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Abstract Information geometry is a new branch in mathematics, originated from the ap-
plications of differential geometry to statistics. In this paper we briefly introduce Riemann-
Finsler geometry, by which we establish Information Geometry on a much broader base,
so that the potential applications of Information Geometry will be beyond statistics.
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1 Introduction

Information geometry has emerged from investigating the geometrical structure of a family of

probability distributions, and has been applied successfully to various areas including statistical

inference, control system theory and multi-terminal information theory (see [?, ?]). The purpose

of this paper is to give a brief introduction to Information Geometry from a more general point

of view using Riemann-Finsler geometry and spray geometry.

Consider a set F of objects such as 2D/3D images, or probability distributions, etc. To

measure the difference from one object to another in F , one defines a function, D, called a

divergence, on the product space F × F with the following properties

D(p, q) ≥ 0, equality holds if and only if p = q.

The numberD(p, q) measures the “divergence” of p from q. The pair (F ,D) is called a divergence

space. To allow a great generality, the divergence D is not required to satisfy the reversibility

condition: D(p, q) = D(q, p).

For a divergence space (F ,D), the set F is usually not finite-dimensional in any sense. In

practice, one considers a family of objects in F , parametrized in a domain of Rn. Such a

family is called a model of (F ,D). More precisely, a model of a divergence space (F ,D) is

an n-dimensional C∞ manifold M as an embedded subset of F with the induced divergence

D = D|M . Thus, a model (M,D) itself is also a divergence space.

Below are several examples.

Example 1.1 Let (M, d) be a metric space. Then D := 1
2d

2 is a divergence. This

divergence is reversible, i.e., D(p, q) = D(q, p).
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Example 1.2 Let Ω ⊂ Rn be an open subset and ψ = ψ(x) be a C∞ function on Ω with

∂2ψ

∂xi∂xj
(x) > 0.

Then

ψ(z)− ψ(x)− (z − x)i
∂ψ

∂xi
(x) ≥ 0.

Define D : Ω× Ω→ [0,∞) by

D(x, z) := ψ(z)− ψ(x)− (z − x)i
∂ψ

∂xi
(x). (1)

D is a divergence on Ω.

More interesting examples are from other fields in natural science, such as mathematical

psychology (see [5–7]).

Our goal is to use differential geometry to study regular models and the induced information

structures. The regularity of divergence spaces and information structures will be defined in

the following sections.

2 f-Divergences on Probability Distributions
An important class of divergence spaces comes from Probability Theory.

Let X = (X ,B, ν) be a measure space, where X is a set, B is a completely additive class

consisting of X and its subsets, and ν is a σ-finite measure on (X ,B). Let P = P(X ) be the

space of probability distributions on X .

P(X ) :=
{
p : X → [0,∞)

∣∣∣ ∫
X
p(r)dr = 1

}
.

The space P is convex in the sense that

λp+ (1− λ)q ∈ P, if p, q ∈ P.

There is a special family of divergences on P. Let f : (0,∞)→ R be a convex function with

f(1) = 0, f ′′(1) = 1. (2)

Define Df : P × P → R by

Df (p, q) :=

∫
X
p(r)f

(q(r)
p(r)

)
dr, p = p(r), q = q(r) ∈ P. (3)

By Jensen’s inequality, we have

Df (p, q) ≥ f
(∫

p(r)
q(r)

p(r)
dr
)

= f(1) = 0,

where the equality holds if and only if p = q. Thus Df is indeed a divergence on P. We call

Df the f-divergence following I. Csiszàr. The f -divergence plays an important role in statistics.

There is a more special family of f -divergences on P. For ρ ∈ R, let

fρ(t) :=


4

1−ρ2
(

1+t
2 − t

(1+ρ)/2
)

if ρ 6= ±1,

t ln t if ρ = 1,

ln(1/t) if ρ = −1.

(4)
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We have

fρ(1) = 0, f ′ρ(1) =
2

ρ− 1
, f ′′ρ (1) = 1, f ′′′ρ (1) =

ρ− 3

2
.

For ρ = 0,

f0(t) = 4
(1 + t

2
−
√
t
)
.

The divergence D0 on P is given by

D0(p, q) = 4
{

1−
∫ √

p(r)q(r)dr
}

= 2

∫
(
√
p(r)−

√
q(r) )2dr. (5)

We see that d0(p, q) :=
√

2D0(p, q) is a distance function. d0 is called the Hellinger distance

and D0 = 1
2d

2
0 the Hellinger divergence.

For ρ = −1,

f−1(t) = ln(1/t).

The divergence D−1 on P is given by

D−1(p, q) =

∫
p(r) ln

p(r)

q(r)
dr.

D−1 is called the Kullback-Leibler divergence.

3 Regular Divergences
Before we discuss regular divergences, let us first introduce Finsler metrics and H-functions.

Definition 3.1 A Finsler metric on a manifold M is a scalar function L = L(x, y) on TM

with the following properties:

(L1) L(x, y) ≥ 0, and the equality holds if and only if y = 0;

(L2) L(x, λy) = λ2L(x, y), λ > 0;

(L3) L(x, y) is C∞ on TM \ {0}, and for any y ∈ TxM \ {0},

gij(x, y) :=
1

2
Lyiyj (x, y) > 0. (6)

For a Finsler metric L on a manifold M , the function Fx :=
√
L |TxM can be viewed as a

norm on TxM . Indeed, it satisfies the triangle inequality

Fx(u+ v) ≤ Fx(u) + Fx(v), u, v ∈ TxM.

But the reversibility (Fx(−u) = Fx(u)) is not assumed.

Let g = gij(x)dxi ⊗ dxj be a Riemannian metric as a tensor in the traditional notation.

Then we get a scalar function L on TM :

L = gij(x)yiyj , y = yi
∂

∂xi

∣∣∣
x
.

By the above definition, L is a Finsler metric. Namely, Riemannian metrics are special Finsler

metrics. Usually, we denote a Riemannian metric by the letter g = gij(x)yiyj . Riemannian

metrics are the most important metrics and have been studied throughly in the last century.
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Let (M,L) be a Finsler manifold. For a curve C parametrized by c = c(t), 0 ≤ t ≤ 1, the

length of C is defined by

L(C) =

∫ 1

0

√
L(c(t), c′(t)) dt.

Using the length structure, we can define a function d = d(p, q) on M ×M by

d(p, q) = inf L(C),

where the infimum is taken over all curves from p to q. The distance function d satisfies

(a) d(p, q) ≥ 0, and the equality holds if and only if p = q;

(b) d(p, q) ≤ d(p, r) + d(r, q).

d is called the distance function of L.

Definition 3.2 An H-function on a manifold M is a scalar function H = H(x, y) on TM

with the following properties:

(H1) H(x, λy) = λ3H(x, y), λ > 0.

(H2) H(x, y) is C∞ on TM \ {0}.

H-functions are positively homogeneous functions of degree three. There are lots of H-

functions. If L = L(x, y) is a Finsler metric on a manifold M , then the following function

H := L(x, y)3/2

is an H-function on M . If L = L(x, y) is a Finsler metric on an open subset Ω ⊂ Rn, then

H :=
1

2
Lxk(x, y)yk

is an H-function on Ω.

Let d = d(p, q) be the distance function of a Finsler metric L on M . Let

D(p, q) :=
1

2
d(p, q)2, p, q ∈M.

D is a divergence on M . In general, the divergence D is not C∞ along the diagonal ∆ =

{(p, p) ∈M ×M} unless L is Riemannian. Nevertheless we have the following

Lemma 3.3 If D is the divergence of a Finsler metric L on a manifold M , then at any

point p, there is a local coordinate system (U, φ) in M such that

2D(φ−1(x), φ−1(x+ y)) = L(x, y) +
1

2
Lxk(x, y)yk + o(|y|3). (7)

Now we are ready to define regular divergences.

Definition 3.4 Let M be a manifold. A divergence function D on M is said to be regular

if in any local coordinate system (U, φ) at any point in M (restricted to a smaller domain if

necessary),

2D(φ−1(x), φ−1(x+ y)) = L(x, y) + P (x, y) + o(|y|3), (8)
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where L = L(x, y) is a Finsler metric on U and P = P (x, y) is a C∞ function on TU \ {0}
with

P (x, λy) = λ3P (x, y), λ > 0.

The Finsler metrics L in (??) form a global Finsler metric on M , while the functions P

in (??) do not form a global scalar function on TM . However, one can use P to define an

H-function on M .

Lemma 3.5 Let D be a regular divergence on M . Let L and P be the local functions defined

by (??) in a local coordinate system (U, φ). Then

H := P (x, y)− 1

2
Lxk(x, y)yk (9)

is a well-defined H-function on M .

Proof Let L = L(x̄, ȳ) and P = P (x̄, ȳ) be the local functions defined by (??) in another

local coordinate system (U, φ̄). Let x̄ = φ̄ ◦ φ−1.

x̄(x+ y) = x̄+ ȳ +
1

2

∂2x̄

∂xi∂xj
(x)yiyj + o(|y|2),

where

ȳ =
∂x̄

∂xi
yi.

By comparing the expansions (??) in both coordinate systems, we get

L(x, y) = L(x̄, ȳ), (10)

P (x, y) = P (x̄, ȳ) +
1

2
Lȳk(x̄, ȳ)

∂2x̄

∂xi∂xj
(x)yiyj . (11)

Differentiating (??) yields

1

2
Lxk(x, y)yk =

1

2
Lx̄k(x̄, ȳ)ȳk +

1

2
Lȳk(x̄, ȳ)

∂2x̄

∂xi∂xj
(x)yiyj .

Subtracting it from (??), we obtain

P (x, y)− 1

2
Lxk(x, y)yk = P (x̄, ȳ)− 1

2
Lx̄k(x̄, ȳ)ȳk.

Therefore the above function H is well-defined on M .

Now for a regular divergence D we have the following local expansion

2D(φ−1(x), φ−1(x+ y)) = L(x, y) +
1

2
Lxk(x, y)yk +H(x, y) + o(|y|3). (12)

By Lemma 3.3, we have the following

Proposition 3.6 If D is the divergence of a Finsler metric L on a manifold M , then it is

regular with H = 0.
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Example 3.7 Let Ω be an open subset in a Minkowski space (Rn, ‖ · ‖) and ψ(y) =

aijky
iyjyk. Let

D(x, x′) :=
1

2
‖x′ − x‖2 +

1

2
ψ(x′ − x), x, x′ ∈ Ω.

Using the natural coordinate system ϕ(x) = x, we have

2D(x, x+ y) = ‖y‖2 + ψ(y).

Thus D is a regular divergence with

L(x, y) = ‖y‖2, H(x, y) = ψ(y).

4 Sprays of Finsler Metrics
Every Finsler metric L on a manifold M induces a vector field on TM ,

G := yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi(x, y) :=
1

4
gil(x, y){Lxkyl(x, y)yk − Lxl(x, y)}, (13)

where (gij(x, y)) := (gij(x, y))−1. From (??), one can see that

Gi(x, λy) = λ2Gi(x, y), λ > 0.

G is a well-defined C∞ vector field on TM \ {0}. We call G the spray of L.

It is possible that two distinct Finsler metrics having the same spray. For example, if L is

an arbitrary Finsler metric on a manifold, then the metric L̃ := kL has the same spray as L for

any positive constant k.

If L = gij(x)yiyj is a Riemannian metric, then

Gi(x, y) =
1

2
γijk(x)yjyk, γijk(x) = γikj(x),

where

γijk(x) =
1

2
gil(x)

{∂gjl
∂xk

(x) +
∂gkl
∂xj

(x)− ∂gjk
∂xl

(x)
}
. (14)

The local functions γijk(x) are called the Christoffel symbols. Note that Gi are quadratic in y.

A Finsler metric L is called a Berwald metric if its spray coefficients Gi = 1
2γ

i
jk(x)yjyk are

quadratic in y. There are many non-Riemannian Berwald metrics. An important fact is that

every Berwald metric has the same spray as a Riemannian metric. This is due to Z. I. Szabo.

If c = c(t) is an integral curve of G in TM \ {0}, then the local coordinates (x(t), y(t)) of

c(t) satisfy

ẋi
∂

∂xi

∣∣∣
c(t)

+ ẏi(t)
∂

∂yi

∣∣∣
c(t)

= yi(t)
∂

∂xi

∣∣∣
c(t)
− 2Gi(x(t), y(t))

∂

∂yi

∣∣∣
c(t)

. (15)

We obtain that yi(t) = ẋi(t) and

ẍi(t) + 2Gi(x(t), ẋ(t)) = 0. (16)
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Let σ(t) := π(c(t)) be the projection of c = c(t) by π : TM →M . The local coordinates of σ(t)

are x(t) = (xi(t)), which satisfy (??). Conversely, if a curve σ = σ(t) satisfies (??), then the

canonical lift c(t) = σ̇(t) in TM is an integral curve of G such that σ(t) = π(c(t)).

Definition 4.1 A curve σ in a Finsler manifold (M,L) is called a geodesic if its canonical

lift c := σ̇ in TM \ {0} is an integral curve of the induced spray G by L.

5 Sprays
The notion of sprays induced by a Finsler metric can be generalized.

Definition 5.1 Let M be a manifold. A spray G on M is a vector field on the tangent

bundle TM such that in any standard local coordinate system (xi, yi) in TM , it can be expressed

in the following form

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are C∞ functions of (xi, yi) with y 6= 0 and

Gi(x, λy) = λ2Gi(x, y), λ > 0.

The notion of geodesics can also be extended to sprays. A curve σ(t) is called a geodesic of

G := yi ∂
∂xi − 2Gi(x, y) ∂

∂yi on a manifold M if it satisfies the following system of equations:

ẍi(t) + 2Gi(x(t), ẋ(t)) = 0,

where x(t) = (xi(t)) denotes the coordinates of σ(t). Geodesics are also called paths. The

collection of all paths of a spray is called a path structure.

A spray G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi is said to be affine, if in any local coordinate system,

Gi(x, y) =
1

2
Γijk(x)yjyk, Γijk(x) = Γikj(x). (17)

By definition, a Finsler metric is a Berwald metric if and only if its spray is affine.

Every affine spray G with coefficients Gi(x, y) = 1
2Γijk(x)yjyk, Γijk(x) = Γikj(x), defines a

connection ∇ on TM ,

∇yX := {dXi(y) +XjΓijk(x)yk} ∂

∂xi

∣∣∣
x
, (18)

where X = Xi ∂
∂xi ∈ C

∞(TM) and y = yi ∂
∂xi

∣∣
x
∈ TxM . ∇ is linear in the following sense:

∇λy+µvX = λ∇yX + µ∇vX,

∇y(X + Y ) = ∇yX +∇yY,

∇y(fX) = dfx(y)X + f(x)∇yX,

where y, v ∈ TxM , f ∈ C∞(M) and X,Y ∈ C∞(TM). It is torsion-free in the following sense:

∇XY −∇YX = [X,Y ],

where X,Y ∈ C∞(TM). Torsion-free linear connections are also called affine connections.
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Every affine spray defines an affine connection by (??). Conversely, every affine connection

∇ on TM defines a spray by (??). Thus affine connections one-to-one correspond to affine

sprays.

{affine connections} ←→ {affine sprays}.

Definition 5.2 A spray G on a manifold is said to be flat if at every point, there is a

standard local coordinate system (xi, yi) in TM such that G = yi ∂
∂xi , i.e., Gi = 0. In this case,

(xi, yi) is called an adapted coordinate system.

Flat sprays are very special affine sprays. If G is flat, then in an adapted coordinate system,

the geodesics of G are linear, i.e., the coordinates (xi(t)) of every geodesic σ(t) are in the

following linear form

xi(t) = ait+ bi.

6 Information Structures
By definition, any regular divergence D on a manifold M induces a Finsler metric L and an

H-function. They can be obtained by the following formulas

L(x, y) = lim
ε→0+

2D(c(0), c(ε))

ε2
, (19)

where c(t) is an arbitrary C1 curve in M with c(0) = x and c′(0) = y;

H(x, y) = lim
ε→0+

2D(σ(0), σ(ε))− L(x, y)ε2

ε3
, (20)

where σ = σ(t) is the geodesic with σ(0) = x and σ̇(0) = y.

Definition 6.1 An information structure on a manifold M is a pair {L,H}, where L =

L(x, y) is a Finsler metric on M and H = H(x, y) is a H-function.

Every regular divergence induces an information structure. Conversely, every information

structure is induced by a regular divergence as shown below.

Proposition 6.2 Let (L,H) be an information structure on a manifold M . There is a

regular divergence D on M such that the induced structure by D is {L,H}.

Proof Let d denote the distance function of L on M . For p, q ∈M , define

D(p, q) =
1

2
d(p, q)2 + inf

c(0)=p,c(1)=q

∫ 1

0

H(c(t), c′(t))dt,

where the infimum is taken over all minimizing geodesic c from p to q. Then it is easy to verify

that D induces {L,H}.

7 The α-Sprays of an Information Structure
Let (L,H) be an information structure on a manifold M . Let G = yi ∂

∂xi − 2Gi ∂
∂yi be the

spray of L. Using H, we can define a family of sprays Gα = yi ∂
∂xi − 2Giα(x, y) ∂

∂yi by

Giα(x, y) := Gi(x, y) +
α

2
gij(x, y)Hyj (x, y). (21)
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Gα is called the α-spray of (L,H). Our motivation to find a spray better than G so that the

geodesics of the spray are simple. However, the rate of change of the divergence along any

geodesic of the α-spray is not sensitive to α.

Lemma 7.1 Let D be a regular divergence on a manifold M and (L,H) be the induced

information structure and Gα be the α-spray of (L,H). Let σ = σ(t) be a geodesic. Then for

any geodesic σ of Gα,

2D(σ(to), σ(to + ε))

d(σ(to), σ(to + ε))2
= 1 +

H(x, y)

3L(x, y)
ε+ o(ε), (22)

where x = σ(to) and y = σ̇(to),

Proof Let φ = (xi) be a local coordinate system in M . Let x(t) := φ(σ(t)) and ∆x :=

x(to + ε)− x(to). We have

∆xi = ẋi(to)ε+
1

2
ẍi(to)ε

2 + o(ε2) = yiε−Giα(x, y)ε2 + o(ε2).

By the above identity, we have

L(x,∆x) = Lε2 − LykGkαε3 + o(ε3),

Lxk(x,∆x)∆xk = Lxky
kε3 + o(ε3),

H(x,∆x) = H(x, y)ε3 + o(ε3).

It follows from (??) that

LykGk =
1

2
Lxky

k. (23)

Then by (??) we obtain

2D(σ(to), σ(to + ε)) = 2D(φ−1(x), φ−1(x+ ∆x))

= L(x,∆x) +
1

2
Lxk(x,∆x)∆xk +H(x,∆x) + o(∆x3)

= Lε2 − LykGkαε3 +
1

2
Lxky

kε3 +Hε3 + o(ε3)

= Lε2 − LykGkαε3 + LykGkε3 +Hε3 + o(ε3)

= Lε2 + (1− 3α)Hε3 + o(ε3).

By a similar argument, we have

d(σ(to), σ(to + ε))2 = Lε2 − 3αHε3 + o(ε3).

Combining the above two expansions, we obtain (??).

Definition 7.2 An information structure (L,H) on a manifold is said to be α-flat for some

α if the α-spray Gα of (L,H) is flat. (L,H) is said to be flat if it is 1-flat.

Let (L,H) be an information structure on M . Let

L∗(x, y) := L(x,−y), H∗(x, y) := H(x,−y).
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Then (L∗, H∗) is an information structure on M too. We call (L∗, H∗) the dual information

structure of (L,H). The following lemma is trivial.

Lemma 7.3 Let (L,H) be an information structure on a manifold M . Then

( i ) (L,H) is α-flat if and only if (L,αH) is 1-flat.

(ii) (L,H) is α-flat if and only if the dual (L∗, H∗) is (−α)-flat.

Proof We only prove (ii). Let (L∗, H∗) be its dual structure of (L,H). Let Gα and G∗α
denote the α-sprays of (L,H) and (L∗, H∗), respectively. First we have

G∗i(x, y) = Gi(x,−y),

H∗yj (x, y) = −Hyj (x,−y).

Thus

Gi−α(x, y) = Giα(x,−y).

By this, it is easy to see that (L,H) is α-flat if and only if (L∗, H∗) is (−α)-flat.

Lemma 7.4 Let (L,H) be an information structure on a manifold M . For some α 6= 0,

(L,H) is α-flat if and only if at any point there is a local coordinate system (xi) such that

Lxkyly
k = 2Lxl , (24)

αH = −1

6
Lxky

k. (25)

Proof Suppose that (L,H) is α-flat. By assumption, there is a standard coordinate system

(xi, yi) in which Giα(x, y) = 0 hold. It follows from (??) and (??) that

H(x, y) = − 1

3α
Lyk(x, y)Gk(x, y) = − 1

6α
Lxk(x, y)yk.

Thus

Gi(x, y) = −α
2
gil(x, y)Hyl(x, y) =

1

12
gil(x, y)[Lxk(x, y)yk]yl .

Comparing it with (??), we obtain (??).

Conversely, if L satisfies (??), then the spray coefficients of L are given by

Gi(x, y) =
1

4
gil(x, y)Lxl(x, y).

By (??) and (??), we have

α

2
gil(x, y)Hyl(x, y) = − 1

12
gil(x, y)[Lxk(x, y)yk]yl = −1

4
gil(x, y)Lxl(x, y).

Thus

Giα(x, y) = Gi(x, y) +
α

2
gil(x, y)Hyl(x, y) = 0.

Thus the α-spray Gα is flat.
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8 Dually Flat Finsler Metrics
In virtue of Lemma 7.4, we make the following

Definition 8.1 A Finsler metric L on a manifold M is said to be locally dually flat if at

any point, there is a local coordinate system (xi) in which L = L(x, y) satisfies (??), i.e.,

Lxkyly
k = 2Lxl . (26)

Such a local system is called an adapted local system. L is said to be (globally) dually flat if there

is an H-function H such that (L,H) is 1-flat, that is, at every point there is a local coordinate

system (xi) in which L = L(x, y) satisfies (??) and the following equation

Lxky
k = −6H. (27)

If L is a locally dually flat Finsler metric on a manifold M , then at any point, there is a

local coordinate system (xi) in which the spray coefficients Gi of L satisfy

Gi +
1

2
gijHyj = 0, (28)

where H := − 1
6Lxky

k.

Let us first consider locally dually flat Riemannian metrics.

Proposition 8.2 A Riemannian metric g = gij(x)yiyj on a manifold M is locally dually

flat if and only if it can be locally expressed as

gij(x) =
∂2ψ

∂xi∂xj
(x), (29)

where ψ = ψ(x) is a local scalar function on M .

Proof Assume that g is locally dually flat. There is a local coordinate system (xi) in which

L := g satisfies (??).

∂gil
∂xk

(x) +
∂gkl
∂xi

(x) = 2
∂gik
∂xl

(x). (30)

Permutating i and l yields

∂gil
∂xk

(x) +
∂gik
∂xl

(x) = 2
∂gkl
∂xi

(x). (31)

Subtracting (??) from (??) yields

∂gik
∂xl

(x) =
∂gkl
∂xi

(x).

Thus there is a function ψ(x) such that (??) holds. The converse is trivial.

Example 8.3 Let Ω ⊂ Rn be a strongly convex domain defined by a Minkowski norm φ(y)

on Rn,

Ω := {y ∈ Rn | φ(y) < 1}.

Define Θ(x, y) > 0, y 6= 0, by

Θ(x, y) = φ(y + Θ(x, y)x), y ∈ TxΩ = Rn. (32)
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It is easy to verify that Θ(x, y) satisfies

Θxk(x, y) = Θ(x, y)Θyk(x, y). (33)

Let

L(x, y) := Θ(x, y)2.

Using (??), one obtains

Lxk = 2Θ2Θyk ,

Lxkyly
k = [2Θ2Θyk ]yly

k =
4

3
[Θ3]yl = 4Θ2Θyl ,

Lxky
k

2L
Lyl =

2Θ2

2Θ2
· 2ΘΘyl = 2ΘΘyl .

Thus L satisfies (??). Namely, L is dually flat.

A Finsler metric L on an open domain U ⊂ Rn is called a Funk metric, if F :=
√
L satisfies

Fxk = FFyk .

Every Funk metric is projectively flat, i.e., the geodesics are straight lines, or equivalently,

Fxkyly
k = Fxl . (34)

A Finsler metric L is mutually dually flat and projectively flat if F :=
√
L satisfies (??) and

L satisfies (??). It can be shown that every mutually dually flat and projectively flat Finsler

metric must be a Funk metric up to a scaling (see [?]).

9 Affine Divergences and Affine Information Structures
In general, a regular divergence D : M ×M → [0,∞) is not C∞ along the diagonal ∆ :=

{(x, x), x ∈M}.

Definition 9.1 A regular divergence D on a manifold M is called an affine divergence if

D is a C∞ function on a neighborhood of the diagonal in M ×M .

Lemma 9.2 Let D be a regular affine divergence on a manifold M . Then the induced

information structure (L,H) has the following properties:

( i ) L = gij(x)yiyj is Riemannian,

(ii) H = Hijk(x)yiyjyk.

Proof Let

D(x, x′) := D(φ−1(x), φ−1(x′)).

By assumption D(x, x′) is C∞ in x, x′. Since D(x, x) = 0, we have the following Taylor

expansion

2D(x, x+ y) = gij(x)yiyj +
1

3
hijk(x)yiyjyk + o(|y|3),

where

gij(x) :=
∂2D

∂x′i∂x′j
(x, x′)

∣∣∣
x′=x

, hijk(x) =
∂3D

∂x′i∂x′j∂x′k
(x, x′)

∣∣∣
x′=x

.
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Let

Hijk(x) :=
1

3
hijk(x)− 1

6

{∂gij
∂xk

(x) +
∂gik
∂xj

(x) +
∂gjk
∂xi

(x)
}
.

Then

2D(x, x+ y) = gij(x)yiyj +
1

2

∂gij
∂xk

(x)yiyjyk +Hijk(x)yiyjyk + o(|y|3).

Thus L = gij(x)yiyj and H = Hijk(x)yiyjyk are the induced metric and H-function.

Remark 9.3 For an affine divergence,

∂2D

∂xi∂xj
(x, x′)

∣∣∣
x′=x

=
∂2D

∂x′i∂x′j
(x, x′)

∣∣∣
x′=x

.

Definition 9.4 An information structure {L,H} on a manifold M is said to be affine if

( i ) L = gij(x)yiyj is Riemannian, and

(ii) H = Hijk(x)yiyjyk is a homogeneous polynomial.

If {L,H} is an affine information structure, then (L∗, H∗) = (L,−H).

Lemma 9.5 For an affine divergence D on a manifold M and its dual D∗, the induced

information structure {L,H} by D is dual to the induced information structure {L∗, H∗} by

D∗.

Proof It suffices to prove that the induced information structure of D∗ is {L,−H}.

10 α-Flat Affine Information Structures
We are particularly interested in α-flat information structures. If an information structure

is α-flat, then the associated α-spray is flat.

In this section we are going to study flat affine information structures, and show that an

affine information structure (L,H) is α-flat if and only if its dual (L∗, H∗) is α-flat.

Lemma 10.1 Let (L,H) be an affine information structure on a manifold M and α 6= 0.

(L,H) is α-flat if and only if there is a local coordinate system (xi) and a local function ψ = ψ(x)

such that

L(x, y) =
∂2ψ

∂xi∂xj
(x)yiyj , (35)

H(x, y) = − 1

6α

∂3ψ

∂xi∂xj∂xk
(x)yiyjyk. (36)

Proof Assume that (L,H) is α-flat. By Lemma 7.4, there is a local coordinate system (xi)

such that

Lxkyly
k = 2Lxl .

Plugging gijy
iyj for L into the above equation, one can find a function ψ(x) such that

gij(x) =
∂2ψ

∂xi∂xj
(x). (37)

It follows from (??) that

Hijk(x) = − 1

6α

∂3ψ

∂xi∂xj∂xk
(x). (38)
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Conversely, if L = gij(x)yiyj andH = Hijk(x)yiyjyk are given by (??) and (??) respectively,

then L satisfies (??) and H satisfies (??). Thus (L,H) is α-flat.

Lemma 10.2 Let (L,H) be an affine information structure on a manifold M and α 6= 0.

Assume that in a local coordinate system (xi), (L,H) is given by (??) and (??) respectively.

Let x∗i := ∂ψ
∂xi (x) and

ψ∗(x∗) := −ψ(x) +

n∑
i=1

x∗i x
i. (39)

Then in the new coordinate system (x∗i), the dual information structure (L∗, H∗) = (L,−H) is

given by

L∗(x∗, y∗) =
∂2ψ∗

∂x∗i ∂x
∗
j

(x∗)y∗i y
∗
j , (40)

H∗(x∗, y∗) = − 1

6α

∂3ψ∗

∂x∗i ∂x
∗
j∂x

∗
k

(x∗)y∗i y
∗
j y
∗
k. (41)

Thus (L∗, H∗) is α-flat.

Proof First by (??), we have

Gi =
1

4
gik(x)

∂3ψ

∂xi∂xj∂xk
(x)yiyj .

By definition,

g∗ij(x) = gij(x), H∗ijk(x) = −Hijk(x).

The α-spray G∗α of (L∗, H∗) is given by

G∗iα (x, y) = Gi(x, y)− α

2
gikHyk(x, y) =

1

2
gik(x)

∂3ψ

∂xi∂xj∂xk
(x)yiyj ,

where (gij(x)) := (gij(x))−1. That is, the Christoffel symbols (Γα)∗ijk of G∗α are given by

(Γα)∗ijk(x) = gil(x)
∂3ψ

∂xj∂xk∂xl
(x).

Our goal is to find another local coordinate system (x∗i ) in which G∗ is trivial. Consider the

following map

x∗i :=
∂ψ

∂xi
(x).

Since the Jacobian of x∗ = x∗(x) is just (gij(x)), this map is a local diffeomorphism which can

serve as a coordinate transformation. Define ψ∗ in (x∗i ) by (??). By a direct computation, we

obtain
∂ψ∗

∂x∗k
(x∗) = xk.

Since (L∗, H∗) is affine, we can express L∗ and H∗ in the new coordinate system (X∗i) by

L∗ = g∗kl(x∗)y∗ky
∗
l and H∗ = H∗ijk(x∗)y∗i y

∗
j y
∗
k. It is easy to show that

g∗kl(x∗) =
∂2ψ∗

∂x∗k∂x
∗
l

(x∗),
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and
∂2x∗i
∂xj∂xk

(x)− ∂x∗i
∂xl

(x)(Γα)∗ljk(x) = 0.

Thus, in the local coordinate system (x∗i ), the spray coefficients of G∗α vanish. This implies that

H∗ijk(x∗) = − 1

6α

∂3ψ∗

∂x∗i ∂x
∗
j∂x

∗
k

(x∗).

By the above lemmas, we get the following

Theorem 10.3 Let α 6= 0. An affine information structure (L,H) is α-flat if and only if

its dual (L∗, H∗) is α-flat.

11 Dualistic Affine Connections
We know that affine connections one-to-one correspond to affine sprays. An affine connection

on a Riemannian manifold (M, g) is said to be dualistic if the dual linear connection ∇∗ with

respect to g is also affine. In this section we are going to characterize dualistic affine connections.

Let L = gijy
iyj be a Riemannian metric on a manifold M and g = gijdx

i⊗dxj the associated

inner product on tangent spaces. For a linear connection ∇ on M , define ∇∗:

g(∇∗ZX,Y ) + g(X,∇ZY ) = Z[g(X,Y )], (42)

where X,Y, Z ∈ C∞(TM). It is easy to see that ∇∗ is a linear connection too. ∇∗ is called the

dual connection of ∇ with respect to g. The concept of duality between two linear connections

on a Riemannian manifold is introduced by S. -I. Amari and H. Nagaoka [?].

An important phenomenon is that if a linear connection ∇ is affine, the dual linear connec-

tion ∇∗ (with respect to g) is not necessarily affine (i.e., it might not be torsion-free).

Theorem 11.1 Let g be a Riemannian metric on a manifold M . Every polynomial H-

function on (M, g) determines a dualistic affine connection. Conversely, every dualistic affine

connection ∇ determines a polynomial H-function. The correspondence is canonical,

Γijk(x) = γijk(x) + 3gilHjkl(x), (43)

where Γijk denote the Christoffel symbols of ∇ and γijk denote the Christoffel symbols of g.

Proof Let H be a polynomial H-function on a Riemannian manifold (M, g). Let ∇ and

∇ be the affine connections corresponding to the associated 1-sprays G1 and G1 of (g,H) and

(g,−H), respectively. Note that (g,−H) is dual to (g,H). We claim that ∇ and ∇ satisfy

g(∇ZX,Y ) + g(X,∇ZY ) = Z[g(X,Y )], (44)

namely, ∇ is dual to ∇ with respect to g.

Let g = gij(x)yiyj and H = Hijk(x)yiyjyk. Let Γijk(x) and Γ
i

jk(x) denote the Christoffel

symbols of G1 and G1 respectively. Let Γjk,i(x) := gil(x)Γljk(x), Γjk,i(x) := gil(x)Γ
l

jk(x), and

etc. From (??), we have

Γjk,i(x) = γjk,i(x) + 3Hijk(x), (45)

Γik,j(x) = γik,j(x)− 3Hijk(x). (46)
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Adding (??) and (??) yields

Γik,j(x) + Γjk,i(x) = γik,j(x) + γjk,i(x) =
∂gij
∂xk

(x). (47)

(??) can be written as (??). That is ∇ = ∇∗ is the dual linear connection of ∇ on (M, g). By

definition, ∇ is dualistic.

Let ∇ be an affine connection on (M, g). Define Hijk by (??). Clearly,

Hijk = Hikj .

Let ∇∗ be the dual linear connection. Let Γ∗ijk denote the Christoffel symbols of ∇∗ and

Γ∗jk,l = gilΓ
∗i
jk. Then

Γ∗ik,j(x) + Γjk,i(x) =
∂gij
∂xk

(x) = γik,j(x) + γjk,i(x). (48)

It follows from (??) and (??) that

Γ∗ik,j(x) = γik,j(x)− 3Hijk(x). (49)

Suppose ∇∗ is affine, i.e, Γ∗ijk = Γ∗ikj . Then

Hijk = Hkji.

Thus Hijk is symmetric in i, j, k. We obtain a polynomial H-function H = Hijk(x)yiyjyk. By

(??), we see that H satisfies (??).

Since on a Riemannian manifold (M, g), dualistic affine connections one-to-one correspond

to polynomial H-functions, we immediately obtain the following

Theorem 11.2 (See [?]) Let ∇ and ∇∗ be dual affine connections on a Riemannian

manifold (M, g). Then ∇ is flat if and only if ∇∗ is flat.

Proof Let H be the polynomial H-function corresponding to ∇. Then H∗ := −H is the

polynomial H-function corresponding to ∇∗. Note that the spray of (g,H) (resp. (g,H∗)) is

the spray defined by ∇ (resp. ∇∗). Thus ∇ is flat if and only if (g,H) is 1-flat; (g,H) is 1-flat

if and only if (g,H∗) is 1-flat by Theorem 10.3; (g,H∗) is 1-flat if and only if ∇∗ is flat.

12 Statistical Models
Let P be a space of probability distributions on a measure space X and D a divergence on

P. A statistical model in (P,D) is a pair (M,D), where M is a finite C∞ manifold embedded

in P and D is the restriction of D on M . If f is a function satisfying (??), then it defines the

f -divergence Df on P by (??).

In this section, we are going to prove that for any manifold M ⊂ P, the induced divergence

Df = Df |M is affine, namely, the induced metric L = gij(s)y
iyj is Riemannian and the induced

H-function H = Hijk(x)yiyjyk is a polynomial.

Theorem 12.1 Let f = f(t) be a function with f(1) = 0 and f ′′(1) = 1. For any

regular statistical model (M,Df ) of (P,Df ), the induced information structure on M is given
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by (Lf , Hf ) = (L, ρN), where ρ := 3 + 2f ′′′(1), and

L =

∫
X

[
yi

∂

∂xi
ln p
]2
p dr, (50)

N =
1

6

∫
X

[
yi

∂

∂xi
ln p
]3
p dr. (51)

The α-spray Gα,ρ of Df is given by Giα,ρ = G
i
+ (ρα+ 1)Ai, where

G
i

=
gil(x)

2

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
] ∂

∂xl
p dr, (52)

Ai =
gil(x)

4

∫
X

[
yi

∂

∂xi
ln p
]2 ∂

∂xl
p dr. (53)

Proof The natural embedding M → P is given by x → p = p(r;x). Let D(x, z) :=

Df (p(r;x), p(r; z)), i.e.,

D(x, z) :=

∫
X
p(r;x)f

( p(r; z)
p(r;x)

)
dr.

We have

2D(x, x+ y) =
∂2D

∂zi∂zj

∣∣∣
z=x

yiyj +
1

3

∂3D

∂zi∂zj∂zk

∣∣∣
z=x

yiyjyk + o(|y|3).

By a direct computation, we obtain

D|z=x = 0,

∂D

∂zi

∣∣∣
z=x

yi = 0,

∂2D

∂zi∂zj

∣∣∣
z=x

yiyj =

∫
X

[
yi

∂

∂xi
ln p
]2
p dr,

∂3D

∂zi∂zj∂zk

∣∣∣
z=x

yiyjyk =
ρ

2

∫
X

[
yi

∂

∂xi
ln p
]3
p dr +

3

2

{
−
∫
X

[
yi

∂

∂xi
ln p
]3
p

+ 2
[
yiyj

∂2

∂xi∂xj
p
][
yk

∂

∂xk
ln p
]}
dr.

Let

L :=

∫
X

[
yi

∂

∂xi
ln p
]2
p dr.

Then

Lxky
k =

∫
X

[
yi

∂

∂xi
ln p
]3
p dr + 2

∫
X

[
yk

∂

∂xk
ln p
][
yiyj

∂2

∂xi∂xj
ln p
]
p dr

= −
∫
X

{[
yi

∂

∂xi
ln p
]3
p+ 2

[
yiyj

∂2

∂xi∂xj
p
][
yk

∂

∂xk
ln p
]}
dr.

Let

N :=
1

6

∫
X

[
yi

∂

∂xi
ln p
]3
p dr.
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We obtain

2D(x, x+ y) = L(x, y) +
1

2
Lxk(x, y)yk + ρN(x, y) + o(|y|3).

Thus Df is regular and the induced information structure (Lf , Hf ) = (L, ρN) is affine.

Let G = yi ∂
∂xi − 2Gi ∂

∂yi denote the induced spray of L and Gα,f = yi ∂
∂xi − 2Giα,ρ

∂
∂yi be the

α-spray of Df . Without much difficulty, we obtain

Giα,ρ = Gi(x, y) +
ρα

2
gil(x)Nyl(x, y)

= (ρα+ 1)
gil(x)

4

∫
X

[
yi

∂

∂xi
ln p
]2 ∂

∂xl
p(r;x) dr

+
gil(x)

2

∫
X

[
yiyj

∂2

∂xi∂xj
ln p(r;x)

] ∂

∂xl
p dr.

This gives a formula for Gα,ρ.

Now let us express L and N in a different form. Observe that

L =

∫
X
yj

∂

∂xj

{[
yi

∂

∂xi
ln p
]
p
}
dr −

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr

=

∫
X
yiyj

∂2

∂xi∂xj
p dr −

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr

= yiyj
∂2

∂xi∂xj

∫
X
pdr −

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr

= −
∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr.

This gives

L = −
∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr. (54)

By a similar argument, we obtain

6N = yk
∂

∂xk

∫
X

[
yi

∂

∂xi
ln p
]2
p dr − 2

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
][
yk

∂

∂xk
p
]
dr

= yk
∂

∂xk

∫
X

[
yi

∂

∂xi
ln p
][
yj

∂

∂xj
p
]
dr − 2yk

∂

∂xk

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr

+ 2

∫
X

[
yiyjyk

∂3

∂xi∂xj∂xk
ln p
]
p dr

= −3yk
∂

∂xk

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr + 2

∫
X

[
yiyjyk

∂3

∂xi∂xj∂xk
ln p
]
p dr.

This gives

N =
1

3

∫
X

[
yiyjyk

∂3

∂xi∂xj∂xk
ln p
]
p dr − 1

2
yk

∂

∂xk

∫
X

[
yiyj

∂2

∂xi∂xj
ln p
]
p dr. (55)

13 Exponential Family of Distributions
In this section, we will consider the exponential family of probability distributions, on which

the α-spray of Df with ρα = −1 is flat.
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Definition 13.1 A manifold M in P is called an exponential manifold if it is covered by

injections

$ : Ω ⊂ Rn →M,

such that p := $(x) ∈ P is in the following form

p(r;x) = exp[xifi(r) + k(r)− ψ(x)], r ∈ X . (56)

Observe that the integral ∫
X

∂p

∂xi
dr = 0.

This implies that
∂ψ

∂xi
(x) =

∫
X
p(r;x)fi(r)dr.

The Kullback-Leibler divergence DKL on M is the f -divergence with f(t) = ln(1/t). We have

DKL(p(r;x), p(r;x′)) =

∫
p(r;x)[ψ(x′)− ψ(x)− (x′ − x)ifi(r)]dr

= ψ(x′)− ψ(x)− (x′ − x)i
∂ψ

∂xi
(x).

The pull-back of DKL onto Ω is given by

DKL(x, x′) = ψ(x′)− ψ(x)− (x′ − x)i
∂ψ

∂xi
(x).

Proposition 13.2 Let M be the exponential family of distributions in the form (??). The

induced information structure of Df is given by (Lf , Hf ) = (L, ρN), ρ = 3 + 2f ′′′(1), and

L =
∂2ψ

∂xi∂xj
(x)yiyj , N =

1

6

∂3ψ

∂xi∂xj∂xk
(x)yiyjyk.

Proof Note that

ln p(r;x) = xifi(r) + k(r)− ψ(x).

It follows from (??) that

L(x, y) =

∫
X

[
yiyj

∂2ψ

∂xi∂xj
(x)
]
p(r;x)dr = yiyj

∂2ψ

∂xi∂xj
(x).

Then the spray coefficients of L are given by

Gi =
1

4
gik

∂2ψ

∂xi∂xj∂xk
(x)yiyj .

It follows from (??) that

N(x, y) = −1

3

∫
X

[
yiyjyk

∂3ψ

∂xi∂xj∂xk
(x)
]
p(r;x)dr +

1

2
yk

∂

∂xk

∫
X

[
yiyj

∂2ψ

∂xi∂xj
(x)
]
p(r;x)dr

=
1

6
yiyjyk

∂3ψ

∂xi∂xj∂xk
(x).
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By Lemma 10.1, we obtain the following

Corollary 13.3 Let M be the exponential family of distributions in the form (??). Let

(Lf , Hf ) be the information structure induced by the f -divergence. When ρα = −1, (Lf , Hf )

is α-flat, namely, the α-spray of (Lf , Hf ) is flat.

Proof The α-spray is given by

Giα,ρ = Gi +
ρα

2
gikNyk =

ρα+ 1

4
gik

∂3ψ

∂xi∂xj∂xk
(x)yiyj .

If ρα = −1, then the induced information structure (Lf , Hf ) is α-flat.

Example 13.4 Consider the family M of Gaussian probability distributions with mean µ

and variance σ2:

p(r;µ, σ2) =
1√
2πσ

exp
[
− (r − µ)2

σ2

]
.

We can reparametrize M by

p(r;x) = exp[x1f1(r) + x2f2(r)− ψ(x)],

where

x1 =
µ

σ2
, x2 =

1

2σ2

and

f1(r) = r, f2(r) = −r2, ψ(x) =
µ2

σ2
+ ln(

√
2πσ) =

(x1)2

4x2
+ ln

√
π

x2
.

Thus M is an exponential manifold in P. The induced Riemannian metric L = gij(x)yiyj of

an f -divergence on M is given by

g11 =
∂2ψ

∂x1∂x1
, g12 =

∂2ψ

∂x1∂x2
, g22 =

∂2ψ

∂x2∂x2
.

The Gauss curvature of L is a negative constant K = − 1
2 .

Example 13.5 Let M be the family of gamma distributions with event space Ω = R+ and

parameters τ, ν ∈ R+ which are defined by

p(r; τ, ν) =
(ν
τ

)ν rν−1

Γ(ν)
exp

[
− rν

τ

]
, (57)

where Γ is the gamma function defined by

Γ(ν) =

∫ ∞
0

sν−1e−sds.

Note that τ = 〈r〉 is the mean and τ2/ν = Var(r) is the variance. Thus the coefficient of

variation
√

Var(r)/τ = 1/
√
ν is independent of the mean.

Let µ := ν/τ . Then gamma distributions can be expressed by

p(r;µ, ν) = exp[−µr + ν ln r − ln r − ψ(µ, ν)], (58)
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where

ψ(µ, ν) := ln Γ(ν)− ν lnµ.

Thus M is an exponential manifold in P. See [?] for related discussion.

Let L be the induced Riemannian metric by any f -divergence. In the coordinate system

(τ, ν),

g11 =
ν

τ2
, g12 = 0 = g21, g22 = Ψ′(ν)− 1

ν
,

where Ψ(ν) := Γ′(ν)/Γ(ν) is the logarithmic derivative of the gamma function. Since Ψ(ν)

satisfies
1

2ν2
≤ Ψ′(ν)− 1

ν
≤ 1

ν2
.

We have

L1 :=
ν

τ2
u2 +

1

2ν2
v2 < L <

ν

τ2
u2 +

1

2ν2
v2 := L2.

The Gauss curvature Ki of Li and the Gauss curvature K of L are given

K1 = −1

2
< K =

Ψ′(ν) + Ψ′′(ν)ν

4ν2(Ψ′(ν)− 1/ν)2
< −1

4
= K2.

The reader is referred to [?] for the geometry of Gamma distributions and its applications.

14 Duality of f-Divergences
Let (P,D) be a divergence space (P,D). By definition, the dual divergence D∗ is defined

by

D∗(p, q) := D(q, p), p, q ∈ P.

Given a convex function f : (0,∞)→ R with f(1) = 0 and f ′′(1) = 1. Let

f∗(t) := tf
(1

t

)
, t > 0.

Then f∗(t) satisfies that f∗(1) = 0 and f∗
′′
(1) = f ′′(1) = 1. Let ρ := 3 + 2f ′′′(1) and

ρ∗ := 3 + 2f∗
′′′

(1). We have

ρ+ ρ∗ = 0.

Note that

(Df )∗(p, q) := Df (q, p) = Df∗(p, q).

Thus Df∗ is dual to Df . By the above argument, (Df )∗ = Df∗ induces an information structure

(Lf∗ , Hf∗) = (L, ρ∗N) = (L,−ρN).

That is, Lf∗(x, y) = Lf (x,−y) and Hf∗(x, y) = Hf (x,−y). The information structure of (Df )∗

is dual to that of Df . In this sense, Df is said to be dualistic.

According to Lemmas 10.1 and 10.2, we have the following

Proposition 14.1 The information structure (Lf , Hf ) is α-flat if and only if the dual

structure (Lf∗ , Hf∗) = (Lf (x,−y), Hf (x,−y)) is α-flat.

Let fρ be the function defined in (??). Let Dρ := Dfρ . It is easy to see that

(fρ)
∗(t) = f−ρ(t).
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Thus

(Dρ)
∗(p, q) = Dρ(q, p) = D−ρ(p, q).

For ρ 6= ±1,

Dρ(p, q) =
4

1− ρ2

{
1−

∫
p(r)(1−ρ)/2q(r)(1+ρ)/2dr

}
; (59)

for ρ = ±1,

D−1(p, q) = D+1(q, p) =

∫
p(r) ln

p(r)

q(r)
dr. (60)
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