, we shall discuss the

next step of from ℓ = 1 to ℓ = 2 as an example. Since the computations of the hyperbolic

case is completely parallel to that of the spherical case, while the computations for higher

dimensions, say n ≥ 5, will only encounter the same kinds of integrations as that of the lower

dimensional cases. We shall only discuss a few typical cases as examples of such computations

in the following:

Example 1 ψ3,2.

In the lowest dimensional case of n = 3, ψ3,2(k1, k2, r) is equal to twice of the volume of

the spherical orthoscheme with {k1, k2, r} as its sequence of lengths, namely, the tetrahedron

spanned by {P,O, V1, V2} as indicated in Figure 5.

Set λ0 = ∠V1V2O, λ1 = ∠OV1P , α(θ) = ∠V1V2Xθ, γ(θ) = ∠OV2Xθ and ℓ(θ) = V2Xθ.

Then it follows from the orthogonality that θ = ∠OV1Xθ is exactly the dihedral angle between

△V2V1O and △V2V1Xθ, while the two spherical triangles indicated in Figure 5 are both right-

angle ones. Hence

tan γ(θ) = sinλ0 tan θ, tan ℓ(θ) =
tan k2
cosα(θ)

,

cosα(θ) = cosλ0 cos γ(θ) =

√
1− sin2 λ0√

1 + sin2 λ0 tan
2 θ
.

(79)

λ0

α(θ)
γ(θ)

V2

V1

k2

λ0

θ

ℓ(θ)

k1
O

Xθ

P

P ′

V2

V1 Xθ

k2

α(θ)

ℓ(θ)

Figure 5
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Therefore, by (60) and (75),

ψ3,2(k1, k2, r) =

∫ λ1

0

(k2 − cosα(θ)ℓ(θ))dθ

= λ1k2 −
∫ λ1

0

√
1− sin2 λ0√

1 + sin2 λ0 tan
2 θ

tan−1

{
tan k2

√
1 + sin2 λ0 tan

2 θ√
1− sin2 λ0

}
dθ (80)

( = φ3,2(k2, λ0, λ1)).

We include here the following useful lemma on the above function φ3,2(k2, λ0, λ1) given by the

RHS of (80), namely

Lemma 6 Let φ3,2(k2, λ0, λ1) be the function given by the RHS of (80). Then

∂φ3,2

∂k2
=

sinλ0 tan k2√
1− sin2 λ0 + tan2 k2

tan−1 sinλ0 tanλ1 tan k2√
1− sin2 λ0 + tan2 k2

. (81)

Proof Set tan k2 = τ , sinλ0 = c and consider the RHS of (80) as a function of the

“parameter” τ . Then

∂φ3,2

∂τ
=

λ1
1 + τ2

−
∫ λ1

0

(1− c2)dθ

1− c2 + τ2 + c2τ2 tan2 θ
. (82)

Set A = 1− c2 + τ2, B = c2τ2 and u = tan θ. One has

∂φ3,2

∂τ
=

λ1
1 + τ2

− (1− c2)

∫ tanλ1

0

du

(A+Bu2)(1 + u2)

=
λ1

1 + τ2
− 1− c2

A−B

∫ tanλ1

0

{
1

1 + u2
− B

A+Bu2

}
du

=
cτ

(1 + τ2)
√
1− c2 + τ2

tan−1 cτ tanλ1√
1− c2 + τ2

. (83)

Hence

∂φ3,2

∂k2
= (1 + τ2)

∂φ3,2

∂τ
=

cτ√
1− c2 + τ2

tan−1 c tanλ1τ√
1− c2 + τ2

. (84)

Example 2 ψ4,2.

A (4, 2)-orthospindle with k1, k2 as its successive heights and r as its base-radius is an O(2)-

invariant body in S4(1) whose image in the orbit space S4(1)
/
O(2) ∼= S3

+(1) is an orthoscheme

with {k2, k1, r} as its sequence of lengths, as indicated in Figure 5. Therefore, it is advantageous

to use the same notations as that of Example 1, in which formula (75) can be rewritten as follows:

ψ4,2(k1, k2, r) =
1

2

∫ λ1

0

φ4,1(k2, α(θ)) sin θ dθ

= 2π

∫ λ1

0

{
1

3
α(θ)− 3 sinα(θ) cosα(θ)− 1

3
sin−1(cos k2 sinα(θ))

+ 3 cos k2 sinα(θ)

√
1− cos2 k2 sin

2 α(θ)− tan k2 sin k2 sinα(θ)√
1− cos2 k2 sin

2 α(θ)

}
sin θ dθ, (85)
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where

α(θ) = tan−1
( tanλ0

cos θ

)
, sinα(θ) =

tanλ0√
cos2 θ + tan2 λ0

, cosα(θ) =
cos θ√

cos2 θ + tan2 λ0
. (85′)

It is not difficult to show that each term of the integrals of the RHS of (85) can in fact be

explicitly integrated in terms of elementary functions. For example,∫ λ1

0

α(θ) sin θ dθ =

∫ λ1

0

tan−1
( tanλ0

cos θ

)
sin θ dθ

=
{
− cos θ tan−1

( tanλ0
cos θ

)}∣∣∣∣λ1

0

+

∫ λ1

0

tanλ0 cos θ sin θ dθ

cos2 θ + tan2 λ0

= λ0 − cosλ1 tan
−1

( tanλ0
cosλ1

)
+

1

2
ln

sec2 λ0

sec2 λ0 − sin2 λ1
. (86)

Remarks (i) The explicit computations for ψn,2 (resp. ψ̃n,2) for odd n are similar to that

of ψ3,2, while that of even n are similar to the case of ψ4,2.

(ii) It is always advantageous to express the volume formulas of orthospindles (and or-

thoschemes) in terms of the last height kℓ−1 and the angular parameters {λ0, · · · , λℓ−2}, namely,

φn,ℓ(kℓ, λ0, · · · , λℓ−1) instead of ψn,ℓ(k1, · · · , kℓ, r). Therefore, the integral formulas of (75)

should be rewritten in terms of φn,ℓ−1 (resp. φ̃n,ℓ−1) as follows, namely

φn,ℓ(kℓ, λ0, · · · , λℓ−1) =
ωn−ℓ

ωn−ℓ+1

∫ λℓ−1

0

φn,ℓ−1(kℓ, λ0, · · · , λℓ−2, α(θ)) sin
n−ℓ−1 θ dθ,

φ̃n,ℓ(kℓ, λ̃0, · · · , λ̃ℓ−2) =
ωn−ℓ

ωn−ℓ+1

∫ λ̃ℓ−1

0

φ̃n,ℓ−1(kℓ, λ̃0, · · · , λ̃ℓ−2, α̃(θ)) sin
n−ℓ−1 θ dθ,

(75∗)

where α(θ) = tan−1( tanλℓ−2

cos θ ), α̃(θ) = tan−1( tan λ̃ℓ−2

cos θ ) and the relationship between the length

parameters {kℓ, kℓ−1, · · · , k1, r} and the angular parameters {λ0, λ1, · · · , λℓ−1} are given by

(93) of Appendix.

7 Concluding Remarks

1. In the study of n-dimensional Euclidean (resp. spherical, hyperbolic) geometries, the

volume of an n-simplex is the top dimensional geometric invariant which is clearly of funda-

mental importance, just as the importance of the area formula of triangles in the study of

2-dimensional geometry. It is well-known that the dimension of the moduli space of congruence

classes of n-simplexes in En (resp. Sn(1), Hn(−1)) is equal to n(n+1)
2 , thus needing a set of at

least n(n+1)
2 invariants, such as the set of n(n+1)

2 edge-lengths, in order to specify a congruence

class. Hence, the volume function of n-simplexes is a function of n(n+1)
2 independent variables

depending on the choice of such a complete set of invariants, such as the edge-lengths or the

dihedral angles in the cases of Sn(1) and Hn(−1). Anyhow, the volume functions of n-simplexes

for the cases of Sn(1) and Hn(−1) with n ≥ 3 are known to be analytically difficult to deal

with, even the number of variables already increases rapidly as n increases. Of course, if one

restricts to certain special kind of n-simplexes such as the orthoschemes (cf. Appendix), then
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the number of variables of their volume function will stay to be n, while a general n-simplexes

can be geometrically decomposed into the non-overlapping union or differences of such special

kind of n-simplexes, often by means of orthogonal multiple cone-constructions. However, the

volume functions of orthoschemes in Sn(1) and Hn(−1) are still highly transcendental and

difficult to deal with analytically. In fact, this is often the main source of difficulty in the study

of various high dimensional problems in spherical and hyperbolic geometries.

2. The volume function of n-simplexes in En can be expressed by determinant on the

one hand, but on the other hand, the volume functions of n-simplexes in Sn(1) (resp. Hn(−1))

becomes highly transcendental. Such a drastic contrast in their analytical behaviors is, of course,

coming from the curvature of the latter. However, the three kinds of classical geometries are

commonly characterized by the maximality of their local isometry groups (i.e. ISO(Mn, pt) =

O(n) everywhere). In fact, even the definition of simplexes and the congruence properties

of simplexes are all depending on the above common symmetry property of the three kinds

of geometries. Therefore, it is natural to seek understanding of the volume in Sn(1) (resp.

Hn(−1)) by studying the interaction between “volume” and symmetry. From this viewpoint,

one expects that the volume functions of more symmetric bodies should be considerably simpler

than the volume functions of less symmetric bodies. For example, the volume functions of an n-

ball of radius r in Sn(1) (resp. Hn(−1)) are indeed rather simple because it is O(n)-symmetric.

Moreover, the families of orthogonal (n, ℓ)-spindles, 0 ≤ ℓ ≤ (n − 1), constitutes a sequence

of O(n − ℓ)-symmetric families. Their volume function ψn,ℓ (resp. ψ̃n,ℓ) play the central

role of providing the powerful formulas for orthogonal (ℓ + 1)-multiple cones in Sn(1) (resp.

Hn(−1)). Examplified by the remarkable achievement of Eudoxus, integration has always been

indispensible analytic technique in the study of volume. Thus, it is natural to study how

symmetry interacts with integration? The method of infinitesimal symmetrization was first

introduced by the author in [1] for the study of volume formula of tetrahedrons in S3(1) and

H3(−1). In this paper, we make a more systematic application of this method, thus obtaining

a much more systematic understanding on volumes in Sn(1) and Hn(−1) such as Theorem 3

and Theorem 4.

3. In the study of various kinds of spherical (resp. hyperbolic) geometric problems, in which

the volume plays an important role, what one often needs is not the numerical computation

of the volumes of certain specific bodies, but rather the estimation of the volumes of certain

specific family of bodies. It is in this aspect that the volume formulas of this paper provide a

powerful set of tools for proving such estimates. We refer to [2], [3], etc. for examples of this

kind of applications.

4. Orthogonality and the O(n)-symmetry (i.e. that of the local isometry groups) are inti-

mately related in the geometry of En (resp. Sn, Hn). The results of this paper demonstrates

how they can be jointly used to provide understanding on volumes in such spaces.

Appendix Volumes of Orthoschemes and Orthospindles as
Multiple Integrals

Let O be a chosen base point in Σn (resp. Σ̃n) and {ei, 1 ≤ i ≤ n} be a chosen orthonormal

basis of the tangent space at O. Then

{0} ⊂<e1>⊂<e1, e2>⊂ · · · ⊂<ei, 1 ≤ i ≤ k>⊂ · · · ⊂ TO (87)
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constitutes a flag in TO, while their images under the exponential map constitutes a spherical

(resp. hyperbolic) flag of subspaces in Σn (resp. Σ̃n), namely

O ∈ Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σk ⊂ · · · ⊂ Σn (88)

(resp. O ∈ Σ̃1 ⊂ Σ̃2 ⊂ · · · ⊂ Σ̃k ⊂ · · · ⊂ Σ̃n).

Set Σ
(n−2)
∗ to be the set of points in Σn whose distances to the above Σ1 of (88) are equal to

π
2 . In the following discussion, we shall always restrict to points not belonging Σ

(n−2)
∗ in the

case of Σn.

A.1 Spherical (resp. hyperbolic) cartesian coordinate system on

Σn \ Σ(n−2)
∗ (resp. Σ̃n)

To a given point P ∈ Σn \ Σ
(n−2)
∗ (resp. Σ̃n), there exists a unique sequence of points

Pk ∈ Σk (resp. Σ̃k), 1 ≤ k ≤ n − 1, such that PPn−1 and PkP k−1, (n − 1) ≥ k ≥ 2, are

respectively the unique shortest paths between P and Σn−1; Pk and Σk−1. Set x1, x2, · · · , xk
and xn to be the oriented lengths of

−−→
OP 1,

−−−→
P1P2, · · · ,

−−−−−→
Pk−1Pk and

−−−−→
Pn−1P respectively. It is easy

to show that such an n-tuple (x1, · · · , xn) and P ∈ Σn \Σ(n−2)
∗ (resp. Σ̃n) determine each other

uniquely. (Note that −π
2 < xi <

π
2 in the spherical case.) We shall call it the spherical (resp.

hyperbolic) cartesian coordinate system associated to the chosen spherical (resp. hyperbolic)

flag of (88). As one can see readily, the orthogonality plays the major role in the construction

of such a coordinate system on the one hand, and on the other hand, it will naturally provide

an advantageous framework for the study of those geometric objects and problems having the

orthogonality as an important feature of their structures such as the orthoschemes, orthospindles

and multiple orthogonal cones.

A.2 Coordinate curves and volume element of spherical (resp. hyperbolic)

cartesian coordinate system

In the well-known case of Euclidean geometry, the vector field ∂
∂x1

is the Killing vector field

generated by the translation symmetry in the x1-direction. In the case of Σn (resp. Σ̃n) the

corresponding 1-parameter subgroup of isometry is the transvections along the geodesic line Σ1

(resp. Σ̃1).

Sublemma 1 The length of
∂

∂x1
(P ) is given by

∣∣∣ ∂

∂x1
(P )

∣∣∣ = cos d(P,Σ1) =

n∏
i=2

cosxi (89)

(
resp.

∣∣∣ ∂

∂x1
(P )

∣∣∣ = cosh d(P, Σ̃1) =
n∏

i=2

coshxi

)
.

Proof Let Σ2(P ) (resp. Σ̃2(P )) be the “plane” spanned by P and Σ1 (resp. Σ̃1) in Σn

(resp. Σ̃n). Then the proof of (89) can be reduced to that of 2-dimensional spherical (resp.

hyperbolic space), which can be readily verified by straightforward computations of spherical

(resp. hyperbolic) trigonometry.
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Corollary For k ≤ n− 1, one has∣∣∣ ∂

∂xk
(P )

∣∣∣ = cos d(P,Σk) =

n∏
i=k+1

cosxi (90)

(
resp. = cosh d(P, Σ̃k) =

n∏
i=k+1

coshxi

)
.

∣∣∣ ∂

∂xn
(P )

∣∣∣ = 1.

Sublemma 2 In terms of the cartesian coordinates, the volume elements of Σn (resp. Σ̃n)

is given by

dσ = det
( ∂

∂x1
, · · · , ∂

∂xn

)
dx1 ∧ · · · ∧ dxn

=
( n∏

i=2

cos(i−1) xi

)
dx1 ∧ · · · ∧ dxn (91)

(
resp. dσ̃ =

( n∏
i=2

cosh(i−1) xi

)
dx1 ∧ · · · ∧ dxn

)
.

Proof It follows directly from Sublemma 1, the Corollary and the orthogonality of

{ ∂
∂xi

, 1 ≤ i ≤ n}.

A.3 Spherical (resp. hyperbolic) orthoschemes

Let {Ai, 0 ≤ i ≤ k} be a sequence of (k + 1) points in Σn (resp. Σ̃n) satisfying:

( i ) the lengths ℓi of Ai−1Ai, 1 ≤ i ≤ ℓ, are all positive and less than π
2 in the spherical case,

(ii) AiAi+1 is perpendicular to the i-dimensional subspace spanned by {A0, · · · , Ai}.
Then the k-simplex spanned by such a set is called a spherical (resp. hyperbolic) k-orthoscheme.

For examples, a 2-orthoscheme is just a right-angle triangle, a 3-orthoscheme is a doubly or-

thogonal tetrahedron.

Note that the (k− 1)-simplices spanned by {Ai, 0 ≤ i ≤ k− 1} and {Ai, 0 ≤ i ≤ k− 2, Ak}
are both (k − 1)-orthoschemes with the (k − 2)-orthoscheme spanned by {Ai, 0 ≤ i ≤ (k − 2)}
as their common face, while the dihedral angle between them is equal to ∠Ak−1Ak−2Ak. Set

λj = ∠Aj+1AjAj+2, 0 ≤ j ≤ (k − 2). (92)

Then

λj = tan−1(tan ℓj+2 csc ℓj+1) (resp. tan−1(tanh ℓj+2 csch ℓj+1)). (93)

A k-orthoscheme in Σn (resp. Σ̃n) is uniquely determined up to congruence by the sequence

of lengths {ℓi = ℓ(Ai−1Ai), 1 ≤ i ≤ k} or ℓ1 and the sequence of (k − 1) dihedral angles

{λj , 0 ≤ j ≤ (k − 2)}, while the above two sets of congruence invariants are related by (93).

In the top dimensional case of k = n, let {Ai, 0 ≤ i ≤ n} be the sequence of (n+ 1) points

whose coordinates are given by

A0 = (0, · · · , 0), Ai = (ℓ1, · · · , ℓi, 0, · · · , 0), 1 ≤ i ≤ n. (94)
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Then the n-simplex spanned by them is clearly an n-orthoscheme with {ℓi, 1 ≤ i ≤ n} as its

sequence of lengths. Conversely, to any given n-orthoscheme with {ℓi, 1 ≤ i ≤ n} as its sequence

of lengths, it is straightforward to choose the corresponding cartesian coordinate system such

that the coordinates of its sequence of vertices {Ai, 0 ≤ i ≤ n} are as given by (94).

Sublemma 3 Let {Ai, 0 ≤ i ≤ n} be the (n+1) points given by (94) and {λj , 0 ≤ j ≤ n−2}
be sequence of (n−1) angles given by (93). Then the n-orthoscheme spanned by {Ai, 0 ≤ i ≤ n}
in Σn (resp. Σ̃n) consists of those points whose coordinates coordinates (x1, · · · , xn) are specified
by the following set of inequalities, namely

0 ≤ x1 ≤ ℓ1, and for 0 ≤ j ≤ (n− 2),

0 ≤ xj+2 ≤ tan−1(tanλj sinxj+1) (resp. tanh−1(tanλj sinhxj+1)). (95)

Proof We shall prove by induction on n. The beginning case of n = 1 is trivial, while the

next case of n = 2 is the well-known description of a right-angle spherical (resp. hyperbolic)

triangle, as indicated in Figure 6.

Note that the subset with xn = 0 is an (n − 1)-orthoscheme in Σn−1 (resp. Σ̃n−1), which

is geometrically the image of orthogonal projection of the given n-orthoscheme. Let P =

(a1, · · · , an) be an arbitrary point of the n-orthoscheme. Then P ′ = (a1, · · · , an−1, 0) is its

image of orthogonal projection. Hence, by induction assumption

0 ≤ a1 ≤ ℓ1,

0 ≤ aj+2 ≤ tan−1(tanλj sin aj+1) (resp. tanh−1(tanλj sinh aj+1)) (96)

for 0 ≤ j ≤ (n − 3). Thus, it suffices to prove that an satisfies the last inequality of (95). Set

P ′′ = (a1, · · · , an−2, 0, 0) and Σ2
+(P

′′) (resp. Σ̃2
+(P

′′)) to be the half-plane perpendicular to

Σn−2 (resp. Σ̃n−2) at P ′′. Then the intersection of Σ2
+(P

′′) (resp. Σ̃2
+(P

′′)) and the given

n-orthoscheme is a right-angle spherical (resp. hyperbolic) triangle with λn−2 as its angle at

P ′′. Hence, it follows from the same kind of geometry as indicated in Figure 6 that

tan an = tan θ sin an−1 ≤ tanλn−2 sin an−1 (97)

(resp. tanh an = tan θ sinh an−1 ≤ tan−1(tanλn−2 sin an−1))

(0, 0) x1
θ

(ℓ1, 0)

(ℓ1, ℓ2)

(x1, x2)

x2

0 ≤ x1 ≤ ℓ1,

0 ≤ θ ≤ λ0

⇔ 0 ≤ tanx2 ≤ tanλ0 sinx1

(resp. 0 ≤ tanhx2 ≤ tanλ0 sinhx1 )

Figure 6
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A volume formula of n-orthoscheme: Let Ω(ℓ1, · · · , ℓn) be the n-orthoscheme with

{ℓi, 1 ≤ i ≤ n} as the sequence of lengths and {λj , 0 ≤ j ≤ (n− 2)} be its sequence of angular

invariants given by (93). Then, its volume is equal to the following n-multiple integral, namely∫ ℓ1

0

dx1

{∫ φ1(x1)

0

cosx2dx2

{∫ φ2(x2)

0

cos2 x3dx3

{
· · ·

{∫ φn−1(xn−1)

0

cosn−1 xndxn

}
· · ·

}}}
, (98)

where

φk(xk) = tan−1(tanλk−1 sinxk), 1 ≤ k ≤ (n− 1), (98′),

(resp.)∫ ℓ1

0

dx1

{∫ φ̃1(x1)

0

coshx2dx2

{∫ φ̃2(x2)

0

cosh2 x3dx3

{
· · ·

{∫ φ̃n−1(xn−1)

0

coshn−1 xndxn

}
· · ·

}}}
, (99)

where

φ̃k(xk) = tanh−1(tanλk−1 sinhxk), 1 ≤ k ≤ (n− 1). (99′)

Proof Direct consequence of Sublemma 2 and Sublemma 3.

A.4 Spherical (resp. hyperbolic) orthospindles

Let O(n) be the local isometry group of Σn (resp. Σ̃n) at a chosen base point O and O(m) be

a subgroup of O(n) whose induced action on the tangent space at O fixed all directions of an (n−
m)-dimensional linear subspace. The fixed point set of such an O(m) is an (n−m)-dimensional

subspace Σn−m (resp. Σ̃n−m), while its normal m-dimensional subspace at O, say denoted

by Σm (resp. Σ̃m) is O(m)-invariant. Let O(m − 1) be the subgroup of O(m) which fixes an

additional direction. Then, the fixed point set of O(m−1) is an (n−m+1)-dimensional subspace

Σn−m+1 (resp. Σ̃n−m+1) which intersect every O(m)-orbit perpendicularly and moreover, there

is a natural bijection between the O(1)-orbits of Σn−m+1 (resp. Σ̃n−m+1) and the O(m)-orbits

of Σn (resp. Σ̃n), namely

Σn−m+1 ⊂−−−−→ Σny y
Σn−m+1

/
O(1)

∼=−−−−→ Σn
/
O(m),

(resp.) Σ̃n−m+1 ⊂−−−−→ Σ̃ny y
Σ̃n−m+1

/
O(1)

∼=−−−−→ Σ̃n
/
O(m).

(100)

Hence, the orbit spaces Σn
/
O(m) (resp. Σ̃n

/
O(m)) equipped with the orbital distance metrics

are isometric to that of Σn−m+1
/
O(1) (resp. Σ̃n−m+1

/
O(1)), while the O(1)-action on Σn−m+1

(resp. Σ̃n−m+1) is exactly the reflection symmetry with respect to Σn−m (resp. Σ̃n−m). Thus

Σn
/
O(m) (resp. Σ̃n

/
O(m)) is isometric to the closed half space Σn−m+1

+ (resp. Σ̃n−m+1
+ ) with

Σn−m (resp. Σ̃n−m) as its boundary. Set k = n−m and choose a cartesian coordinate system

(x1, · · · , xk+1) on Σk+1 (resp. Σ̃k+1) such that the above half spaces Σk+1
+ (resp. Σ̃k+1

+ ) are

given by xk+1 ≥ 0.
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Definition Let {Ai, 0 ≤ i ≤ k + 1} be a sequence of k + 2 points of Σk+1
+ (resp. Σ̃k+1

+ )

whose coordinates are given by (94) and p : Σn (resp. Σ̃n) → Σk+1
+ (resp. Σ̃k+1

+ ) be the orbital

projection map. The inverse image of the (k+1)-orthoscheme with {Ai} as its vertices is called

a spherical (resp. hyperbolic) (n, k)-orthospindle.

Geometrically, every point (x1, · · · , xk, r) ∈ Σk+1
+ (resp. Σ̃k+1

+ ) represents an O(m)-orbit

which is isometric to an Euclidean (m− 1)-sphere of radius sin r (resp. sinh r), thus having its

(m− 1)-dimensional volume equal to

v(r) = ωm sinm−1 r (resp. ωm sinhm−1 r). (101)

A volume formula of (n, k)-orthospindle: Let S(ℓk, ℓk−1, · · · , ℓ1, Bm(r)) (resp.

S̃(ℓk, ℓk−1, · · · , ℓ1, Bm(r))) be the (n, k)-orthospindle with {ℓk, ℓk−1, · · · , ℓ1} as its successive

heights and r as its base-radius (cf. §6). Then, it is an O(m)-invariant body in Σn (resp. Σ̃n)

whose image under orbital projection is an (k+1)-orthoscheme with {ℓ1, · · · , ℓk−1, ℓk, r} as the

sequence of lengths, in the orbit space Σk+1
+ (resp. Σ̃k+1

+ ). Therefore, its volume is given by

the integration of v(r) over the (k + 1)-orthoscheme Ω(ℓ1, · · · , ℓk, r), namely

vol (S(ℓk, · · · , ℓ1, Bm(r))) =

∫
Ω(ℓ1,··· ,ℓk,r)

ωm sinm−1 xk+1dσ

=

∫ ℓ

0

dx1

{∫ φ1(x1)

0

cosx2dx2

{
· · ·

{∫ φk(xk)

0

ωm sinm−1 xk+1 cos
k xk+1dxk+1

}
· · ·

}}
, (102)

(resp.) vol (S̃(ℓk, · · · , ℓ1, Bm(r))) =

∫
Ω(ℓ1,··· ,ℓk,r)

ωm sinhm−1 xk+1dσ

=

∫ ℓ1

0

dx1

{∫ φ̃1(x1)

0

cosx2dx2

{
· · ·

{∫ φ̃k(xk)

0

ωm sinhm−1 xk+1 cosh
k xk+1dxk+1

}
· · ·

}}
. (103)
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