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Abstract By using the conformal method, solutions of the Einstein-scalar field gravita-
tional constraint equations are obtained. Handling scalar fields is a bit more challenging
than handling matter fields such as fluids, Maxwell fields or Yang-Mills fields, because the
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1 Introduction

To explain recent observations of far away stars and galaxies, as well as the possible origin of

matter elements, it has become more and more relevant in Einsteinian cosmology to admit the

existence of a scalar field with a potential which remains to be estimated. On the other hand

various considerations, in particular the search for the unification of all the fundamental fields,

including gravitation, leads to the belief that the universe has extra dimensions, beyond the

usual three space and one time. These extra dimensions would be spacelike, and their extent

so small that we do not perceive them at the usual scales of our experiments.

The relevant equations for cosmology would then be the Einstein equations on an n + 1

dimensional manifold V , with source a scalar field ψ of potential V (ψ). These equations are,

for a metric g on V of Lorentzian signature1,

Einstein(g) ≡ Ricci(g)− 1

2
R(g) = T ; (1.1)

that is, in a local frame

Sαβ ≡ Rαβ −
1

2
gαβR = Tαβ , (1.2)
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where T is the stress energy tensor of a scalar field ψ with potential V (ψ), i.e.,

Tαβ ≡ ∂αψ∂βψ −
1

2
gαβ∂λψ∂

λψ − gαβV (ψ). (1.3)

The Einstein tensor satisfies the contracted Bianchi identities

∇αSαβ ≡ 0. (1.4)

The field ψ is supposed to satisfy the semi linear wave equation

∇α∂αψ − V ′(ψ) = 0, V ′(ψ) :=
dV (ψ)

dψ
. (1.5)

The tensor T is then divergence free

∇αTαβ = 0. (1.6)

As a consequence of condition (1.6), equations (1.2) are compatible.

The Cauchy problem for the Einstein equations, determination of an Einsteinian spacetime

from initial data on a spacelike n dimensional manifold, is a geometric analysis problem. Its

solution does not exist for arbitrary initial data, and is not unique from the point of view of

analysis due to the invariance of the equations under diffeomorphisms. The geometric initial

data are a triple (M, ḡ,K) with M an n dimensional manifold, which we suppose to be smooth,

ḡ a Riemannian metric on M , and K a symmetric 2-tensor on M . The Cauchy data for the

scalar field are two functions ψ̄ and π̄. An n+ 1 dimensional spacetime (V, g) together with a

scalar function ψ on V is called an Einstein scalar development of these initial data if M can be

embedded in V, so that g induces on M the metric ḡ and K can be identified with the extrinsic

curvature of M as submanifold of (V, g), while ψ̄ is the value of ψ on M, and π̄ is the value on

M of the derivative of ψ in the direction of the unit normal to M in (V, g).

In Sections 1 to 5 of this article we use the conformal method to obtain an elliptic system for

the constraints satisfied by the initial data of an Einstein-scalar field system. In the following

sections we prove some existence and uniqueness theorems for their solution in the case where

(M, ḡ) is asymptotically Euclidean, under low regularity hypothesis.

The cases of compact M and of (M, ḡ) asymptotically hyperbolic will be treated elsewhere.

2 Constraints for the Einstein-Scalar Field Equations

The constraint equations are a consequence of the Gauss Codazzi identities satisfied by the

Ricci tensor of any pseudo Riemannian manifold.

It is convenient to suppose that V = M × R and to choose on V a moving frame θα,

α = 0, 1, · · · , n, called a Cauchy adapted frame as long as θ0 annihilates vectors tangent to

submanifolds M × {t}. The space time metric is then decomposed as follows

g ≡ −N2(θ0)2 + gijθ
iθj with θ0 ≡ dt, θi ≡ dxi + βidt, i = 1, · · · , n. (2.1)

The function N is called the lapse and the time dependent spatial vector β the shift of the chosen

representation of the spacetime metric. In this frame the unit normal n to a submanifold M×{t}
has components

n0 = N−1, n0 = −N, ni = ni = 0. (2.2)
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The derivative of the function ψ in the direction of n is

π ≡ N−1∂0ψ, (2.3)

with ∂0 the Pfaff derivative with respect to the 1-form θ0 in the frame θα, i.e.

∂0 ≡
∂

∂t
− βi∂i, ∂i ≡

∂

∂xi
. (2.4)

In a Cauchy adapted frame the constraints read as the following equations, where we overbar

values induced on M by spacetime quantities, and we set

τ ≡ trḡK := ḡijKij , |K|2ḡ := ḡihḡjkKijKhk. (2.5)

• Hamiltonian constraint:

R(ḡ)− |K|2ḡ + τ2 = 2ρ ≡ 2N
−2
T 00. (2.6)

• Momentum constraint:

∇iKij − ḡij∂iτ = Jj ≡ −N−1
T
j

0. (2.7)

In the case under study, where a source is a scalar field ψ, we find that

2N
−2
T 00 = π̄2 + |Dψ̄|2ḡ + 2V (ψ̄),

−N−1
T
i

0 = −π̄ḡij∂jψ̄.

3 Conformal Formulation
3.1 Hamiltonian constraint

In order to turn the Hamiltonian constraint into a semilinear elliptic equation to be solved

for a scalar function, one considers the metric ḡ as determined only up to a conformal factor.

One sets for n > 2,

ḡ = ϕ4/(n−2)γ, i.e. ḡij = ϕ4/(n−2)γij (3.1)

with γ a given Riemannian metric on M . This particular conformal weight turns into a linear

operator the differential operator on ϕ appearing in (3.2) below.

The scalar curvatures R(ḡ) and R(γ) of the conformal metrics ḡ and γ are linked by the

formula, where ∆γ is the Laplace operator in the metric γ,

R(ḡ) ≡ ϕ−(n+2)/(n−2)
(
ϕR(γ)− 4(n− 1)

n− 2
∆γϕ

)
. (3.2)

The Hamiltonian constraint becomes, when γ and K are known, a semi linear elliptic equation

for ϕ with a non linearity of a fairly simple type:

∆γϕ− knR(γ)ϕ+ kn(|K|2ḡ − τ2 + 2ρ)ϕ(n+2)/(n−2) = 0 (3.3)

with

kn =
n− 2

4(n− 1)
. (3.4)
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3.2 Momentum constraint

We can express the momentum constraint in terms of γ, K, ρ, J and ϕ by using the relations

between the connections of two conformally related metrics.

Lemma 3.1 On an n dimensional manifold, if ḡ = ϕ4/(n−2)γ, and if the covariant deriva-

tives in ḡ and γ are written respectively as ∇ and D, then the divergences in the metric ḡ and

γ of an arbitrary contravariant 2-tensor P ij are linked by the identity

∇iP ij ≡ ϕ−2(n+2)/(n−2)Di{ϕ2(n+2)/(n−2)P ij} − 2

n− 2
ϕ−1γij∂iϕ trγP. (3.5)

Proof The proof follows from a simple computation using the identity which links the

coefficients of the connections Γ of ḡ and C of γ:

Γ
i

jh = Cijh +
2

n− 2
ϕ−1{δij∂hϕ+ δih∂jϕ− γikγjh∂kϕ}. (3.6)

One sees from the identity (3.5) that it is convenient to split the unknown K into a weighted

traceless part and its trace, namely we set

Kij = ϕ−2(n+2)/(n−2)K̃ij +
1

n
ḡijτ. (3.7)

Here K̃ij is a symmetric traceless two tensor, in the sense that

trK̃ ≡ ḡijK̃ij = γijK̃
ij = 0, (3.8)

while τ is the trace.

The momentum constraint (2.7) then becomes

DiK̃
ij =

n− 1

n
ϕ2n/(n−2)γij∂iτ + ϕ2(n+2)/(n−2)Jj . (3.9)

It follows from an elementary computation that

|K|2ḡ ≡ ḡihḡjkKijKhk = ϕ−(3n−2)/(n−2)|K̃|2γ +
1

n
τ with |K̃|2γ ≡ γihγjkK̃ijK̃hk. (3.10)

The Hamiltonian constraint therefore reads

∆γϕ− knR(γ)ϕ+ knϕ
−(3n−2)/(n−2)|K̃|2γ −

n− 2

4n
ϕ(n+2)/(n−2)τ2

= − n− 2

2(n− 1)
ρϕ(n+2)/(n−2). (3.11)

If γ, K̃, τ and ρ are specified, this is a semilinear elliptic equation for ϕ, called a Lichnerowicz

equation2.

2This equation was derived by Lichnerowicz for n = 3 (see [?]). In 1972 York [?] introduced the scaling of
the sources, and in 1987 Choquet-Bruhat extended the analysis to general n. In view of this history we refer to
(3.11) as the Lichnerowicz equation.
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4 Scaling of π̄
We denote by an overbar the values induced on M by spacetime quantities. The initial data

of the scalar field ψ is the value ψ̄ induced by ψ on M. It is independent of the choice of the

conformal metric γ, but there is an ambiguity for the data of the initial data for π, because π

depends on the lapse N : it holds that π̄ = N
−1
∂0ψ. We associate to the unphysical metric γ

an unphysical lapse Ñ , such that N and Ñ have the same associated densities respectively for

ḡ and γ, that is,

N(Det ḡ)−
1
2 = Ñ(Det γ)−

1
2 , (4.1)

i.e.

N = ϕ2n/(n−2)Ñ , (4.2)

and we suppose that the given initial data is

π̃ = Ñ−1∂0ψ = ϕ2n/(n−2)N
−1
∂0ψ = ϕ2n/(n−2)π̄.

4.1 Hamiltonian constraintThe energy density on M of a scalar field ψ with potential V (ψ), for an observer at rest in

the physical metric ḡ reads as follows in terms of the given data:

ρ =
1

2
(ϕ−4n/(n−2)|π̃|2 + ϕ−4/(n−2)γij∂iψ̄∂jψ̄) + V (ψ̄). (4.3)

We see that the term |π̃|2 adds in the Hamiltonian constraint to |K̃|2γ , while the term V (ψ̄)

remains unscaled by a power of ϕ. The ∂ψ term adds a positive contribution to the ϕ term,

adding to −R(γ). The Hamiltonian constraint now reads

H ≡ ∆γϕ− f(ϕ) = 0 (4.4)

with

f(ϕ) ≡ rϕ− aϕ−(3n−2)/(n−2) + bϕ(n+2)/(n−2),

where we have again set kn = n−2
4(n−1) and where

r ≡ kn[R(γ)− |Dψ̄|2γ ], a ≡ kn(|K̃|2γ + |π̃|2), b ≡ n− 2

4n
τ2 − n− 2

(n− 1)
V (ψ̄). (4.5)

We observe that a ≥ 0, while b ≤ 0 if V (ψ̄) ≥ 0 and τ = 0 (maximal slicing).

We call the equation (4.4) the conformally formulated Hamiltonian constraint, or the Lich-

nerowicz equation for the Einstein-scalar field theory.

4.2 Momentum constraintThe expression of the scalar field momentum density in terms of the new data is

J i = −ḡij(∂jψ̄)π̄ = −ϕ−2(n+2)/(n−2)γij(∂jψ̄)π̃. (4.6)

The momentum constraint now reads

Mj ≡ DiK̃
ij − F j = 0 (4.7)

with

F j ≡ n− 1

n
ϕ2n/(n−2)γij∂iτ − γij∂jψ̄π̃.
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We call this equation the conformally formulated momentum constraint.

We have proved the following theorem.

Theorem 4.1 The conformally formulated momentum constraint of the Einstein-scalar

field system (4.7) is a linear system for K̃ when γ, τ, ψ̄ and π̃ are given and the function ϕ is

known. It does not contain ϕ if τ is a constant.

4.3 Conformal covariance of the constraint equationsIt follows from the analysis above that if (ϕ, K̃) satisfies the conformally formulated con-

straints (3.9, 4.6, 3.11), for a specified choice of the free data (γ, τ, ψ̃, π̃), then

ḡij = ϕ4/(n−2)γij , Kij = ϕ−2(n+2)/(n−2)K̃ij +
1

n
ḡijτ, ψ̄, π̄ = ϕ2n/(n−2)π̃ (4.8)

is a solution of the original Einstein-scalar field constraints.

The following conformal covariance result is an immediate corollary.

Theorem 4.2 Let (ϕ, K̃) be a solution of the conformally formulated constraints in the

metric γ with data τ, ψ̄ and π̃. Then (ϕ′ = θ−1ϕ, K̃ ′ ≡ θ−2(n+2)/(n−2)K̃) is a solution of the

conformally formulated constraints in the metric γ′ = θ4/(n−2)γ with data τ ′ = τ, ψ̄ = ψ̄′,

π̃′ = θ−2n/(n−2)π̃.

5 Solution of the Conformal Momentum Constraint
The general solution of a non homogeneous linear system is obtained by adding a particular

solution to the general solution of the associated linear homogeneous system, which, in the case

of (3.9), is the following:

DjK̃
ij = 0, γijK̃

ij = 0. (5.1)

Symmetric 2-tensors satisfying (5.1) are called TT tensors (transverse, traceless). As a conse-

quence of Lemma 3.1 the space of TT tensors is the same for two conformal metrics.

We may obtain both the particular solution to (3.9) and the general solution to (5.1) by

essentially the same ansatz. One can look for the particular solution of (4.7) as the conformal

Lie derivative of a vector field Z, an element of the formal L2 dual of the space of TT tensors

defined by

(Lγ, confZ)ij := DiZj +DjZi −
2

n
γijDhZ

h. (5.2)

We look for K̃TT as the sum of the conformal Lie derivative of a vector Y and an arbitrary

traceless symmetric 2 tensor U. Then, setting X := Z + Y it holds that

K̃ij = (Lγ, confX)ij − U ij , (5.3)

with X a vector field solution of the linear system

(∆γ, confX)j := Di(Lγ, confZ)ij = DiU
ij +

n− 1

n
ϕ2n/(n−2)γij∂iτ − γij∂jψ̄π̃. (5.4)

The arbitrary data in the traceless tensor K̃ is the symmetric traceless tensor U .

It has been noted by York [?] that, though the formulation (4.4), (4.7) is invariant in the

sense of Theorem 4.2, the splitting of the solution K̃ into a given traceless tensor U and the
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conformal Lie derivative of an unknown vector X cannot be made conformally invariant. To

try to obtain K̃ ′ ≡ θ−2(n+2)/(n−2)K̃ given γ′=θ4/(n−2)γ, we can impose the relation between

the given traceless tensors U and U ′ :

U ′ij ≡ θ−2(n+2)/(n−2)U ij ; (5.5)

however for an arbitrary vector X one has

(Lγ′, confX)ij ≡ θ−4/(n−2)(Lγ, confX)ij .

There is no scaling of X by a power of ϕ that leads to a vector X ′ and results in the desired

scaling of its conformal Lie derivative. York has proposed to remedy this defect by what he

called “the conformal thin sandwich formulation”. Inspired by his work, and by the expression

Kij ≡ N−1∂̄0g
ij , we replace the search for a particular solution as a conformal Lie derivative

by the following. For Ñ is a given scalar, we define

L̃γ, confX := Ñ−1Lγ, confX, (5.6)

(∆̃γ, confX)j := Di(L̃γ, confX)ij . (5.7)

The mathematical properties of ∆γ, conf and ∆̃γ, conf are essentially the same.

We choose X to be a solution of the equation

(∆̃γ, confX)j = DiU
ij +

n− 1

n
ϕ2n/(n−2)γij∂iτ − γij∂jψ̄π̃ (5.8)

(instead of (5.4)). The tensor K̃ solution of (3.9) is now, instead of (5.3),

K̃ij ≡ (L̃γ, confX)ij − U ij . (5.9)

Noting that if we conformally change the metric via γ′ = θ4/(n−2)γ and the lapse via Ñ =

θ−2n/(n−2)Ñ ′ then

(L̃γ′, confX)ij = θ−2(n+2)/(n−2)(L̃γ, confX)ij , (5.10)

we find that K has the required scaling.

We are thus led to the following corollary to Theorem 4.2, under otherwise the same hy-

pothesis.

Corollary 5.1 If the tensor K̃, a solution of the momentum constraint conformally for-

mulated in a metric γ, is obtained as the sum of a given traceless tensor U and the product by

a given function Ñ of a conformal Lie derivative of a vector X :

K̃ij ≡ (L̃γ, confX)ij − U ij , (5.11)

then the tensor

K̃ ′ij ≡ (L̃γ′, confX)ij − U ′ij , U ′ij = θ−2(n+2)/(n−2)U ij , Ñ ′ = θ2n/(n−2)Ñ (5.12)

is a solution of the momentum constraint conformally formulated in the metric γ′.

6 Asymptotically Euclidean Manifolds
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6.1 DefinitionsIn the following sections we will study the solution of the conformally formulated constraints

(4.4) and (4.7) on asymptotically Euclidean manifolds of dimension n ≥ 3.

The Euclidean space En is the manifold Rn endowed with the Euclidean metric, which is∑
(dxi)2 in canonical coordinates.

A C∞, n-dimensional, Riemannian manifold (M, e) is called “Euclidean at infinity” if there

exists a compact subset S of M such that M − S is the disjoint union of a finite number of

open sets Ui, with each (Ui, e) being isometric to the exterior of a ball in Rn. Each open set

Ui ⊂M is sometimes called an “end” of M . If M is diffeomorphic to Rn, it has only one end;

and we can then take for e the Euclidean metric. Unless otherwise specified our manifolds are

without boundary; hence the manifold (M, e) is complete3.

A Riemannian manifold (M,γ) is called asymptotically Euclidean if there exists a Rie-

mannian manifold (M, e), Euclidean at infinity, and if γ tends to e at infinity in each end.

Consider one end U and the canonical coordinates xi in the space Rn which contains the ex-

terior of the ball to which U is diffeomorphic. Set r ≡ {
∑

(xi)2}1/2. In the coordinates xi the

metric e has components eij = δij . The metric γ tends to e at infinity if in these coordinates

γij − δij tends to zero. A possible way of making this statement mathematically precise is to

use the Nirenberg-Walker weighted Sobolev spaces. One can also use in these elliptic constrain-

t problems weighted Hölder spaces4, but they are not well adapted to the related evolution

questions.

A weighted Sobolev space W p
s,δ, with 1 ≤ p ≤ ∞, with s a positive or zero integer, δ a

real number, for tensors of some given type on the manifold (M, e) Euclidean at infinity is the

space of tensors of that type which admit generalized e-covariant derivatives of order up to s

and for which the following norm is finite:

‖u‖Wp
s,δ

=
{ ∑

0≤m≤s

∫
V

| ∂mu |p (1 + d2)
1
2p(δ+m)dµ

}1/p

. (6.1)

Here ∂, | | and dµ denote the covariant derivative, norm and volume element corresponding to

the metric e, and d is the distance in the metric e from a point of M to a fixed point. If (M, e)

is an Euclidean space one can choose d = r, the Euclidean distance to the origin. The space D
of C∞ tensors with compact support is dense in W p

s,δ, regardless of what s and δ are, so long

as p <∞.
If s and δ are large enough, a function (or tensor field) in W p

s,δ is continuous and tends to

zero at infinity. Specifically if we define Cmβ to be the Banach space of weighted Cm functions

(or tensor fields) on (M, e) with norm given by

‖u‖Cmβ ≡
∑

0≤`≤m

sup
M

(|∂`u|(1 + d2)
1
2 (β+`)),

then the following inequality holds5, with C a number depending only on (M, e),

‖u‖Cmβ ≤ C‖u‖Wp
s,δ
, if s > m+

n

p
, δ > β − n

p
. (6.2)

3See Chrusciel and Delay [?], and Maxwell [?, ?].
4See [?].
5For proofs of this embedding and the multiplication rule (6.3), see [?], or [?, II, p. 396].



The Einstein-Scalar Field Constraints 39

We see that u ∈ W p
s,δ implies that u is continuous and tends to zero at infinity if s > n

p and

δ > −np .
Let (M, e) be a manifold which is Euclidean at infinity. The Riemannian manifold (M,γ)

is said to be (p, σ, ρ) asymptotically Euclidean if γ− e ∈W p
σ,ρ. If γ− e ∈W p

σ,ρ with σ > n
p , and

ρ > −np , then γ is C0 and γ − e tends to zero at infinity. The set of Riemannian metrics (i.e.

positive definite symmetric 2-tensors) such that γ − e ∈W p
σ,ρ is denoted by Mp

σ,ρ.

We recall the multiplication lemma

W p
s1,δ1

×W p
s2,δ2

⊂W p
s,δ, if s < s1 + s2 −

n

p
, δ < δ1 + δ2 +

1

p
, (6.3)

and the interpolation6 inequality: for any ε > 0, there is a C(ε) such that, for all u ∈ W p
m,δ,

1 ≤ p ≤ q ≤ ∞, and j < m, one has

‖∂ju‖
W
q
0,δ+n

p
−n
q

+j

≤ C{ε‖u‖Wp
m,δ

+ Cε‖u‖Wp
0,δ
}. (6.4)

6.2 Linear elliptic systems

We state7 the following existence theorem for solutions of linear elliptic PDE’s.

Theorem 6.1 Hypotheses:

Let (M, e) be a smooth Riemannian manifold Euclidean at infinity. Let

Lu ≡ a2∂
2u+ a1∂u+ a0u (6.5)

be a second order linear elliptic operator acting on tensor fields on (M, e), which in terms of

components uA, A = 1, · · · , p, of the tensor u takes the form

(Lu)A ≡ aij,A2,B ∂
2
iju

B + ai,A1,B∂iu
B + aA0,Bu

B .

Let the principal symbol aij2 ξiξj of L be an isomorphism from Rp onto Rp for ξ 6= 0. Suppose

that the coefficients of L satisfy the following hypotheses

a2 −A ∈W p
2,δ, a1 ∈W p

1,δ+1, a0 ∈W p
0,δ+2, (6.6)

where A∂2 is an elliptic operator with C∞ coefficients, constant in each end of (M, e) and

p >
n

2
, −n

p
< δ < −n

p
+ n− 2. (6.7)

Conclusions:

(1) The operator L is a continuous mapping from W p
2,δ into W p

0,δ+2.

(2a) There exists a number CL > 0, depending only on A and on the norms of a2 − A,
a1, a0, and a number δ′ > δ such that the following inequality holds for all u ∈W p

2,δ:

‖u‖Wp
2,δ
≤ CL{‖Lu‖Wp

0,δ+2
+ ‖u‖Wp

1,δ′
}. (6.8)

6See the section entitled “Second order elliptic systems on Riemannian manifolds” in [?].
7The theorem relies on previous results of Nirenberg and Walker [?], Cantor [?], Choquet-Bruhat and

Christodoulou [?], and the interpolation lemma to lower the regularity required of coefficients (see [?]).
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(2b) If in addition L is injective there exists a number C such that the following inequality

holds for all u ∈W p
2,δ:

‖u‖Wp
2,δ
≤ C‖Lu‖Wp

0,δ+2
. (6.9)

(2c) The operator L has finite dimensional kernel and closed range.

(3a) If the adjoint operator L∗ is injective on W p
2,δ, then L is surjective from W p

2,δ onto

W p
0,δ+2.

(3b) If L and L∗ are both injective then they are isomorphisms from W p
2,δ onto W p

0,δ+2.

Corollary 6.2 If, in addition to the previous hypothesis (including injectivity) it holds that

a2 −A ∈W p
s+2,δ, a1 ∈W p

s+1,δ+1, a0 ∈W p
s,δ+2, (6.10)

then L is an isomorphism from W p
s+2,δ onto W p

s,δ+2.

We recall also the following lemma (see [?, Lemma 5.2]).

Lemma 6.3 Suppose that u ∈W p
2,δ is a solution of the equation

Lu ≡ a2∂
2u+ a1∂u+ a0u = f, (6.11)

where L satisfies the hypotheses of the above theorem and where f ∈ W p

0,δ̃+2
, δ ≤ δ̃. Then u is

in fact in W p

2,δ̃
, so long as δ̃ < n− 2− n

p .

6.3 The Poisson operator, ∆γ − a

Theorem 6.4 Let (M,γ) be a Mp
2,δ manifold 8, p > n

2 , δ > −
n
p . Let a ∈ W p

0,δ+2 be given.

The Poisson operator 4γ − a is an isomorphism from W p
2,δ onto W p

0,δ+2 if∫
M

{|∂u|2 + au2}µγ > 0 (6.12)

for any u ∈ W p

2,δ̃
, with δ̃ some number such that n − 2 − n

p > δ̃ > −1 + n
2 −

n
p (δ̃ = −1 if

p = 2), with u 6≡ 0.

Proof The operator 4γ−a is self adjoint. It is an isomorphism W p
2,δ →W p

0,δ+2 if injective.

By Lemma 6.3 it is sufficient to prove the injectivity on W p

2,δ̃
for some δ̃ such that δ̃ < n−2− n

p .

The theorem is obtained by integration on M of u(4γu−au), trivially in the case p = 2, δ̃ = −1

(compatible with p > n
2 if and only if n = 3); and by using either Sobolev embeddings or the

Holder inequality in the case p 6= 2 and δ̃ > −1 + n
2 −

n
p .

Theorem 6.5 Let u satisfy the equation

∆γu− au = −f (6.13)

with γ ∈ Mp
2,δ, δ > −

n
p and p > n

2 . Suppose a ∈ W p
0,δ+2, u − c ∈ W p

2,δ̃
, where c is a given

number, −1 + n
2 −

n
p < δ̃ (δ̃ ≥ −1 if p = 2). Suppose a ≥ 0. Then u ≥ 0 on M if f ≥ 0 and

c ≥ 0. If f ≤ 0 and c ≤ 0, then u ≤ 0 on M. The lower bound of δ̃ can be weakened to δ > −np
if c = 0 and f ∈W p

2,δ̃
, δ̃ > −np + n

2 − 1 (δ̃ = −1 if p = 2).

8The hypothesis p > n/2 is stronger than necessary but simplifies the proof, and is needed later in our
treatment of non linear equations.
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Proof The integration on M of v(4γu − au), and the choice v = u+ = Sup(u, 0), gives

u+ = constant, therefore u+ ≡ 0 since u+ tends to zero at infinity.

7 Solution of the Momentum Constraint
Given the Riemannian metric γ and the scalar field Ñ the conformally formulated momen-

tum constraint reads

Dj(L̃X)ij ≡ (∆̃γ, confX)i = F i(ϕ) (7.1)

with

F i(ϕ) ≡ DjU
ij +

n− 1

n
ϕ2n/(n−2)γij∂jτ + γij(∂jψ̄)π̃, (7.2)

where τ is a given function on M and U is a given symmetric traceless 2-tensor field. The

sources ψ̄ and π̃ are given. We suppose momentarily that ϕ is also a known function. In fact

it disappears from the equation if ∂τ ≡ 0.

Lemma 7.1 Let (M,γ) be a W p
2,δ asymptotically Euclidean manifold, and let Ñ = 1 + ν,

ν ∈W p
2,δ, Ñ > 0, be given. Suppose that p > n

2 , δ > −
n
p . Then

(1) The operator ∆̃γ, conf is elliptic.

(2) Its kernel in Wp
2,δ is the space of Wp

2,δ conformal Killing vector fields of the metric γ.

Proof It holds that

(∆̃γ, confY )j ≡ Ñ−1Di

[
DiY j +DjY i − 2

n
γijDkY

k
]
− Ñ−2(Lγ, confY )ijDiÑ . (7.3)

Using the Ricci identity we find that the principal part is

Ñ−1
[
(∆γY )j +

(
1− 2

n

)
DjDiY

i
]
. (7.4)

The principal symbol is easily checked to be an isomorphism of Rn, for any n ≥ 2.

(2) We prove the second part of this lemma using integration by parts, using Lemma 6.3.

We can now prove the following theorem.

Theorem 7.2 Let (M,γ) be a Mp
2,δ asymptotically Euclidean manifold, with p > n

2 , and

δ > −np . Let ψ̄ ∈ W p
2,δ and U , τ, π̃ ∈ W p

1,δ+1 be given. Suppose also that ϕ is known, with

ϕ > 0, and (1−ϕ) ∈W p
2,δ. Then the momentum constraint (4.7) has one and only one solution

X ∈W p
2,δ if, in addition, δ < n− 2− n

p .

If ∂τ ≡ 0, the condition on ϕ is irrelevant.

Corollary 7.3 If in addition γ ∈Mp
2+s,δ, ψ̄ ∈W

p
2+s,δ and U, τ, π̃ ∈W p

1+s,δ+1 and (1−ϕ) ∈
W p
s+2,δ, then the solution X belongs to W p

s+2,δ.

Proof The given hypothesis and the Sobolev embedding and multiplication properties

imply that the coefficients of the operator ∆̃γ, conf satisfy the hypotheses of Corollary 6.2 and

that F (ϕ) ∈ W p
0,δ+2. The operator ∆̃γ,conf is self adjoint, and its kernel in W p

2,δ is empty,

because there are no such conformal Killing fields on (M,γ).
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8 Solution of the Lichnerowicz Equation
We consider (4.4) (the Lichnerowicz equation)

H(x,X, ϕ) ≡ ∆γϕ− f(x, ϕ) = 0, (8.1)

where

f(x, ϕ) ≡ rϕ− aϕ−(3n−2)/(n−2) + bϕ(n+2)/(n−2),

and

r ≡ kn(R(γ)− |Dψ̄|2γ), a ≡ kn(|K̃|2γ + |π̃|2γ) ≥ 0, b ≡ n− 2

4n
τ2 − n− 2

n− 1
V (ψ̄). (8.2)

We first prove the following lemma.

Lemma 8.1 If (M,γ) is an Mp
2,δ manifold with p > n

2 , δ > −
n
p and ψ̄ ∈ W p

2,δ, then

r(γ, ψ̄) ∈W p
0,δ+2.

Proof R(γ) is a sum of terms of the form γ∂2γ and γ∂γ∂γ with γ− e ∈W p
2,δ, ∂γ ∈W

p
1,δ+1

and ∂2γ ∈W p
σ−2,δ+2. Under the hypotheses made on p and δ, the Sobolev embedding theorem

shows that γ − e is continuous and bounded on M ; the multiplication theorem completes the

proof, also for |Dψ̄|2γ .

8.1 General existence theorem

The following theorem extends to asymptotically Euclidean manifolds a theorem which has

been proved for data on compact9 manifolds. It can be proved by similar methods.

Theorem 8.2 Let (M,γ) be in Mp
2,δ, δ > −

n
p and p > n

2 . Suppose that a, b, r ∈W p
0,δ+2, and

−1 + n
2 −

n
p < δ (if p = 2 then δ = −1 is admissible). Suppose the Lichnerowicz equation (4.4)

admits a subsolution ϕ− and a supersolution ϕ+, which are continuous and bounded functions

with ∂ϕ+, ∂ϕ− ∈W p
1,δ+1, such that

4γϕ− ≥ f( · , ϕ−), 4γϕ+ ≤ f( · , ϕ+), (8.3)

lim
∞
ϕ− ≤ 1, lim

∞
ϕ+ ≥ 1 (8.4)

and for which there exist numbers ` and m, with ` > 0 if a 6≡ 0, such that on M,

` ≤ ϕ− ≤ ϕ+ ≤ m. (8.5)

Then the equation admits a solution ϕ such that

ϕ− ≤ ϕ ≤ ϕ+ , 1− ϕ ∈W p
2,δ (8.6)

for

δ < n− 2− n

p
. (8.7)

If moreover γ ∈Mp
2+s,δ and a, b ∈W p

s,δ+2, then the solution is such that 1− ϕ ∈W p
s+2,δ.

Note that constant sub and super solutions are not natural in the asymptotically Euclidean

case. In our application of this theorem to the Lichnerowicz equation, we introduce some

intermediate steps to obtain non constant sub and supersolutions.

9Results of this sort on compact manifolds were proven by Choquet-Bruhat and Leray [?], using Leray-
Schauder degree techniques. In later work (see [?]), sub and super solution techniques have been used.
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8.2 Uniqueness theoremThe uniqueness of a solution ϕ of the Lichnerowicz equation follows from monotonicity if

we assume that r ≥ 0, a ≥ 0, and b ≥ 0. A proof of uniqueness can be given under the same

hypothesis on a and b, but with no restriction on the sign of r.

Theorem 8.3 The Lichnerowicz equation (4.4) on (M,γ), with γ ∈ Mp
2,δ, p >

n
2 , δ > −

n
p

has at most one positive solution ϕ, ϕ− 1 ∈W p
2,δ, if a, b, r ∈W p

0,δ+2, and if a ≥ 0, and b ≥ 0.

Proof Suppose it admits two solutions ϕ1 > 0 and ϕ2 > 0. Using the identity (3.2) we find

that, with γi := ϕ
4/(n−2)
i γ, and ri := kn(R(γi)− |Dψ̄|2γi), i = 1, 2,

∆γ2(ϕ1ϕ
−1
2 )− (ϕ1ϕ

−1
2 )r2 ≡ −(ϕ1ϕ

−1
2 )(n+2)/(n−2)r1. (8.8)

Since ϕ1 is a solution of (8.1), we have

r1 ≡ −ϕ−(n+2)/(n−2)
1 {∆γϕ1 − ϕ1r(γ, ψ̄)}

= ϕ
−(n+2)/(n−2)
1 {aϕ(−3n+2)/(n−2)

1 − ϕ(n+2)/(n−2)b}

and an analogous equation for r2. Inserting these results in the previous equation gives an

equation of the form

∆γ2(ϕ1ϕ
−1
2 − 1)− λ{(ϕ1ϕ

−1
2 − 1} = 0 (8.9)

with

λ ≡ aϕ(−3n+2)/(n−2)
1 ϕ

−(n+2)/(n−2)
2

(ϕ1ϕ
−1
2 )4(n−1)/(n−2) − 1

ϕ1ϕ
−1
2 − 1

+ bϕ1ϕ
−1
2

(ϕ1ϕ
−1
2 )4/(n−2) − 1

ϕ1ϕ
−1
2 − 1

. (8.10)

So long as ϕ1 and ϕ2 are continuous and positive functions on M, the fractions with denominator

ϕ1ϕ
−1
2 − 1 are continuous and positive functions as well, since the powers of ϕ1ϕ

−1
2 appearing

in their numerators are greater than 1. Therefore λ ∈W p
0,δ+2. Noting that by definition a ≥ 0,

it follows that if τ and V (ψ̄) are such that b ≥ 0, then λ ≥ 0. Hence using ϕ1ϕ
−1
2 − 1 ∈ W p

2,δ,

and the injectivity of ∆γ − λ on W p
2,δ, we have ϕ1ϕ

−1
2 − 1 ≡ 0.

8.3 Generalized Brill-Cantor theoremFor compact smooth Riemannian manifolds the solutions of the Lichnerowicz equations have

been classified by Isenberg [?] through the use of the Yamabe theorem. The Yamabe conformal

invariant is defined by

Inf
f∈D, f 6≡0

{∫
M

{|Df |2 + knR(γ)f2}µγ/‖f‖2L2n/(n−2)

}
.

The Yamabe theorem, proved for smooth metrics in an increasing number of cases by Trudinger,

Aubin and Schoen, says that any compact Riemannian manifold is conformal to a manifold with

constant scalar curvature, +1,−1, or 0 according to the sign of the Yamabe invariant. It is

easy to see that this theorem extends to W p
2 metrics, p > n

2 , in the negative or zero case. In

the positive case only a weaker form (proved by Yamabe himself in the smooth case) is proved

to hold, namely that the W p
2 manifold is conformal to a manifold with strictly positive scalar

curvature. This property is used in [?] and [?]. Maxwell in particular establishes the classifica-

tion of solutions of the Lichnerowicz equation using only the sign of the Yamabe invariant and
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not the full Yamabe theorem. The definition of the Yamabe conformal invariant extends to

non compact manifolds (see [?])10 but there is no theorem for asymptotically Euclidean mani-

folds analogous to the Yamabe theorem, and the denomination of “positive Yamabe class” for

asymptotically Euclidean manifolds with a positive Yamabe invariant is somewhat misleading,

as shown by the following theorem, proved11 by Brill and Cantor [?], and generalized in the

presence of a scalar field as follows.

Theorem 8.4 Let (M,γ) be a (p, 2, δ) asymptotically Euclidean manifold with p > n
2 ,

δ > −np , and let ψ̄ ∈ W p
2,δ be a scalar field on M. There exists on M a (p, 2, δ) asymptotically

Euclidean metric γ′ conformal to γ such that r(γ′, ψ̄) = 0 if and only if (M,γ, ψ̄) satisfy the

following inequality12 ∫
M

{|Df |2 + r(γ, ψ̄)f2}µγ > 0 (8.11)

for every function f on M with f ∈W p

2,δ̃
, δ̃ > −np + n

2 − 1 (δ̃ ≥ −1 if p = 2), f 6≡ 0.

Proof (M,γ) is conformal to (M,γ′) ∈Mp
2,δ with r(γ′, ψ̄) = 0 if and only if there exists a

function ϕ > 0, such that γ′ = ϕ4/(n−2)γ ∈Mp
2,δ and

4γϕ− r(γ, ψ̄)ϕ = 0. (8.12)

Equivalently, setting ϕ ≡ 1 + u, (8.12) reads

∆γu− r(γ, ψ̄)u = r(γ, ψ̄). (8.13)

(1) Suppose that the condition (8.11) is satisfied. The equation (8.13) is linear and elliptic,

with ∆γ − r(γ, ψ̄) an injective operator on W p
2,δ, and satisfies the hypotheses of Theorem 8.2;

therefore it admits a solution u ∈ W p
2,δ ⊂ C0

α. It remains to prove that ϕ ≡ 1 + u is positive,

then ϕ4/(n−2)γ ∈ Mp
2,δ. One cannot use directly the maximum principle because r(γ, ψ̄) is

not necessarily positive. Inspired by Brill and Cantor (see also [?]) we consider the family of

equations

4γϕ− kr(γ, ψ̄)ϕ = 0 i.e. 4γu− kr(γ, ψ̄)u = kr(γ, ψ̄) (8.14)

with k ∈ [0, 1] a number. Each of these equations satisfy the condition (8.11) hence admits

a solution uk ∈ W p
2,δ ⊂ C0

α, and the C0
α norm of uk depends continuously on k. The set

S := {uk ∈ C0
α, uk > −1} is open in C0

α and non empty because for k = 0 it holds that u0 = 0

(i.e. ϕ0 = 1). To show that it is closed, suppose that uk′ belongs to its boundary ∂S. Then

uk′ ≥ −1, ϕk′ ≥ 0. Suppose that ϕk′ , solution of the elliptic equation (8.12), vanishes at a

point of M. Then by the weak Harnack inequality (see [?]) there is a ball BR of center x and a

number C such that

‖ϕk′‖Lq(B2R) ≤ C Inf
BR

ϕk′ = 0, (8.15)

10The definition used by Brill-Cantor in their theorem, carried over in [?],∫
M
{|Df |2 + knR(γ)f2}µγ/‖f‖2L2n/(n−2) > 0, f ∈ D, f 6≡ 0

was incorrect, because it did not imply this inequality for all f ∈ W p
2,δ, since the limit of positive functions is

not necessarily positive.
11Under more restrictive hypothesis on regularity, and in the case n = 3.
12This condition, already used to prove injectivity, is implied by the positivity of the Yamabe invariant,

because D is dense in W p
2,δ.



The Einstein-Scalar Field Constraints 45

hence ϕk′ = 0 in BR and also, by continuity, on M. This is impossible because ϕk′ tends to 1

at infinity. Hence ϕk′ > 0. The subset S of C0
α being both open and closed is all of C0

α.

(2) Conversely suppose that ϕ > 0 exists and solves the equation satisfying the hypothesis

of the theorem. Then we will show that for any f 6≡ 0, f ∈ W p
2,δ the inequality (8.11) holds.

We set θ = fϕ−1, then θ ∈W p
2,δ ⊂ C0

α. We have by elementary calculus:

|Df |2 = |Dθ|2ϕ2 + ϕDϕ.D(θ2) + θ2|Dϕ|2. (8.16)

The following integration by parts holds for the functions under consideration:∫
M

ϕDϕ.D(θ2)µγ =

∫
M

−θ2D(ϕDϕ)µγ . (8.17)

Therefore ∫
M

ϕDϕ.D(θ2)µγ =

∫
M

−θ2(ϕ4γϕ+ |Dϕ|2)µγ , (8.18)∫
M

|Df |2µγ =

∫
M

{|Dθ|2ϕ2 − θ2ϕ4γϕ}µγ . (8.19)

We have Dθ 6≡ 0 since θ ∈ C0
α tends to zero at infinity and cannot be a constant without

being identically zero, which is ruled out by the hypothesis f 6≡ 0. Hence when ϕ > 0 satisfies

the equation (8.12) the function f ∈W p
2,δ, f 6≡ 0 satisfies the inequality∫

M

{|Df |2 + r(γ, ψ̄)f2}µγ > 0. (8.20)

Remark The same sort of proof shows that, under the same hypothesis, there exists on

M a metric γ′ conformal to γ such that r(γ′, ψ̄) ≤ 0.

8.4 Existence theorems

Theorem 8.5 Let (M,γ) be a Mp
2,δ manifold with p > n

2 . Let ψ̄ be a scalar field on M

with potential V (ψ̄), such that ψ̄ ∈ W p
2,δ and V (ψ̄) ∈ W p

0,δ+2. Suppose that (8.11) is satisfied

and b ≥ 0. The Lichnerowicz equation

∆γϕ− rϕ+ aϕ−(3n−2)/(n−2) − bϕ(n+2)/(n−2) = 0, (8.21)

a, b ∈W p
0,δ+2, δ > −1 +

n

2
− n

p
, δ ≥ −1 if p = 2, (8.22)

has one and only one solution, ϕ = 1 + u, u ∈W p
2,δ, if n− 2− n

p > δ > −1 + n
2 −

n
p (extended

to δ ≥ −1 if p = 2). The solution can be obtained by iteration.

Corollary 8.6 If moreover γ ∈Mp
2+s,δ and a, b ∈W p

s,δ+2, then u ∈W p
s+2,δ.

Proof Uniqueness. This follows from the general theorem 8.3. It can also be proved

directly using the monotonicity of the non linear term.

Existence. Since it follows from Theorem 4.2 that the Lichnerowicz equation is conformally

invariant, we may, without loss of generality, conformally transform equation (8.21) to one with

a metric such that r(γ, ψ̄) = 0,

∆γϕ+ aϕ−(3n−2)/(n−2) − bϕ(n+2)/(n−2) = 0. (8.23)
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(1) We first consider equation (8.23) with b = 0:

∆γϕ+ aϕ−(3n−2)/(n−2) = 0. (8.24)

This equation admits a constant subsolution ϕ− = 1 but no finite constant supersolution.

However, it admits a non constant supersolution, namely the function ϕ+ = 1 + u+ with

u+ ∈W p
2,δ a solution of the linear equation

∆γu+ = −a; (8.25)

indeed the maximum principle shows that u+ ≥ 0, hence ϕ+ ≥ 1 and

∆γϕ+ = −a ≤ −aϕ−(3n−2)/(n−2)
+ . (8.26)

We can use the general existence theorem 8.2 to prove the existence of a solution ϕ1.

(2) We next consider the equation with a = 0:

∆γϕ− bϕ(n+2)/(n−2) = 0. (8.27)

This equation admits the subsolution ϕ− = 0 and the supersolution ϕ+ = 1. It admits therefore

a solution ϕ2, with 1 − ϕ2 ∈ W p
2,δ, and 0 ≤ ϕ2 ≤ 1. We prove that ϕ2 > 0 by an argument

similar to the one used in the proof of the Brill-Cantor theorem: We consider the family of

equations

4γϕ− kbϕ(n+2)/(n−2) = 0 (8.28)

with k ∈ [0, 1] a number. Each of these equations admits one solution ϕk = 1 + uk ≥ 0, with

uk ∈W p
2,δ ⊂ C0

α, and the C0
α norm of uk depends continuously on k. The proof continues as in

the proof of Theorem 8.4.

(3) Consider the general equation (8.23). By the above results this admits ϕ1 as a super-

solution and ϕ2 as a subsolution. Therefore the existence of a solution follows again from the

general existence theorem 8.2. The proof of the corollary also follows from this result.

The proof of the corollary follows from that of Theorem 8.2.

We now state two theorems which suppose b ≤ 0. They can be applied in particular when

the scalar field has a non negative potential V (ψ̄) and the initial manifold is maximal or has

an appropriately small mean extrinsic curvature.

These theorems can also be applied if there exists a density of matter q which is unscaled

and non negative. Such a term q adds to V (ψ̄).

We first prove a calculus lemma.

Lemma 8.7 Consider the following algebraic function of y with a > 0, r > 0 and d ≥ 0:

f(y) ≡ dyn/(n−2) − ry(n−1)/(n−2) + a. (8.29)

There are two real numbers y1 and y2, such that 0 < y1 ≤ y2 and

f(y1) ≥ 0, f(y2) ≤ 0 (8.30)

if

adn−1 <
[ (n− 1)n−1

nn

]
rn. (8.31)
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Proof Suppose d > 0. The function f starts from a > 0 for y = 0, decreases when y

increases from 0 to ym = [ (n−1)r
nd ]n−2, then increases up to infinity with y. The numbers y1 and

y2 exist with the indicated properties if f(ym) < 0; that is if the inequality (8.31) is satisfied.

This inequality always holds if d = 0: f(y) starts then from a > 0 and decreases to −∞, so we

can then verify that the numbers y1 and y2 exist.

We use this lemma to prove the following result.

Theorem 8.8 Let (M,γ) be a Mp
2,δ manifold with p > n

2 . Let a, b, r ∈W p
0,δ+2 be given on

(M,γ), with a ≥ 0, r ≥ 0, b ≤ 0 and δ > −np + n
2 − 1 (δ ≥ −1 if p = 2). The equation

4γϕ− rϕ+ aϕ−(3n−2)/(n−2) − bϕ(n+2)/(n−2) = 0 (8.32)

has a solution ϕ > 0, with 1−ϕ ∈W p
2,δ, if δ < n− 2− n

p and if the inequality (8.31) is satisfied

on M, with d = −b, and so long as

inf
x∈M

y1(x) > 0, inf
x∈M

y2(x) ≥ max
{

1, sup
x∈M

z1(x)
}
, (8.33)

where y1(x) and y2(x) are the two positive numbers which annul the algebraic function13

fx(z) ≡ −b(x)yn/(n−2) − r(x)y(n−1)/(n−2) + a(x). (8.34)

Proof The equation admits a constant subsolution ϕ− = ` > 0 and a constant supersolution

ϕ+ = m ≥ 1, ≥ `, and therefore a solution ϕ with the given properties, so long as almost every

x ∈M it holds that

fx(`4) ≥ 0, fx(m4) ≤ 0. (8.35)

The lemma, and the inequalities (8.33) insure the existence of such numbers ` and m, given by

` = min
{

1, inf
x∈M

z1(x)
}
, m = inf

x∈M
z2(x). (8.36)

The next theorem does not rely on the sub-super solution method. It supposes that r ≤ 0,

hence applies in particular to data satisfying the generalized positive Yamabe condition, after

their conformal transformation to the case r = 0. It has a simpler formulation, but it restricts

the size of the coefficients a, r and b.

Theorem 8.9 Let (M,γ) be a Mp
2,δ manifold with p > n

2 . Let a, b ∈ W p
0,δ+2 be given on

(M,γ), a ≥ 0, while b ≤ 0, r ≤ 0, δ > −np + n
2 − 1 (δ ≥ −1 if p = 2). The equation

4γϕ− rϕ+ aϕ−(3n−2)/(n−2) − bϕ(n+2)/(n−2) = 0 (8.37)

has a solution ϕ > 0 with 1− ϕ ∈W p
2,δ, if δ < n− 2− n

p and if a, b and r are small enough in

the W p
0,δ+2 norm.

Proof The equation admits the subsolution ϕ = 1. We solve it by iteration, starting from

u0 = 1− ϕ0 = 0. We set

4γu1 = −a+ b+ r ≤ 0, (8.38)

13Polynomial in the case n = 3.
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and we see that u1 exists, u1 ≥ 0, u1 ∈W p
2,δ with

‖u1‖Wp
2,δ
≤ CEM, (8.39)

where CE is a number depending only on γ, through the constant CE of the elliptic estimate,

and where we have set

M := A+B +R, A ≡ ‖a‖Wp
0,δ+2

, B ≡ ‖b‖Wp
0,δ+2

, R ≡ ||r||Wp
0,δ+2

. (8.40)

The Sobolev embedding theorem W p
2,δ ⊂ C0

α implies then the following inequality where CS is

a Sobolev constant

‖u1‖C0
α
≤ CS‖u1‖Wp

2,δ
≤ CM with C := CSCE . (8.41)

This inequality implies that

‖ϕ1‖C0 ≤ 1 +M. (8.42)

Recursively, we suppose un−1 ≥ 0 and ‖un−1‖Wp
2,δ
≤ CEM ; hence ‖un−1‖C0

α
≤ CM . The

equation defining un,

4γun = −rϕn−1 + aϕ
−(3n−2)/(n−2)
n−1 − bϕ(n+2)/(n−2)

n−1 , (8.43)

implies un ≥ 0 and also that

‖un‖Wp
2,δ
≤ CE{A+R(1 + CM) +B(1 + CM)(n+2)/(n−2)}. (8.44)

Hence ‖un‖Wp
2,δ
≤ CEM ≡ CE(A+B +R) if

A+R(1 +M) +B(1 +M)(n+2)/(n−2) ≤ A+B +R, (8.45)

that is,

RM +B[(1 +M)(n+2)/(n−2) − 1] ≤ 0. (8.46)

This inequality is satisfied if A,B,R are small enough. The sequence un is then uniformly

bounded in W p
2,δ. The proof can be completed by the usual methods of functional analysis.

9 Uncoupled System of Constraints
The conformally formulated momentum and hamiltonian constraints for the Einstein-scalar

field system decouple, in the asymptotically Euclidean case if the initial manifold M is maximal.

When the constraints decouple the theorems of the previous sections are sufficient to give

existence, non-existence or uniqueness theorems of the systems of constraints. The previously

obtained results give, for example, the following theorems under a common hypothesis on the

a priori given conformal data.

Theorem 9.1 Let (M,γ) be an Mp
2,δ manifold; ψ̄ ∈ W p

2,δ a scalar field with potential

V (ψ̄) ∈ W p
0,δ+2; π̃ ∈ W p

1,δ+1 a second scalar field, and U ∈ W p
δ+1 a symmetric 2-tensor. We

assume that p > n
2 , δ > −1 + n

2 −
n
p and δ < −2 + n− n

p (δ = −1 is admissible if p = 2). Then

the conformally formulated constraints (7.1) and (8.1) on a maximal submanifold (τ = 0) admit

a solution X, ϕ = 1 + u > 0, with X,u ∈ W p
2,δ if either the hypothesis of Theorem 8.5, or 8.8,

or 8.9 are satisfied.



The Einstein-Scalar Field Constraints 49

Proof We have already proven that under the given hypotheses the constraint (7.1) has

a unique solution, X ∈ W p
2,δ, therefore K̃ ∈ W p

1,δ+1 and a ∈ W p
0,δ+2 (Sobolev embedding

and multiplication (6.2), (6.3)). We know also (see Lemma 8.1) that r ∈ W p
0,δ+2. Therefore

the coefficients of the Lichnerowicz equation (given by equation (4.5) with τ = 0) satisfy the

hypothesis required in the quoted theorems. It has a solution ϕ > 0, ϕ−1 ∈W p
2,δ, and the pair

X,ϕ satisfies the conformally formulated constraints.

This solution is unique in the cases for which the solution of the Lichnerowicz equation is

unique.

Remark 9.2 The theorem still holds if in addition to the scalar field ψ̄ there exists unscaled

sources with zero momentum and energy density q, and we set b ≡ −n−2
n−1{V (ψ̄) + q}. This is so

because the constraint equations still decouple (assuming τ ≡ 0) when unscaled matter sources

are present if these sources have a zero momentum14.

10 Coupled System of Constraints
In this section we prove a theorem for the case in which the constraints do not decouple.

This result is in the spirit of a stability theorem. The use of the implicit function theorem is

the simplest way of proving existence of solutions of equations in the neighbourhood of a given

one.

We consider as given the Mp
2,δ manifold (M,γ) together with the scalar functions ψ̄, V (ψ̄),

π̃ and the traceless symmetric 2-tensor U , with ψ̄ ∈ W p
2,δ, V (ψ̄) ∈ W p

0,δ+2, π̃, U ∈ W p
1,δ+1.

We consider the existence of a solution ϕ and X of the constraints (4.4), (4.7) as we perturb

τ ∈W p
1,δ+1 away from zero.

We define as follows a mapping F from open sets of a pair of Banach spaces into another

Banach space:

F : (W p
1,δ+1;W p

2,δ ×W
p
2,δ ∩ ϕ > 0)→W p

0,δ+2 ×W
p
0,δ+2, p >

n

2
, δ > −n

p
(10.1)

by

(τ ;X,u ≡ ϕ− 1) 7→ (H(τ ;ϕ,X), M(τ ;ϕ,X)), (10.2)

where H and M are the left-hand sides of the conformal formulation (4.4), (4.7) of the con-

straints.

The multiplication properties of weighted Sobolev spaces show that F is a C1 mapping.

The partial derivative F ′X,u at a point (0;X,u) is the linear mapping from W p
2,δ ×W

p
2,δ into

W p
0,δ+2 given by

(δX, δu) 7→ (δH, δM), (10.3)

where (δb = 0 because τ = 0 at the considered point and V (ψ̄) is fixed)

δH ≡ ∆γδu− αδu+ ϕ−(3n−2)/(n−2)δa (10.4)

with

α = r +
3n− 2

n− 2
aϕ−4(n−1)/(n−2) +

n+ 2

n− 2
bϕ4/(n−2), (10.5)

14Dain and Nagy [?] consider unscaled sources with scaled momentum on a maximal submanifold, using H.
Friedrich conformal compactification.
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and, using the expressions for a and K̃,

δa =
n− 2

2(n− 1)
K̃(L̃γ, conf)δX. (10.6)

On the other hand,

δM≡ (∆̃γ, confδX)i. (10.7)

Theorem 10.1 Specify on the Mp
2,δ manifold (M,γ) the scalar functions ψ̄, V (ψ̄), π̃,

Ñ and the traceless symmetric 2-tensor U , with ψ̄ ∈ W p
2,δ, V (ψ̄) ∈ W p

0,δ+2, π̃, U ∈ W p
1,δ+1,

Ñ − 1 ∈ W p
s+2,δ, Ñ > 0, p > n

2 , −
n
p < δ < n − 2 − n

p . Let (X0, ϕ0) be a solution of the

corresponding constraints with τ0 = 0. Suppose that for some δ̃ > −1 + n
2 −

n
p (δ̃ = −1 if p = 2)

it holds that ∫
M

{|Df |2γ + α0f
2}dµγ > 0 for all f ∈W p

2,δ̃
, f 6≡ 0 (10.8)

with

α0 := r +
3n− 2

n− 2
a0ϕ

−4(n−1)/(n−2)
0 − n+ 2

n− 2
V (ψ̄)ϕ

4/(n−2)
0 ≥ 0. (10.9)

Then there exists a neighbourhood Ω of zero in W p
1,δ+1 such that, if τ ∈ Ω, the coupled con-

straints have one and only one solution (X,ϕ), with ϕ > 0, and X,u ≡ ϕ− 1 ∈W p
2,δ.

Proof Under the hypotheses that we have made, due to properties of elliptic equations

discussed above, the partial derivative of F with respect to the pair (u,X) determines an

isomorphism from W p
2,δ ×W

p
2,δ onto W p

0,δ+2, given by

(δu, δX) 7→ (δM, δH). (10.10)

A straightforward application of the implicit function theorem then completes the proof.

Remark 10.2 The conclusion of the theorem holds in particular if (M,γ, ψ̄) satisfy the

inequality (8.11) and V (ψ̄) ≤ 0, since then one has always a0 ≥ 0.

Remark 10.3 An analogous method can be used to prove the existence of solutions of the

coupled system in the additional presence of matter sources with momentum small enough in

W p
0,δ+2 norm.
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