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Riemann-Finsler Geometry with Applications to
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Abstract Information geometry is a new branch in mathematics, originated from the ap-
plications of differential geometry to statistics. In this paper we briefly introduce Riemann-
Finsler geometry, by which we establish Information Geometry on a much broader base,
so that the potential applications of Information Geometry will be beyond statistics.
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1 Introduction

Information geometry has emerged from investigating the geometrical structure of a family of
probability distributions, and has been applied successfully to various areas including statistical
inference, control system theory and multi-terminal information theory (see [?, ?]). The purpose
of this paper is to give a brief introduction to Information Geometry from a more general point
of view using Riemann-Finsler geometry and spray geometry.

Consider a set F of objects such as 2D/3D images, or probability distributions, etc. To
measure the difference from one object to another in F, one defines a function, D, called a
divergence, on the product space F x F with the following properties

D(p,q) >0, equality holds if and only if p = q.

The number D(p, ¢) measures the “divergence” of p from q. The pair (F, D) is called a divergence
space. To allow a great generality, the divergence D is not required to satisfy the reversibility
condition: D(p,q) = D(q,p).

For a divergence space (F, D), the set F is usually not finite-dimensional in any sense. In
practice, one considers a family of objects in F, parametrized in a domain of R™. Such a
family is called a model of (F,D). More precisely, a model of a divergence space (F,D) is
an n-dimensional C'*° manifold M as an embedded subset of F with the induced divergence
D = D|p. Thus, a model (M, D) itself is also a divergence space.

Below are several examples.

Example 1.1 Let (M,d) be a metric space. Then D := 1d? is a divergence. This
divergence is reversible, i.e., D(p,q) = D(q,p).

Manuscript received August 12, 2005.
*Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, 402 N. Blackford
Street, Indianapolis, IN 46202-3216, USA. E-mail: zshen@math.iupui.edu



74 Z. M. Shen

Example 1.2 Let Q C R™ be an open subset and ¥ = () be a C*° function on Q with

0%y
m(m) > 0.
Then
U(z) — la) — (=2 90 (@) 2 0
Define D : 2 x Q — [0,00) b
Dl 2) 1= 0(z) — (a) — (= — ) o (). (1)

D is a divergence on 2.

More interesting examples are from other fields in natural science, such as mathematical
psychology (see [5-7]).

Our goal is to use differential geometry to study regular models and the induced information
structures. The regularity of divergence spaces and information structures will be defined in
the following sections.

ivergences o robablh Distri
‘Kn]:l)mpor glass OP dEergence spa es comes flr) ]lS)nEablhty Theory.
Let X = (X,B,v) be a measure space, where X is a set, B is a completely additive class

consisting of X' and its subsets, and v is a o-finite measure on (X, ). Let P = P(X) be the
space of probability distributions on X'.

PX) = {p : X — [0,00) ‘ /Xp(T)dr =
The space P is convex in the sense that
A+ (1=XNgeP, ifpgeP.
There is a special family of divergences on P. Let f : (0,00) — R be a convex function with
fay=o0, f"1)=1 (2)
Define Dy : P x P — R by

Ds(p,q) == Ap(r)f(L)dr, p=p(r), ¢=q(r) €P. (3)

By Jensen’s inequality, we have

Dstpa) = £( [ o) X5 ar) = 1) =0,

where the equality holds if and only if p = q. Thus Dy is indeed a divergence on P. We call
Dy the f-divergence following I. Csiszar. The f-divergence plays an important role in statistics.
There is a more special family of f-divergences on P. For p € R, let

o (B — ¢ FA2) i p £ 4,
folt) == < tnt if p=1, (4)

In(1/t) if p=-—1.
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‘We have / 5 ) y b3
fr(1)=0, f,(1)= FEEE =1 f1) ="~
For p = 0,
olt) = 4(*y~ ~ Vi)

The divergence Dy on P is given by

Dolpq) = 4{1~ [ Vaimatar} =2 [ (V) - V/al) P (5)

We see that do(p, q) := /2Do(p, q) is a distance function. dy is called the Hellinger distance
and Dy = %d% the Hellinger divergence.
For p = —1,
Foat) = (1),

The divergence D_; on P is given by

D) = [ o) 0 2

D_1 is called the Kullback-Leibler divergence.

3 Regular Divergences ) ) ) )
Before we discuss regular divergences, let us first introduce Finsler metrics and H-functions.

Definition 3.1 A Finsler metric on a manifold M is a scalar function L = L(x,y) on TM
with the following properties:

(L1) L(x,y) >0, and the equality holds if and only if y = 0;

(L2) L(x,\y) = N2L(z,y), X > 0;

(L3) L(x,y) is C* on TM \ {0}, and for any y € T, M \ {0},

1
gij(x,y) = §Lyiyj (z,y) > 0. (6)

For a Finsler metric L on a manifold M, the function F, := VL |7, 2 can be viewed as a
norm on 1, M. Indeed, it satisfies the triangle inequality

Fp(u+v) < Fyp(u) + Fp(v), wu,veT,M.

But the reversibility (F,(—u) = F,(u)) is not assumed.
Let g = gij(z)dz’ ® dz? be a Riemannian metric as a tensor in the traditional notation.
Then we get a scalar function L on T'M:

0

axi J).

L=ygj@)yy, y=y

By the above definition, L is a Finsler metric. Namely, Riemannian metrics are special Finsler
metrics. Usually, we denote a Riemannian metric by the letter g = g;; ()y*y?. Riemannian
metrics are the most important metrics and have been studied throughly in the last century.
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Let (M, L) be a Finsler manifold. For a curve C parametrized by ¢ = ¢(t), 0 < ¢ < 1, the
length of C' is defined by

1
£(C) = / VI, 40) dt.
0
Using the length structure, we can define a function d = d(p, ¢q) on M x M by
d(p, q) = inf L(C),

where the infimum is taken over all curves from p to q. The distance function d satisfies
(a) d(p,q) >0, and the equality holds if and only if p = ¢;
(b) d(p,q) < d(p,r) +d(r,q).

d is called the distance function of L.

Definition 3.2 An H-function on a manifold M is a scalar function H = H(z,y) on TM
with the following properties:

(H1) H(z,\y) = NH(z,y), A > 0.

(H2) H(z,y) is C> on TM \ {0}.

H-functions are positively homogeneous functions of degree three. There are lots of H-
functions. If L = L(z,y) is a Finsler metric on a manifold M, then the following function

H := L(z,y)%/?

is an H-function on M. If L = L(z,y) is a Finsler metric on an open subset 2 C R™, then
1 k
H := §Lmk (z,y)y

is an H-function on €.
Let d = d(p, q) be the distance function of a Finsler metric L on M. Let

1
D(pa q) = id(pa q)za p,qe M.

D is a divergence on M. In general, the divergence D is not C*° along the diagonal A =
{(p,p) € M x M} unless L is Riemannian. Nevertheless we have the following

Lemma 3.3 If D is the divergence of a Finsler metric L on a manifold M, then at any
point p, there is a local coordinate system (U, @) in M such that

2D(¢~ (2),¢™ (z +y)) = L(z,y) + %ka (z,9)y" + o(lyl*). (7)

Now we are ready to define regular divergences.

Definition 3.4 Let M be a manifold. A divergence function D on M is said to be reqular
if in any local coordinate system (U, ®) at any point in M (restricted to a smaller domain if
necessary),

2D(¢~ ! (x), 07 (w +y)) = L(w,y) + P(x,y) + o(lyl*), (8)
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where L = L(x,y) is a Finsler metric on U and P = P(x,y) is a C* function on TU \ {0}
with
P(z,\y) = N*P(x,y), \>0.

The Finsler metrics L in (??) form a global Finsler metric on M, while the functions P
in (??) do not form a global scalar function on T'M. However, one can use P to define an
H-function on M.

Lemma 3.5 Let D be a reqular divergence on M. Let L and P be the local functions defined
by (?7?) in a local coordinate system (U, ¢). Then

H = Pla,y) — 5 Lo,y )

1s a well-defined H -function on M.

Proof Let L = L(Z,y) and P = P(z,%) be the local functions defined by (??) in another
local coordinate system (U, ¢). Let Z = ¢po ¢~ L.
1 9%z
= = - i,.] 2
Z(z+y) =T +y+ 55 m s @)y’ +ollyl),

where

07

Y= oz

1— . 9’z

P(z,y) = P(2,9) + 5Ly (2, 9) 55— (@)y'y- (11)

Differentiating (?7?) yields

1

x>
+

Subtracting it from (??), we obtain

1 =/ N
P(2,y) = 5 Lor(z,9)y" = P(2,5) = 5 Lo (7, 5)7"-
Therefore the above function H is well-defined on M.
Now for a regular divergence D we have the following local expansion

2D (@), 67 (e ) = Llwy) + 3 Los (el + Hlzy) o). (12)

By Lemma 3.3, we have the following

Proposition 3.6 If D is the divergence of a Finsler metric L on a manifold M, then it is
reqular with H = 0.
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Example 3.7 Let Q be an open subset in a Minkowski space (R™,| - ||) and ¢(y) =
aijry'y'yk. Let
D(z,2') = %Hx' —z|?+ %w(a:’ —xz), =z,x €.
Using the natural coordinate system ¢(x) = x, we have

2D(z, 2 +y) = lylI* + ().

Thus D is a regular divergence with
L(z,y) = lyll*,  H(z,y) = (y).

4 ray Psin2£ Flnsle Metrics

ery T metrlc on a manifold M induces a vector field on T M,
0 0]
= -2 -
G =y =2 (,9) 5 oy
where
i L
G (SU, y) = Zg l(x7 y){Lwl"’y’ (1'7 y)yk - L:El (l’, y)}7 (13)

where (¢ (x,y)) := (gi;(z,y))~!. From (?7), one can see that
Gi(x, \y) = NG (z,y), A>0.

G is a well-defined C*° vector field on TM \ {0}. We call G the spray of L.

It is possible that two distinct Finsler metrics having the same spray. For example, if L is
an arbitrary Finsler metric on a manifold, then the metric L := kL has the same spray as L for
any positive constant k.

IfL= gij(x)yiyj is a Riemannian metric, then

i L j i i
G'(z,y) = §7jk(x)yjyk, ’)’jk(x) = ij(x)»

where

i) = 20 ) { O ) 4 O ) Ot ) (14)
The local functions 7}, () are called the Christoffel symbols. Note that G* are quadratic in y.
A Finsler metric L is called a Berwald metric if its spray coefficients G* = %’y;k(x)yjyk are
quadratic in y. There are many non-Riemannian Berwald metrics. An important fact is that
every Berwald metric has the same spray as a Riemannian metric. This is due to Z. I. Szabo.
If ¢ = ¢(t) is an integral curve of G in TM \ {0}, then the local coordinates (x(t),y(t)) of
c(t) satisfy

; 0 N, PN, ; 0
Bt — 7 ‘ =y’ , —2G* A .
T ol TV O TV Ol ~ 29 @@y 5]

(15)
We obtain that y(t) = #%(¢) and

#(t) 4+ 2G% (x(t), #(t)) = 0. (16)
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Let o(t) := m(c(t)) be the projection of ¢ = ¢(t) by m : TM — M. The local coordinates of o(t)
are x(t) = (2%(t)), which satisfy (??). Conversely, if a curve o = o(t) satisfies (??), then the
canonical lift ¢(t) = ¢(¢) in TM is an integral curve of G such that o(t) = 7(c(t)).

Definition 4.1 A curve o in a Finsler manifold (M, L) is called a geodesic if its canonical
lift c:=¢ in TM \ {0} is an integral curve of the induced spray G by L.

5 STBrays

e notion of sprays induced by a Finsler metric can be generalized.

Definition 5.1 Let M be a manifold. A spray G on M is a vector field on the tangent
bundle TM such that in any standard local coordinate system (%, y*) in TM, it can be expressed
in the following form

G = i 2GZ -
Y 5 (z,y) By

where G*(x,y) are O functions of (z%,y") with y # 0 and
G'(x, \y) = NG (z,y), A >0.

The notion of geodesics can also be extended to sprays. A curve o(t) is called a geodesic of

G:=y' a?c'i —2G(x, y)aiyi on a manifold M if it satisfies the following system of equations:

F(t) + 2G%(z(t), () = 0,

where z(t) = (2%(t)) denotes the coordinates of o(t). Geodesics are also called paths. The

collection of all paths of a spray is called a path structure.

A spray G = y' 52 — 2G'(x, y)% is said to be affine, if in any local coordinate system,

G, y) = STy, Thule) =Ty (@), (1)

By definition, a Finsler metric is a Berwald metric if and only if its spray is affine.
Every affine spray G with coefficients G'(z,y) = 3T%(2)y?y*, % (z) = T};(x), defines a
connection V on T M,

0

83& z,

VX = {dX"(y) + XTI, (2)y"} (18)

where X = Xia‘zi € C(TM) and y = yia?ci

, €TM. V is linear in the following sense:

Vgt X = AV, X + 1V, X,
Vy(X+Y)=V,X+V,Y,
Vy(fX) = dfe(y)X + f(2)V, X,
where y,v € T, M, f € C®(M) and X,Y € C®(TM). It is torsion-free in the following sense:
VxY - VyX = [X,Y],

where X, Y € C*°(T'M). Torsion-free linear connections are also called affine connections.
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Every affine spray defines an affine connection by (??). Conversely, every affine connection
V on TM defines a spray by (??). Thus affine connections one-to-one correspond to affine
sprays.

{affine connections} +— {affine sprays}.

Definition 5.2 A spray G on a manifold is said to be flat if at every point, there is a
standard local coordinate system (x%,y') in TM such that G = yi%, i.e., G* = 0. In this case,

(%, y*) is called an adapted coordinate system.

Flat sprays are very special affine sprays. If G is flat, then in an adapted coordinate system,
the geodesics of G are linear, i.e., the coordinates (z(t)) of every geodesic o(t) are in the
following linear form

z'(t) = a't + b'.

6 Information Structures ) ) ) )
y definition, any regular divergence D on a manifold M induces a Finsler metric L and an

H-function. They can be obtained by the following formulas

2D(¢(0), ¢(€))

L = 1li o
(x7/y) e—lgl-%— 62 ’ ( )
where ¢(t) is an arbitrary C! curve in M with ¢(0) = z and ¢/(0) = y;
2D T
H(z,y) = lim ("(0)»0(6)3) (@, y)e (20)
e—0+ €

where o = o(t) is the geodesic with ¢(0) =z and ¢(0) = y.

Definition 6.1 An information structure on a manifold M is a pair {L, H}, where L =
L(z,y) is a Finsler metric on M and H = H(z,y) is a H-function.

Every regular divergence induces an information structure. Conversely, every information
structure is induced by a regular divergence as shown below.

Proposition 6.2 Let (L, H) be an information structure on a manifold M. There is a
reqular divergence D on M such that the induced structure by D is {L, H}.

Proof Let d denote the distance function of L on M. For p,q € M, define

1 1
D = —d(p,q)* inf H(c(t),d (t))dt
) = gaoP+ it a0

where the infimum is taken over all minimizing geodesic ¢ from p to q. Then it is easy to verify
that D induces {L, H}.

7 The a-Sprays. of an Information Structure s -
Let (L, H) be dn information structure on a manifold M. Let G = y* et — 2G* 5 be the

spray of L. Using H, we can define a family of sprays G, = y* 821, —2G! (, y)aiyi by

Ghla,y) = G'(a,y) + 597 (2.9 Hy (.9). (21)



Riemann-Finsler Geometry with Applications 81

G, is called the a-spray of (L, H). Our motivation to find a spray better than G so that the
geodesics of the spray are simple. However, the rate of change of the divergence along any
geodesic of the a-spray is not sensitive to «.

Lemma 7.1 Let D be a regular divergence on a manifold M and (L, H) be the induced
information structure and G, be the a-spray of (L, H). Let 0 = o(t) be a geodesic. Then for
any geodesic o of G,

2D(o(to),0(to +€)) _ H(z,y)
Toft)olto + 9 3Gy T 2
where © = o(t,) and y = 6(t,),

Proof Let ¢ = (x%) be a local coordinate system in M. Let z(t) := ¢(o(t)) and Az :=
x(to +€) — x(t,). We have

Azt = i'(t,)e + %ii(to)g +0(e?) = yle — Gi (x,y)€* + o(€?).

By the above identity, we have
L(z,Ax) = Le? — LpGE e + o(€?),
Lo (z, Ax) Azt = Lxy"e® + o(e®),
H(z,Az) = H(z,y)e® + o(€®).
It follows from (?7?) that
LG = Loyt (23)
Then by (??) we obtain
2D(0(to), o(to + ) = 2D(¢™ ' (x), 6" (x + Ax))
= L(z,Ax) + %er (z, Ax)Az* + H(x, Az) + o(Az?)
= Lé* — LykG’;e?’ + %szyke?’ + He® + o(€®)
=Le® — LGRS + LkGFe® + He® + o)
=Le* + (1 —3a)He + o).
By a similar argument, we have
d(o(t,),o(t, +€))* = Le? — 3aHe® + o(€?).
Combining the above two expansions, we obtain (?7?).

Definition 7.2 An information structure (L, H) on a manifold is said to be a-flat for some
« if the a-spray G, of (L, H) is flat. (L, H) is said to be flat if it is 1-flat.

Let (L, H) be an information structure on M. Let

L*(I',y) = L(xv 71/)7 H*(xay) = H(zvfy)'
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Then (L*, H*) is an information structure on M too. We call (L*, H*) the dual information

structure of (L, H). The following lemma is trivial.

Lemma 7.3 Let (L, H) be an information structure on a manifold M. Then

(1) (L, H) is a-flat if and only if (L,aH) is 1-flat.

(ii) (L, H) is a-flat if and only if the dual (L*, H*) is (—«)-flat.

Proof We only prove (ii). Let (L*, H*) be its dual structure of (L, H). Let G, and G%
denote the a-sprays of (L, H) and (L*, H*), respectively. First we have

g*i(xvy) = gl(x, _y)a

Thus
Gia(:my) = Gg(if, _y)
By this, it is easy to see that (L, H) is a-flat if and only if (L*, H*) is (—«)-flat.

Lemma 7.4 Let (L,H) be an information structure on a manifold M. For some o # 0,
(L, H) is a-flat if and only if at any point there is a local coordinate system (x*) such that

kayzyk = 2Lmz, (24)
1
aH = fngkyk. (25)

Proof Suppose that (L, H) is a-flat. By assumption, there is a standard coordinate system
(2%, 9") in which G¢ (x,y) = 0 hold. It follows from (??) and (??) that

1 1
H(z,y) = _ELy’“(%y)gk(xvy) = _@Lmk‘ (x7y)yk~

Thus

G'(z,y) = —%g”(x,y)Hyl (z,y) = ﬁg”(x, ) [ Lo (2, 9)y*] .

Comparing it with (??), we obtain (?7).
Conversely, if L satisfies (?7?), then the spray coefficients of L are given by

G'(x,y) = ig”(ﬂ%y)Lzl (,y).
By (??) and (??), we have

1 .
k]yl = —7gll(.’£,y)Lzz($7y)‘

o 1 .
—g" (2, y)Hy (2,y) = —— 9" (z,y)[Lor (2,9)y 1

2 12

Thus

Ghla,y) = G'(@.y) + 59" (@,9) Hy (2.) = 0.

Thus the a-spray G, is flat.
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8 Puall FLEt Finsler Metrics _
n Vlr‘mYe of emmafl'? .4, we make tche following

Definition 8.1 A Finsler metric L on a manifold M is said to be locally dually flat if at

any point, there is a local coordinate system (x%) in which L = L(x,y) satisfies (7?), i.e.,
kayzyk = 2Lzz. (26)

Such a local system is called an adapted local system. L is said to be (globally) dually flat if there
is an H-function H such that (L, H) is 1-flat, that is, at every point there is a local coordinate
system (x%) in which L = L(x,vy) satisfies (??) and the following equation

L,wy® = —6H. (27)

If L is a locally dually flat Finsler metric on a manifold M, then at any point, there is a
local coordinate system (x*) in which the spray coefficients G* of L satisfy

R
G+ 59 Hy =0, (28)

where H := —%Lmkyk.
Let us first consider locally dually flat Riemannian metrics.

Proposition 8.2 A Riemannian metric g = g;;(x)y'y’ on a manifold M is locally dually
flat if and only if it can be locally expressed as

2
0s(a) = 5o (), (29)

where ¥ = ¥(x) is a local scalar function on M.

Proof Assume that g is locally dually flat. There is a local coordinate system (%) in which
L := g satisfies (77).

gl gk, 09k

I (a) + S () = 2% (o). (30)
Permutating ¢ and [ yields

9gil 0gik _ Ogri

Subtracting (??) from (??) yields

9gik _ Ogwi
oz (z) = ot ().

Thus there is a function ¢ (z) such that (??) holds. The converse is trivial.

Example 8.3 Let 2 C R" be a strongly convex domain defined by a Minkowski norm ¢(y)
on R,
Q:={yeR"[o(y) <1}.
Define ©(z,y) > 0, y # 0, by

O(z,y) = ¢y +O(z,y)z), yeTQ=R" (32)
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It is easy to verify that ©(x,y) satisfies

Let
L(z,y) = O(x,y)".
Using (?7), one obtains

Lyx =20%0,,

4
kaylyk = [2@2@yk]yzyk = g[@S]yz = 4@2@yl,

szyk 292
2L yl - @ . 2@@yz - 2@@yl

Thus L satisfies (?77). Namely, L is dually flat.

A Finsler metric L on an open domain & C R™ is called a Funk metric, if F' := v/L satisfies
Fur = FEys.
Every Funk metric is projectively flat, i.e., the geodesics are straight lines, or equivalently,
Fopryyt = F. (34)

A Finsler metric L is mutually dually flat and projectively flat if F' := /L satisfies (??) and
L satisfies (??). It can be shown that every mutually dually flat and projectively flat Finsler
metric must be a Funk metric up to a scaling (see [?]).

9 Affine Divergences and Affine Information Structures )
In general, a regular divergence D : M x M %IT%), 00) is not C'* along the diagonal A :=

{(z,2), z€ M}.

Definition 9.1 A regular divergence D on a manifold M is called an affine divergence if
D is a C* function on a neighborhood of the diagonal in M x M.

Lemma 9.2 Let D be a regular affine divergence on a manifold M. Then the induced
information structure (L, H) has the following properties:

(i) L=g;j(x)y'y’ is Riemannian,

(i) H = Hyr(z)y'y'y*.

Proof Let
D(x,2') := D(¢~ (), (2)).
By assumption D(z,z’) is C* in z,2’. Since D(z,z) = 0, we have the following Taylor
expansion
i L i, j
2D(z,x +y) = gi;(@)y'y + Shise(@)y'y'y" + o(lyl),
where

0°D 9*D
95 () = g )Ly Pn®) = g ()

' =z
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Let 1 1.0 0 0
iy P Th.. L1 [0Gi5 Gik 9ik
Hijn(w) 1= shin(@) = o{ S22 (@) + T2 (@) + T @)},
Then 1 8a:.
2D(z,z +y) = gi;(2)y'y’ + iﬁ(x)ylzﬂyk + Hije(2)y'y7y* + o(ly*).

Thus L = g;;(z)y'y’ and H = H;;1(x)y'y?y"* are the induced metric and H-function.
Remark 9.3 For an affine divergence,

0°D 9°D
0xi0xI (2,2

/ o /
’ ) z'=x h 83:”393’1 (m7$ ) z’:a:.

Definition 9.4 An information structure {L, H} on a manifold M is said to be affine if
(i) L=g;j(x)y'y’ is Riemannian, and
(ii) H = Hir(z)y'y?y" is a homogeneous polynomial.

If {L,H} is an affine information structure, then (L*, H*) = (L, —H).

Lemma 9.5 For an affine divergence D on a manifold M and its dual D*, the induced
information structure {L,H} by D is dual to the induced information structure {L*, H*} by
D*.

Proof It suffices to prove that the induced information structure of D* is {L, —H}.

10V?—Flat A n? Information Structures
e are pa arly

rticu interested 1 a-flat Iformation structures. If an information structure
is a-flat, then the associated a-spray is flat.
In this section we are going to study flat affine information structures, and show that an
affine information structure (L, H) is a-flat if and only if its dual (L*, H*) is a-flat.

Lemma 10.1 Let (L, H) be an affine information structure on a manifold M and « # 0.
(L, H) is a-flat if and only if there is a local coordinate system (z*) and a local function ¢ = (z)
such that

9% i

L(z,y) = 555 @'y, (35)
1 %y i ik

H(x,y) = —@m(fﬂ)y yjyk- (36)

Proof Assume that (L, H) is a-flat. By Lemma 7.4, there is a local coordinate system (z°)
such that

Lmkylyk =2L..

Plugging gijyiyj for L into the above equation, one can find a function ¥ (x) such that

5(z) = o (o). (37)

It follows from (?7?) that

1 0%

Hije(z) = =52 oriomion

(). (38)
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Conversely, if L = g;;(z)y'y’ and H = H,jx(x)y'y’y* are given by (??) and (??) respectively,
then L satisfies (??) and H satisfies (??). Thus (L, H) is a-flat.

Lemma 10.2 Let (L, H) be an affine information structure on a manifold M and o # 0.

Assume that in a local coordinate system (x*), (L, H) is given by (?7) and (?7) respectively.

Let xf = g;@ (z) and

Y (a7) = —pla) + ) afat (39)

Then in the new coordinate system (x*%), the dual information structure (L*, H*) = (L,—H) is
given by
aQw*
L*(z*. u*) = *\ )k 40
(@, y") 81,2(833;(17 )Y Y; (40)

6oz Oz 0z,

H* (2%, y") = (%)Y Y5 Y- (41)

Thus (L*, H*) is a-flat.
Proof First by (??), we have

G = L@ 0wy
By definition,

9ij(x) = gij(x),  Hj(v) = —Hij(2).
The a-spray G, of (L*, H*) is given by
_&v
02' 021 Dk
where (¢ (z)) := (gij(x))~". That is, the Christoffel symbols (T's)};, of G}, are given by

(67

i 1, i g
59 "Hy(z,y) = s9™ (x) (2)y'y’,

( oc)jk(x) =9 (ﬁ)m(fﬁ
Our goal is to find another local coordinate system (z}) in which G* is trivial. Consider the

following map

Since the Jacobian of * = z*(z) is just (gi;(x)), this map is a local diffeomorphism which can
serve as a coordinate transformation. Define ¢* in (z}) by (??). By a direct computation, we

o™

k
o}

obtain

(z*) = z*.

Since (L*, H*) is affine, we can express L* and H* in the new coordinate system (X*) by
L* = g**(z*)yty; and H* = H*”k(x*)y:‘y;‘y,’: It is easy to show that

82,¢*
skl *\ __ *
(a%) = Ox}ox} "),
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and o2 p
o* ¥ .
(@) = S @) (T (@) =0,

Thus, in the local coordinate system (x}), the spray coefficients of G7, vanish. This implies that

ik — _ — TV
(@) 6a Oz 0w Oy,

().

By the above lemmas, we get the following

Theorem 10.3 Let a # 0. An affine information structure (L, H) is a-flat if and only if
its dual (L*, H*) is a-flat.

llvpgalis ic ne Connections ,
e know that athne connections one-to-one correspond to affine sprays. An affine connection

on a Riemannian manifold (M, g) is said to be dualistic if the dual linear connection V* with
respect to g is also affine. In this section we are going to characterize dualistic affine connections.

Let L = g;;4'y’ be a Riemannian metric on a manifold M and g = g;;dz*®dz’ the associated
inner product on tangent spaces. For a linear connection V on M, define V*:

9(VzX.Y) +9(X,VzY) = Z[g(X,Y)], (42)

where X,Y, Z € C°(T'M). It is easy to see that V* is a linear connection too. V* is called the
dual connection of V with respect to g. The concept of duality between two linear connections
on a Riemannian manifold is introduced by S. -I. Amari and H. Nagaoka [?].

An important phenomenon is that if a linear connection V is affine, the dual linear connec-
tion V* (with respect to g) is not necessarily affine (i.e., it might not be torsion-free).

Theorem 11.1 Let g be a Riemannian metric on a manifold M. FEvery polynomial H -
function on (M, g) determines a dualistic affine connection. Conversely, every dualistic affine
connection V determines a polynomial H-function. The correspondence is canonical,

;k(x) = “Y]Zk(l") + 3¢" Hjp (), (43)
where F;k denote the Christoffel symbols of V and fy}k denote the Christoffel symbols of g.

Proof Let H be a polynomial H-function on a Riemannian manifold (M, g). Let V and
V be the affine connections corresponding to the associated 1-sprays G and G of (g, H) and
(g, —H), respectively. Note that (g, —H) is dual to (g, H). We claim that V and V satisfy

9(VzX,Y)+9(X,VzY) = Z[g(X,Y)), (44)

namely, V is dual to V with respect to g. '
Let g = gij(2)y'y? and H = Hy(2)y'y’y*. Let F;k(m) and f;k(x) denote the Christoffel
symbols of Gy and G respectively. Let I'j; ;(z) := gil(x)Fg-k(x), Tjpi(z) == gil(x)f;k(x), and

etc. From (?7?), we have

ij7i(.’17) = ’ij,i(-x) + 3Hijk:<x)7 (45)

Fik,j (I’) = "Yik,j (IE) — 3H1]k(l’) (46)
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Adding (??) and (?7?) yields

— 9g;i
Tit (@) + Djea (@) = Yin,(2) + Yiale) = o8 (@), (47)

(?7) can be written as (??). That is V = V* is the dual linear connection of V on (M, g). By
definition, V is dualistic.
Let V be an affine connection on (M, g). Define H;;, by (??). Clearly,

H;jp = Hyyj.

Let V* be the dual linear connection. Let Fj“k denote the Christoffel symbols of V* and
F;k,l = gill“;,i. Then

ik, (@) + Djri(x) = gil,z (%) = ik, (x) + Vjr,i(x). (48)
It follows from (??) and (??) that
16,5 (@) = Yik,j (¥) — 3Hijx (). (49)
Suppose V* is affine, i.e, F;}C = Fzz Then
Hij, = Hyj;.

Thus H,jx, is symmetric in 4, j, k. We obtain a polynomial H-function H = H;;(z)y'y’y*. By
(?7), we see that H satisfies (?7).

Since on a Riemannian manifold (M, g), dualistic affine connections one-to-one correspond
to polynomial H-functions, we immediately obtain the following

Theorem 11.2 (See [?]) Let V and V* be dual affine connections on a Riemannian
manifold (M, g). Then V is flat if and only if V* is flat.

Proof Let H be the polynomial H-function corresponding to V. Then H* := —H is the
polynomial H-function corresponding to V*. Note that the spray of (g, H) (resp. (g, H*)) is
the spray defined by V (resp. V*). Thus V is flat if and only if (g, H) is 1-flat; (g, H) is 1-flat
if and only if (g, H*) is 1-flat by Theorem 10.3; (g, H*) is 1-flat if and only if V* is flat.

12 Statlstlcal Models

‘P be a space of probability distributions on a measure space X and D a divergence on
P. A statzst@cal model in (P, D) is a pair (M, D), where M is a finite C'°° manifold embedded
in P and D is the restriction of D on M. If f is a function satisfying (?7?), then it defines the
f-divergence Dy on P by (?7).
In this section, we are going to prove that for any manifold M C P, the induced divergence
Dy = D¢l is affine, namely, the induced metric L = g;;(s)y’y’ is Riemannian and the induced
H-function H = H,ji(z)y'y’y* is a polynomial.

Theorem 12.1 Let f = f(t) be a function with f(1) = 0 and f"(1) = 1. For any
regular statistical model (M, Dy) of (P,Dy), the induced information structure on M is given
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by (Ly,Hy) = (L, pN), where p :=3+2f"(1), and
0
L:/ [ 9 2hap} pdr,
1 .0
N=— b —
6 /X [y ox'
The a-spray Ga,p of Dy is given by Gg’p =G + (pa+ 1) A%, where

. il 2
—i g (x) i g 0 0
¢ 2 /X [y Y oziowi np} o P
(

x) .0 2 9
1 /X v g np] 5w

}3}9 dr.

e gl

Proof The natural embedding M — P is given by © — p = p(r;z).
Dy(p(r;z),p(r; 2)), i.e., -
pir; z
D = . d
(z,2) /Xp(r,x)f(p(r;x)) r
We have . "
D ;.1 9D -
2D a,J 7%’ T, k 3 ]
(@ety) = o= Y+ 35005,y Y +ollyl)

By a direct computation, we obtain

D|.—s =0,
gl v =0
% Z:myiyj=/ [ ;Zlnp] pdr,
93D :Iyiyjyk _ g/X [yzai

02102702k 1

Let
L::/X[yiaazi rpdr.
Then
Lory _/ v aa ] pdr”/)( [yk%hlp} [yiyjax?axj Inp
3 C 02 0
= [l game] 2l ] [ e e
Let

N = é/X [yi%lnprpdr.

i

'var+5{- [ oz

+2 {yiyj Bm(?;xj p] [yk% lnp} }dr.

89

Let D(x,z) :=
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90
We obtain !
2D(z, 2 +y) = L(z,y) + 5 Lox (z,9)y" + pN(2,9) + o([y]")-
Thus Dy is regular and the induced information structure (Ly, Hy) = (L, pN ) is affine.
o — 20" of =Y 5or — 2G50 be the

Let G =v* D7
a-spray of Dy. Without much difficulty, we obtain

G'(x.y) + 59" (@) Ny (. )

il
- 9" (z) i 0 29
= (pa+1) 1 /X [y e lnp} agclp(r,x) dr

i _
Ga,p -

2

il
9" (x) ij_ 0 . 9
Ty /X [y Y 9zi00i lnp(r,x)} Omlpdr'

This gives a formula for G, ,
Now let us express L and N in a different form. Observe that
2

L:/ij%{[ D lnp} }dr—/ {yy &c?ﬁxﬂ 1np}pdr
0P 52
:/Xyzy]axiaxjpd’"—/ vy 5 18 s np|pdr
jlnp}pdr

2
=y'y’ 0 -/pdT*/ yiyj
81‘1@333 X X a

2
= — LYY
/X [y Y 9ri0xi lnp]pdr.
2

This gives
0
L——/ [yy i Jlnp}pdr

(54)

2

By a similar argument, we obtain
0
k
Inp)]|v* 5ee)dr

6N = yk% / [yi aii lnp} pdr -2 /X [yiyj drior
_ykaik / v iaii In)] s aaa plar -2 aak / v ax?;xj lnp|pdr
> lnp}pdr—l—Q/X[yiyjykamma;aaﬂglnp}pdr

9
_ .k Y
- 3yaxk/[yyazaa

2

This gives
1 & 1,0
N‘§/ {yyy Or 0z O klnp}pd’"_’y axk/ [yy Oridz

qrgamlly of probability distributions, on which

In p]p dr. (55)

istributi

onential F
on id er t e exponentl

13 E
3 Int g section, we wi

the a-spray of Dy with pa = —1 is flat
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Definition 13.1 A manifold M in P is called an exponential manifold if it is covered by
mjections
w:QCR" = M,

such that p := w(x) € P is in the following form

p(riz) = expla’ fi(r) + k(r) — ()], reX. (56)

dp .
N

Fa@) = [ plrsa)firyar

The Kullback-Leibler divergence Dk, on M is the f-divergence with f(t) = In(1/t). We have

Observe that the integral

This implies that

Di1(p(r; ), p(r;a’)) = /P(T;ff)h/f(x') —(z) = (2" = 2)" fi(r)]dr

= ()~ vla) — (&~ ) ol (),

The pull-back of Dy, onto € is given by

Dica () = (&) —o(a) — (& — 2)' 0 (),

Proposition 13.2 Let M be the exponential family of distributions in the form (??). The
induced information structure of Dy is given by (Ly,Hf) = (L,pN), p=3+2f""(1), and
0%

L=—"—"_ i N =

1 9%y
6 Oxidxi Ok

()y'yy".
Proof Note that

Inp(r;z) = ' fi(r) + k(r) — ¥(@).

It follows from (?7?) that

. 0% S 0%
_ i,J . i
L(z,y) —/X [yy Bige L) | p(ra)dr = y'y oe o (2).

Then the spray coefficients of L are given by
w 0%

1 o
1 ___ - 2.,
9= 19" griogionr VY
It follows from (?7?) that
1 . 83 1,0 Y, )
N i d ok . Zak igJ .
N(z,y) 3/)( {yy Y Smitmigek &) Plr)dr + Sy 83:’“/;( {yy D007 (I)}p(r,m)df

o 03y
— ot dak
VY'Y Srigmionr )
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By Lemma 10.1, we obtain the following

Corollary 13.3 Let M be the exponential family of distributions in the form (?7?). Let
(Ly, Hy) be the information structure induced by the f-divergence. When pa = —1, (Ly, Hy)
is a-flat, namely, the a-spray of (Ly, Hy) is flat.

Proof The a-spray is given by

i _ i, PO g _pa+1 P i g
Gap=9"+ 9 9 Nyr = 1+ 7 axiaxﬂﬁxk(m)yy'

If poe = —1, then the induced information structure (Ly, Hy) is a-flat.

Example 13.4 Consider the family M of Gaussian probability distributions with mean u

and variance o2:

r— )2
s [ 2]

p(r;p,0°) =
2o

We can reparametrize M by

p(ryz) = explz’ fi(r) + 2® f2(r) — ¥(2))],

where )
1 M 2 _
= T =g
and
2 1\2
A =7, fo(r) = =1, o(x) = % + In(v2r0) = (zxg +In %

Thus M is an exponential manifold in P. The induced Riemannian metric L = g;;(z)y'y’ of
an f-divergence on M is given by

_ Py 9y
U= Griazt 92T Grigz2 92T 9r2ar
The Gauss curvature of L is a negative constant K = f%.

Example 13.5 Let M be the family of gamma distributions with event space = R* and
parameters 7, € RT which are defined by
v—1

p(r;T,v) = (Z)Uﬁ exp [— g}, (57)

T

where I' is the gamma function defined by
I'v) = / s¥ e 4ds.
0

Note that 7 = (r) is the mean and 72/v = Var(r) is the variance. Thus the coefficient of
variation \/Var(r)/7T = 1/4/v is independent of the mean.
Let p:=v/7. Then gamma distributions can be expressed by

p(r; p,v) = expl—pur + vinr — lnr — (g, v)), (58)
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where
Y(p,v) :=InT(v) —vinp.

Thus M is an exponential manifold in P. See [?] for related discussion.
Let L be the induced Riemannian metric by any f-divergence. In the coordinate system
(r,v),
1

14
g ==, g12=0=g2, gao=¥()-—,
T 14

where ¥(v) := I"(v)/T'(v) is the logarithmic derivative of the gamma function. Since ¥(v)

satisfies 1 ! 1
— <V'(v)— - < —.
202 @) v ov?
We have 1 1
Y 2
L1~ 7_2 +TU <L<*U +gv LQ.

The Gauss curvature K; of L; and the Gauss curvature K of L are given

1 ' (v) + 0" (v)v 1
N O L S

The reader is referred to [?] for the geometry of Gamma distributions and its applications.

14 Duyali f-Divergences
Le lz% ]ﬁybe a“divergenc® space (P,D). By definition, the dual divergence D* is defined

by
D*(p,q) :==D(¢,p), p,q€P-
Given a convex function f : (0,00) — R with f(1) =0 and f”(1) = 1. Let

F(t) = tf(%), t>0.

Then f*(t) satisfies that f*(1) = 0 and f* (1) = f”(1) = 1. Let p := 3+ 2f"(1) and
p* =34 2f*"(1). We have
p+p°=0.

Note that
(Df)*(p,q) = Dy(g;p) = Ds-(p, q)-
Thus Dy- is dual to Dy. By the above argument, (Df)* = Dy- induces an information structure

(Lf*>Hf*) = (Lup*N) = (L7 _pN)'

That is, Ly« (z,y) = Ly(z, —y) and Hp«(x,y) = Hy(x, —y). The information structure of (Dy)*
is dual to that of D. In this sense, Dy is said to be dualistic.
According to Lemmas 10.1 and 10.2, we have the following

Proposition 14.1 The information structure (Ly, Hy) is a-flat if and only if the dual
structure (Ly-, Hp«) = (Ly(z, —y), Hf(z, —y)) is a-flat.

Let f, be the function defined in (??). Let D, := Dy,. It is easy to see that

(fo)"(t) = f-p(1).
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Thus
(Dp)*(p,a) = Dp(q,p) = D—p(p,q)-
For p # +1,
4
Dylpra) = =g {1~ [ o) ar) 0 dr ) (59)
for p = £1,
D =D = w2y 60
~1(p, @) = Ds1(g,p) = | p(r)In —=dr (60)
q(r)
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