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1 Introduction and Main Result

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= B(u), (1.1)

where u = (u1, · · · , un)T is the unknown vector-valued function of (t, x) standing for the density
of physical quantities, A(u) = (aij(u)) is an n×n matrix with suitably smooth elements aij(u)
(i, j = 1, · · · , n) and B(u) = (B1(u), B2(u), · · · , Bn(u))T is a given suitably smooth vector-
valued function.

By hyperbolicity, for any given u on the domain under consideration, A(u) has n real eigen-
values λ1(u), · · · , λn(u) and a complete system of left (resp. right) eigenvectors l1(u), · · · , ln(u)
(resp. r1(u), · · · , rn(u)). In this paper, we assume that

(H1) (1.1) is a hyperbolic system with constant multiple characteristic fields.

Without loss of generality, we may suppose that

λ(u)
4
= λ1(u) ≡ · · · ≡ λp(u) < λp+1(u) < · · · < λn(u). (1.2)

When p = 1, the system (1.1) is strictly hyperbolic; while, when p > 1, (1.1) is a non-strictly
hyperbolic system.
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For i = 1, · · · , n, let

li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T )

be a left (resp. right) eigenvector corresponding to λi(u), i.e.,

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.3)

We have

det |lij(u)| 6= 0 (equivalently, det |rij(u)| 6= 0). (1.4)

By [4], the components of the eigenvalues and eigenvectors, i.e. λi(u), rij(u) and lij(u)
(i, j = 1, · · · , n), all have the same singularity as A(u) on the domain under consideration.
Furthermore, the eigenvectors can be chosen such that the following normalized conditions
hold on the domain under consideration:

li(u)rj(u) ≡ δij , i, j = 1, · · · , n, (1.5)

rT
i (u)ri(u) ≡ 1, i = 1, · · · , n, (1.6)

where δij stands for the Kronecker’s symbol.
In order to introduce some basic known results and state our main result precisely, we first

recall the concepts of weakly linear degeneracy, normalized coordinates and matching condition
(see [10, 11]).

Definition 1.1 The p multiple characteristic λ(u) is weakly linearly degenerate, if, along
the i-th characteristic trajectory u = u(i)(s) passing through u = 0, defined by

du

ds
= ri(u), u(0) = 0, i = 1, · · · , p, (1.7)

we have

∇λ(u)ri(u) ≡ 0, ∀ |u| small, ∀ i = 1, · · · , p, (1.8)

namely,

λ(u(i)(s)) ≡ λ(0), ∀ |s| small, ∀ i = 1, · · · , p. (1.9)

The j-th characteristic λj(u) (j = p + 1, · · · , n) is weakly linearly degenerate, if, along the j-th
characteristic trajectory u = u(j)(s) passing through u = 0, we have

∇λj(u)rj(u) ≡ 0, ∀ |u| small, (1.10)

namely,

λj(u(j)(s)) ≡ λj(0), ∀ |s| small. (1.11)

If all characteristics are weakly linearly degenerate, then system (1.1) is called to be weakly
linearly degenerate.
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In this thesis, we suppose that

(H2) (1.1) is a hyperbolic system with weakly linearly degenerate characteristics.

Definition 1.2 If there exists an invertible smooth transformation u = u(ũ) (u(0) = 0)
such that in the ũ-space,

r̃i

( p∑

h=1

ũheh

)
≡ ei, i = 1, · · · , p, ∀ |ũh| small, h = 1, · · · , p, (1.12)

r̃j(ũjej) ≡ ej , ∀ |ũj | small, j = p + 1, · · · , n, (1.13)

where

ei = (0, · · · , 0,
(i)

1 , 0, · · · , 0)T . (1.14)

Such a transformation u = u (ũ) is called the normalized transformation and the correspond-
ing unknown variables ũ = (ũ1, · · · , ũn)T are called the normalized variables or normalized
coordinates.

In this paper, we suppose that

(H3) There exist the normalized coordinates for the system (1.1).

Remark 1.1 For the strictly hyperbolic systems, the normalized coordinates always exist
(see [9, Lemma 2.5]). However for the non-strictly hyperbolic systems, the normalized coordi-
nates maybe do not exist.

Obviously, in the normalized coordinates (if any), (1.9) and (1.11) simply reduces to

λ
( p∑

h=1

uheh

)
≡ λi

( p∑

h=1

uheh

)
≡ λi(0) ≡ λ(0), ∀ |uh| small, ∀ i = 1, · · · , p (1.9a)

and

λi(uiei) ≡ λi(0), ∀ |ui| small, ∀ i = p + 1, · · · , n. (1.11a)

Definition 1.3 The inhomogeneous term B(u) is said to satisfy the matching condition,
if, along the i-th characteristic trajectory, we have

∇B(u)ri(u) ≡ 0, ∀ i = 1, 2, · · · , n, ∀ |u| small,

i.e., in the normalized coordinates (if any )

B
( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, h = 1, · · · , p , (1.15)

B(ujej) ≡ 0, ∀ |uj | small, j = p + 1, · · · , n. (1.16)

In this paper, we further suppose that

(H4) For the system (1.1), B(u) satisfies the matching condition.
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Consider the Cauchy problem for the system (1.1) with the following initial data

t = 0 : u(0, x) = f(x), (1.17)

where f(x) is a C1 vector-valued function of x. For the case that the initial data f(x) satisfies
the following decay property: there exists a constant µ > 0 such that

%
4
= sup

x∈R
{(1 + |x|)1+µ(|f(x)|+ |f ′(x)|)} < +∞ (1.18)

is sufficiently small, by means of the normalized coordinates Li et al proved that the Cauchy
problem (1.1) and (1.17) admits a unique global classical solution, provided that the system
(1.1) is weakly linearly degenerate (see [5, 8–11]). In their works, the condition µ > 0 is
essential. If µ = 0, a counterexample was constructed in [6] showing that the classical solution
may blow up in a finite time, even when the system (1.1) is weakly linearly degenerate.

Recently, Zhou [13] proved the global existence of classical solution when the system (1.1)
is strictly hyperbolic and homogeneous provided that the total variation and L1 norm of the
initial data are sufficient small. Before long, this result was generalized by Du [3] and Wu [12]
respectively.

Theorem A (See [13, 3, 12]) Suppose that (H1)–(H4) hold. Suppose furthermore that
A(u), B(u) ∈ C2 in a neighborhood of u = 0 and f ∈ C1 with bounded C1 norm. Let

M
4
= sup

x∈R
|f ′(x)| < +∞. (1.19)

Then there exists a small constant ε > 0 such that the Cauchy problem (1.1) and (1.17) admits
a unique global C1 solution u = u(t, x) for all t ∈ R+, provided that

∫ +∞

−∞
|f ′(x)|dx ≤ ε, (1.20)

∫ +∞

−∞
|f(x)|dx ≤ ε

M + 1
. (1.21)

Our goal in this paper is to describe the exact time asymptotic behavior of the classical
solution of the Cauchy problem (1.1) and (1.17). Based on Theorem A, we prove the following
theorem.

Theorem 1.1 (Asymptotic Behavior) Suppose that A(u), B(u) are C2,ρ (0 < ρ ≤ 1)
continuous. Then, under the assumptions of Theorem A, there exists a unique C1 vector-valued
function ϕ(x) = (ϕ1(x), · · · , ϕn(x))T such that in the normalized coordinates

u(t, x) −→
n∑

i=1

ϕi(x− λi(0)t)ei, as t → +∞; (1.22)

moreover, ϕi(x) (i = 1, · · · , n) are globally Lipschitz continuous, more precisely, there exists a
positive constant κ1 independent of ε, M, x1 and x2 such that for every i ∈ {1, · · · , n}, it holds
that

|ϕi(x1)− ϕi(x2)| ≤ κ1M |x1 − x2|, ∀x1, x2 ∈ R. (1.23)
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Furthermore, if f ′(x), the derivative of the initial data, is globally ρ-Hölder continuous, that is,
there exists a positive constant ς such that

|f ′(x1)− f ′(x2)| ≤ ς|x1 − x2|ρ, ∀x1, x2 ∈ R, (1.24)

then ϕ′(x) satisfies that, for all x1, x2 ∈ R,

|ϕ′(x1)− ϕ′(x2)| ≤ κ2

[
ς +

M

M + 1
(M + ε)max(M, ε)

]
|α− β|ρ

+ κ2(M2 + Mε + ε3)|α− β|, (1.25)

where κ2 is a positive constant independent of ε, M, ς, x1 and x2.

Remark 1.2 Theorem 1.1 gives the exact time asymptotic behavior of the global classical
solutions presented in Theorem A. For the initial data satisfying the decay property (1.18) and
B(u) ≡ 0, Kong and Yang [7] proved that, when t tends to infinity, the global classical solution
approaches a combination of C1 travelling wave solutions at algebraic rate (1 + t)−µ. The goal
of the present paper is, in fact, to generalize the result in [7] to the case of the initial data with
small BV norm. By [1] and [6], we observe that the BV norm is suitable and almost sharp in
[13]. Comparing with [7], because of the lack of the decay rate of the initial data, in the present
situation there is no any estimate on the convergence rate.

The paper is organized as follows. For the sake of completeness, in Section 2 we recall
John’s formula on the decomposition of waves with some supplements. Section 3 is devoted
to establishing some new estimates, these estimates will play an important role in the proof of
main result. The main result, Theorem 1.1, is proved in Section 4. By analyzing carefully the
global propagation properties of the classical waves, we use the estimates given in Section 3 to
describe the large time behavior of the global classical solutions, and then construct the desired
travelling waves.

2 Preliminaries

For the sake of completeness, in this section we briefly recall John’s formula on the decom-
position of waves with some supplements, which play an important role in our proof.

Let

vi(u) = li(u)u, i = 1, · · · , n, (2.1)

wi(u) = li(u)ux, i = 1, · · · , n, (2.2)

bi(u) = li(u)B(u), i = 1, 2, · · · , n. (2.3)

By (1.5), we have

u =
n∑

k=1

vkrk(u), (2.4)

ux =
n∑

k=1

wkrk(u), (2.5)
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B(u) =
n∑

k=1

bk(u)rk(u). (2.6)

Let

d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.7)

be the directional derivative along the i-th characteristic. We have (see [9–11] or [5])

dvi

dit
=

n∑

j,k=1

βijk(u)vjwk +
n∑

j,k=1

νijk(u)vjbk(u) + bi(u)
4
= Fi(t, x), (2.8)

dwi

dit
=

n∑

j,k=1

γijk(u)wjwk +
n∑

j,k=1

σijk(u)wjbk(u) + (bi(u))x
4
= Gi(t, x), (2.9)

where

βijk(u) = (λk(u)− λi(u))li(u)∇rj(u)rk(u), (2.10)

νijk(u) = −li(u)∇rj(u)rk(u), (2.11)

γijk(u) = (λk(u)− λj(u))li(u)∇rj(u)rk(u)−∇λj(u)rk(u)δij , (2.12)

σijk(u) = li(u)(∇rk(u)rj(u)−∇rj(u)rk(u)). (2.13)

Equivalently we also get

d[vi(dx− λi(u)dt)] =
[ n∑

j,k=1

β̃ijk(u)vjwk +
n∑

j,k=1

νijk(u)vjbk(u) + bi(u)
]
dt ∧ dx

4
= F̃i(t, x)dt ∧ dx, (2.14)

d[wi(dx− λi(u)dt)] =
[ n∑

j,k=1

γ̃ijk(u)wjwk +
n∑

j,k=1

σijk(u)wjbk(u) + (bi(u))x

]
dt ∧ dx

4
= G̃i(t, x)dt ∧ dx, (2.15)

where

β̃ijk(u) = βijk(u) +∇λi(u)rk(u)δij , (2.16)

γ̃ijk(u) = γijk(u) +
1
2
[∇λj(u)rk(u)δij +∇λk(u)rj(u)δik]. (2.17)

From above, we see that

βiji(u) ≡ 0, ∀ j ∈ {1, 2, · · · , n}, (2.18)

γijj(u) ≡ 0, j 6= i, (2.19)

β̃iji(u) ≡ 0, ∀ j 6= i, (2.20)

γ̃ijj(u) ≡ 0, ∀ i, j ∈ {1, 2, · · · , n}. (2.21)
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In the normalized coordinates (if any), making use of (1.12)–(1.13), we see that the following
relations hold (see [5]):

βijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ i ∈ {1, 2, · · · , n}, ∀ j, k ∈ {1, · · · , p}, (2.22)

βijj(ujej) ≡ 0, ∀ |uj | small, ∀ i ∈ {1, 2, · · · , n}, ∀ j ∈ {p + 1, · · · , n}, (2.23)

νijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ i ∈ {1, 2, · · · , n}, ∀ j, k ∈ {1, · · · , p}, (2.24)

νijj(ujej) ≡ 0, ∀ |uj | small, ∀ i ∈ {1, 2, · · · , n}, ∀ j ∈ {p + 1, · · · , n}, (2.25)

γijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ i ∈ {p + 1, · · · , n}, ∀ j, k ∈ {1, · · · , p}, (2.26)

σijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ i ∈ {1, 2, · · · , n}, ∀ j, k ∈ {1, · · · , p}, (2.27)

σijj(ujej) ≡ 0, ∀ |uj | small, ∀ i ∈ {1, 2, · · · , n}, ∀ j ∈ {p + 1, · · · , n}, (2.28)

β̃ijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ i ∈ {p + 1, · · · , n}, ∀ j, k ∈ {1, · · · , p}, (2.29)

β̃ijj(ujej) ≡ 0, ∀ |uj | small, ∀ j ∈ {p + 1, · · · , n}, j 6= i, (2.30)

γ̃ijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀j, k ∈ {1, · · · , p}. (2.31)

If the system (1.1) is weakly linearly degenerate, we further have (see [5])

β̃ijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ j, k ∈ {1, · · · , p}, when i ∈ {1, · · · , p}, (2.32)

β̃iii(uiei) ≡ 0, ∀ |ui| small, when i ∈ {p + 1, · · · , n}, (2.33)

γijk

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ j, k ∈ {1, · · · , p}, when i ∈ {1, · · · , p}, (2.34)

γiii(uiei) ≡ 0, ∀ |ui| small, ∀ i ∈ {p + 1, · · · , n}. (2.35)

When the inhomogeneous term B(u) satisfies the matching condition, in the normalized
coordinates (if any) we have (see [5])

bi(u) =
∑

λj(u) 6=λk(u)

bijk(u)ujuk, ∀ |u| small, ∀ i ∈ {1, 2, · · · , n}, (2.36)

where bijk(u) is a C1 function which can be obtained by Taylor formula.

(bi(u))x =
n∑

k=1

b̃ik(u)wk, (2.37)

where b̃ik(u) =
n∑

l=1

∂bi(u)
∂ul

rkl(u) and b̃ik(u) satisfies that

b̃ik

( p∑

h=1

uheh

)
≡ 0, ∀ |uh| small, ∀ k ∈ {1, · · · , p}, (2.38)
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b̃ik(ukek) ≡ 0, ∀ |uk| small, ∀ k ∈ {p + 1, · · · , n}. (2.39)

3 Uniform Estimates

In this section, we shall establish some new uniform estimates which play a key role in the
proof of Theorem 1.1.

For the system (1.1), we suppose that there exists the normalized coordinates. Without loss
of generality, we assume that u = (u1, · · · , un)T are already the normalized coordinates.

For the sake of ease, we denote

Γ
4
= {(j, k) | j, k ∈ {1, 2, · · · , n}, j or k /∈ {1, 2, · · · , p}, j 6= k}. (3.1)

It is easy to see that

if (j, k) ∈ Γ, then (i, j) ∈ Γ or (i, k) ∈ Γ, ∀ i = 1, 2, · · · , n. (3.2)

By (1.2), there exist positive constants δ and δ0 so small that

|λi(u)− λj(v)| ≥ δ0, ∀ |u|, |v| ≤ δ, (i, j) ∈ Γ, (3.3)

|λi(u)− λi(v)| ≤ δ0

2
, ∀ |u|, |v| ≤ δ, i = 1, · · · , n. (3.4)

On the other hand, noting (3.1.3) in [3] or Lemma 4.1 in [12], we observe that the global classical
solution u = u(t, x) of the Cauchy problem (1.1) and (1.17) satisfies

|u| ≤ K0ε, (3.5)

where K0 > 0 is a constant independent of ε and M . Therefore, taking ε small enough, we
always have

|u| ≤ δ. (3.6)

For any fixed T ≥ 0, we introduce

U∞(T ) = sup
0≤t≤T

sup
x∈R

|u(t, x)|,

V∞(T ) = sup
0≤t≤T

sup
x∈R

|v(t, x)|,

W∞(T ) = sup
0≤t≤T

sup
x∈R

|w(t, x)|,

U1(T ) = sup
0≤t≤T

∫ +∞

−∞
|u(t, x)|dx,

V1(T ) = sup
0≤t≤T

∫ +∞

−∞
|v(t, x)|dx,

W1(T ) = sup
0≤t≤T

∫ +∞

−∞
|w(t, x)|dx,

Ũ1(T ) = max
(i,j)∈Γ

sup
eCj

∫
eCj

|ui(t, x)|dt,

Ṽ1(T ) = max
(i,j)∈Γ

sup
eCj

∫
eCj

|vi(t, x)|dt,
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W̃1(T ) = max
(i,j)∈Γ

sup
eCj

∫
eCj

|wi(t, x)|dt,

U1(T ) = max
(i,j)∈Γ

sup
Lj

∫

Lj

|ui(t, x)|dt,

V 1(T ) = max
(i,j)∈Γ

sup
Lj

∫

Lj

|vi(t, x)|dt,

W 1(T ) = max
(i,j)∈Γ

sup
Lj

∫

Lj

|wi(t, x)|dt,

where | · | stands for the Euclidean norm in Rn, v = (v1, · · · , vn)T and w = (w1, · · · , wn)T

in which vi and wi are defined by (2.1) and (2.2) respectively, C̃j stands for any given j-th
characteristic on the domain [0, T ]×R, while Lj stands for any given ray with the slope λj(0)
on the region [0, T ]× R.

Combining Lemma 3.1 and (3.1.3) in [3] or using Lemma 4.1 in [12] gives the following
lemma.

Lemma 3.1 Under the assumptions of Theorem 1.1, there exists a positive constant K1

independent of ε, M and T such that

U1(T ), V1(T ), Ṽ1(T ) ≤ K1
ε

M + 1
, (3.7)

W1(T ), W̃1(T ) ≤ K1ε, (3.8)

U∞(T ), V∞(T ) ≤ K1ε, (3.9)

W∞(T ) ≤ K1M. (3.10)

On the other hand, we have

Lemma 3.2 Under the assumptions of Theorem 1.1, there exists a positive constant K2

independent of ε, M and T such that

Ũ1(T ) ≤ K2
ε

M + 1
, (3.11)

U1(T ), V 1(T ) ≤ K2
ε

M + 1
, (3.12)

W 1(T ) ≤ K2ε. (3.13)

Proof We first prove (3.11).

Noting (1.12)–(1.13), by Hadamard’s formula we have

ui =
n∑

k=1

vkrk(u)ei = vi +
p∑

k=1

vk

(
rk(u)− rk

( p∑

h=1

uheh

))
ei +

n∑

k=p+1

vk(rk(u)− rk(ukek))ei

= vi +
∑

(j,k)∈Γ

Ξijk(u)ujvk, (3.14)
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where

Ξijk(u) =
∫ 1

0

∂rk(su1, · · · , suk−1, uk, suk+1, · · · , sun)
∂uj

eids, k = 1, · · · , p , j ≥ p + 1,

Ξijk(u) =
∫ 1

0

∂rk(su1, · · · , suk−1, uk, suk+1, · · · , sun)
∂uj

eids, k = p + 1, · · · , n, j 6= k (3.15)

are C1,ρ functions of u. Integrating (3.14) along the j-th characteristic C̃j : x = xj(s, α) ((i, j) ∈
Γ) and noting (3.6) gives

∫
eCj

|ui(t, x)|dt ≤ Ṽ1(T ) + C1{U∞(T )Ṽ1(T ) + V∞(T )Ũ1(T )}.

Here and hereafter Cj (j = 1, 2, · · · ) stand for some positive constants independent of ε, M

and T . Noting (3.7) and (3.9), we get (3.11) immediately.

We next prove (3.12)–(3.13).

Similarly to [3, 12], we introduce

QV (T ) =
∑

(i,j)∈Γ

∫ T

0

∫

R
|vi(t, x)||vj(t, x)|dtdx,

QV W (T ) =
∑

(i,j)∈Γ

∫ T

0

∫

R
|vi(t, x)||wj(t, x)|dtdx,

QW (T ) =
∑

(i,j)∈Γ

∫ T

0

∫

R
|wi(t, x)||wj(t, x)|dtdx.

Noting [3, Lemma 3.1] or [12, Lemma 4.1], we have

QV (T ) ≤ C2
ε2

(M + 1)2
, QV W (T ) ≤ C2 min

( ε2

M + 1
, ε2

)
, QW (T ) ≤ C2ε

2. (3.16)

For any fixed α ∈ R, let Lj be the ray with the slope λj(0) passing through (0, α), and let P be
the intersection point of Lj with the line t = T . Passing through the point P , we draw the i-th
characteristic and denote the intersection point of this characteristic with the x-axis by (0, β),
where (i, j) ∈ Γ. For fixing the idea we may suppose that α < β. Let Ω be the domain bounded
by Lj , the x-axis and the i-th characteristic passing through the point P . Using Green formula
on the region Ω, we obtain from (2.14) that

∫

Lj

vi(t, x)(λj(0)− λi(u))dt =
∫ β

α

vi(0, x)dx−
∫∫

Ω

F̃i(t, x)dtdx. (3.17)

Since (i, j) ∈ Γ, it follows from (3.3) that

|λj(0)− λi(u)| ≥ δ0. (3.18)

On the other hand, noting (2.23)–(2.24), (2.28)–(2.29), (2.31)–(2.32), (2.35) and using Hada-
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mard’s formula we have

F̃i(t, x) =
n∑

k,l=1

β̃ikl(u)vkwl +
n∑

k,l=1

νikl(u)vkbl(u) + bi(u)

=
∑

(k,l)∈Γ

β̃ikl(u)vkwl +
∑

k,l∈{1,··· ,p}

(
β̃ikl(u)− β̃ikl

( p∑

h=1

uheh

))
vkwl

+
∑

k∈{p+1,··· ,n}
(β̃ikk(u)− β̃ikk(ukek))vkwk +

∑

(k,l)∈Γ

bikl(u)ukul

+
n∑

k,l=1

νikl(u)vk

∑

(m,q)∈Γ

blmq(u)umuq

≡
∑

(k,l)∈Γ

β̃ikl(u)vkwl +
∑

k,l∈{1,··· ,p}

∑

m∈{p+1,··· ,n}
β

(1)
iklm(u)vkwlum

+
∑

k∈{p+1,··· ,n}

∑

l 6=k

β
(2)
ikl (u)vkwkul +

∑

(k,l)∈Γ

β
(3)
ikl (u)ukul, (3.19)

where we have made use of Hadamard’s formula similar to (3.14) and β
(m)
··· (u) (m = 1, 2, 3) are

all ρ-Hölder continuous functions with respect to u.
By (3.1.20)–(3.1.21) in [3], i.e.,

n∑

j=p+1

|uj | ≤ C3

n∑

j=p+1

|vj |,
∑

j 6=k

|uj | ≤ C3

∑

j 6=k

|vj |, when k ∈ {p + 1, · · · , n}, (3.20)

we have

|F̃i(t, x)| ≤ C4

∑

(k,l)∈Γ

[|vkvl|+ |vkwl|]. (3.21)

Thus, noting (3.21) and using (1.21), (3.16) and (3.18), we obtain from (3.17) that
∫

Lj

|vi(t, x)|dt ≤ 1
δ0

[V1(0) + C4(QV (T ) + QV W (T ))]

≤ C5

{ ε

M + 1
+

ε2

(M + 1)2
+ ε2

}
≤ C6

ε

M + 1
,

provided that ε is small. Therefore, we have

V 1(T ) ≤ C6
ε

M + 1
. (3.22)

This is nothing but the desired second inequality in (3.12).
On the other hand, integrating (3.14) along the ray Lj gives

∫

Lj

|ui(t, x)|dt ≤ V 1(T ) + C7{U∞(T )V 1(T ) + V∞(T )U1(T )}. (3.23)

Noting (3.9) and (3.22), we obtain from (3.23) that

U1(T ) ≤ C8
ε

M + 1
. (3.24)
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Combining (3.22) and (3.24) proves (3.12).
We next prove (3.13)
Similarly to (3.17), we obtain from (2.15) that

∫

Lj

wi(t, x)(λj(0)− λi(u))dt =
∫ β

α

wi(0, x)dx−
∫∫

Ω

G̃i(t, x)dtdx. (3.25)

Noting (2.22), (2.26)–(2.27), (2.30) and (2.35)–(2.38), we have

G̃i(t, x) =
n∑

k,l=1

γ̃ikl(u)wkwl +
n∑

k,l=1

σikl(u)wkbl(u) + (bi(u))x

=
∑

(k,l)∈Γ

γ̃ikl(u)wkwl +
∑

k,l∈{1,··· ,p}

[
γ̃ikl(u)− γ̃ikl

( p∑

h=1

uheh

)]
wkwl

+
n∑

k,l=1

σikl(u)wk

∑

(m,q)∈Γ

blmqumuq +
∑

k∈{1,··· ,p}

[
b̃ik(u)− b̃ik

( p∑

h=1

uheh

)]
wk

+
∑

k∈{p+1,··· ,n}
[b̃ik(u)− b̃ik(ukek)]wk

≡
∑

(k,l)∈Γ

γ̃ikl(u)wkwl +
∑

k,l∈{1,··· ,p}
m∈{p+1,··· ,n}

γ
(1)
iklm(u)wkwlum +

∑

(k,l)∈Γ

γ
(2)
ikl (u)ukwl, (3.26)

where we have made use of Hadamard’s formula similar to (3.14) and γ
(m)
··· (u) (m = 1, 2) are

all ρ-Hölder continuous functions with respect to u.
By (3.6) and (3.26), we get

|G̃i(t, x)| ≤ C9

∑

(j,k)∈Γ

[|wjwk|+ |vjwk|]. (3.27)

Thus, noting (3.7) and (3.27), it follows from (3.25) that
∫

Lj

|wi(t, x)|dx ≤ 1
δ0

(W1(0) + C9(QV W (T ) + QW (T ))) ≤ C10ε.

Therefore,

W 1(T ) ≤ C10ε.

This proves (3.13). Thus, the proof of Lemma 3.2 is completed.

Combining Lemmas 3.1 and 3.2 gives

Lemma 3.3 Under the assumptions of Theorem 1.1, there exists a positive constant K3

independent of ε and M such that

U1(∞), V1(∞), U1(∞), V 1(∞), Ũ1(∞), Ṽ1(∞) ≤ K3
ε

M + 1
, (3.28)

W1(∞), W 1(∞), W̃1(∞) ≤ K3ε, (3.29)

U∞(∞), V∞(∞) ≤ K3ε, (3.30)

W∞(∞) ≤ K3M, (3.31)
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where

V1(∞) = sup
0≤t≤∞

∫ +∞

−∞
|v(t, x)|dx, etc.

Lemma 3.4 Under the assumptions of Theorem 1.1, for any t ∈ R+ and arbitrary α, β ∈ R,
it holds that

|u(t, α + λi(0)t)− u(t, β + λi(0)t)| ≤ c1M |α− β|, (3.32)

|u(t, xi(t, α))− u(t, xi(t, β))| ≤ c2M |α− β|; (3.33)

moreover, for any given ρ-Hölder continuous function g(u),

|g(u(t, α + λi(0)t))− g(u(t, β + λi(0)t))| ≤ c3M |α− β|ρ, (3.34)

|g(u(t, xi(t, α)))− g(u(t, xi(t, β)))| ≤ c4M |α− β|ρ, (3.35)

where x = xi(t, · ) stands for the i-th characteristic passing through the point (0, · ). Here and
hereafter ci (i = 1, 2, · · · ) stand for some positive constants independent of ε, M, t, α and β.

Proof For fixing the idea we suppose that α ≤ β. Since the solution u = u(t, x) is classical,
i.e., u ∈ C1([0,+∞)×R), noting (2.5), (3.6) and (3.31), we can easily get (3.32) and (3.34) by
using Taylor’s formula.

We next prove (3.33) and (3.35).
Using (2.5) and noting (3.6) and (3.31) again, we have

|u(t, xi(t, α))− u(t, xi(t, β))| ≤ sup
x∈R

{|ux(t, x)|} sup
ξ∈R

{∣∣∣∂xi(t, ξ)
∂ξ

∣∣∣
}
|α− β|

≤ c5M |α− β| sup
ξ∈R

{∣∣∣∂xi(t, ξ)
∂ξ

∣∣∣
}

. (3.36)

In what follows, we estimate
∣∣∂xi(t,ξ)

∂ξ

∣∣.
Noting

∂xi(t, ξ)
∂t

= λi(u)(t, xi(t, ξ)),

we have

∂

∂t

(∂xi(t, ξ)
∂ξ

)
= ∇λi(u)ux

∂xi(t, ξ)
∂ξ

. (3.37)

Noticing xi(0, ξ) = ξ gives

∂xi(0, ξ)
∂ξ

= 1. (3.38)

Then it follows from (3.37)–(3.38) that

∂xi(t, ξ)
∂ξ

= exp
{∫ t

0

(∇λi(u)ux)(s, xi(s, ξ))ds
}

. (3.39)
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Noting (1.9a) and (1.11a), we have

∂λi

∂uj

( p∑

h=1

uheh

)
≡ 0, i, j ∈ {1, · · · , p}, ∂λi

∂ui
(uiei) ≡ 0, i ∈ {p + 1, · · · , n}. (3.40)

Therefore, by (1.12)–(1.13), (2.5) and (3.40), we have

∇λi(u)ux =
∑

(k,l)∈Γ

Θikl(u)ukwl +
∑

(j,i)∈Γ

Θ̃ij(u)wj , (3.41)

where Θikl(u), Θ̃ij are ρ-Hölder continuous functions with respect to u which can be obtained
by Hadamard formula similar to (3.14). Therefore, noting (3.41) and using (3.28)–(3.31), we
obtain

∫ t

0

|(∇λi(u)ux)(s, xi(s, ξ))|ds ≤ c6{W̃1(t) + W∞(t)Ũ1(t) + U∞(t)W̃1(t)} ≤ c7ε, (3.42)

where the constants c6, c7 are independent of not only ε,M, t but also α, β and ξ. Combining
(3.39) and (3.42) gives

sup
(t,ξ)∈R+×R

{∣∣∣∂xi(t, ξ)
∂ξ

∣∣∣
}
≤ ec7ε. (3.43)

Substituting (3.43) into (3.36) yields (3.33) immediately. Finally, noting (3.33) we get (3.35)
easily. Thus, the proof of Lemma 3.4 is completed.

For any fixed T ≥ 0 and for arbitrary α, β ∈ R, we introduce

Uβ
α (T ) = max

(i,j)∈Γ

∫ T

0

|uj(s, α + λi(0)s)− uj(s, β + λi(0)s)|ds,

V β
α (T ) = max

(i,j)∈Γ

∫ T

0

|vj(s, α + λi(0)s)− vj(s, β + λi(0)s)|ds,

W β
α (T ) = max

(i,j)∈Γ

∫ T

0

|wj(s, α + λi(0)s)− wj(s, β + λi(0)s)|ds,

Ũβ
α (T ) = max

(i,j)∈Γ

∫ T

0

|uj(s, xi(s, α))− uj(s, xi(s, β))|ds,

Ṽ β
α (T ) = max

(i,j)∈Γ

∫ T

0

|vj(s, xi(s, α))− vj(s, xi(s, β))|ds,

W̃ β
α (T ) = max

(i,j)∈Γ

∫ T

0

|wj(s, xi(s, α))− wj(s, xi(s, β))|ds,

where x = xi(s, · ), as before, stands for the i-th characteristics passing through the point (0, · ).
Lemma 3.5 Under the assumptions of Theorem 1.1, there exists a positive constant K4

independent of ε, M, T, α and β such that

Ũβ
α (T ) ≤ K4ε|α− β|, (3.44)

Ṽ β
α (T ) ≤ K4ε|α− β|, (3.45)

W̃ β
α (T ) ≤ K4(M + ε2)|α− β|. (3.46)
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Proof We first prove (3.45).
Let C̃i(α) and C̃i(β) be the i-th characteristics passing through the points P1 : (0, α) and

P2 : (0, β), respectively. For the sake of ease, we assume that α < β. Denote the intersection
point of C̃i(α) (resp. C̃i(β)) with the straight line t = T by P4 : (T, xi(T, α)) (resp. P3 : (T,

xi(T, β))). Let Ω̃ be the region bounded by the curves C̃i(α), C̃i(β), t = 0 and t = T , i.e., the
curved-quadrilateral P1P2P3P4. By Green formula, it follows from (2.14) that

∫∫
eΩ

F̃j(s, x)dsdx =
∫ β

α

vj(0, x)dx +
∫ T

0

[vj(λi(u)− λj(u))](s, xi(s, β))ds

−
∫ β

α

vj(T, xi(T, γ))dγ −
∫ T

0

[vj(λi(u)− λj(u))](s, xi(s, α))ds,

i.e.,
∫ T

0

[vj(s, xi(s, α))− vj(s, xi(s, β))][λi(u)(s, xi(s, β))− λj(u)(s, xi(s, α))]ds

=
∫ T

0

vj(s, xi(s, β))[λj(u)(s, xi(s, α))− λj(u)(s, xi(s, β))]ds

−
∫ T

0

vj(s, xi(s, α))[λi(u)(s, xi(s, α))− λi(u)(s, xi(s, β))]ds

+
∫ β

α

[vj(0, γ)− vj(T, xi(T, γ))]dγ −
∫ ∫

eΩ
F̃j(s, x)dsdx.

When (i, j) ∈ Γ, noting (3.3) and using Lemmas 3.3 and 3.4, we obtain
∫ T

0

|vj(s, xi(s, α))− vj(s, xi(s, β))|ds

≤ 1
δ0

{
[2V∞(T ) + 2c4MṼ1(T )]|α− β|+

∫∫
eΩ
|F̃j(s, x)|dsdx

}

≤ c8

{
ε|α− β|+

∫∫
eΩ
|F̃j(s, x)|dsdx

}
. (3.47)

On the other hand, noting (3.20) and using (3.7)–(3.8) and (3.10)–(3.11), we have
∫∫

eΩ
|F̃j(s, x)|dsdx ≤ c4

∑

(k,l)∈Γ

∫ β

α

dγ

∫ T

0

(|vkwl|+ |vkvl|)(s, xi(s, γ))ds

≤ c9{V∞(T )W̃1(T ) + W∞(T )Ṽ1(T ) + V∞(T )Ṽ1(T )}|α− β|

≤ c10

( M

M + 1
+ ε

)
ε|α− β|. (3.48)

Substituting (3.48) into (3.47) gives
∫ T

0

|vj(s, xi(s, α))− vj(s, xi(s, β))|ds ≤ c11ε|α− β|.

This proves (3.45).
(3.46) can be proved similarly by (2.15) and using Lemmas 3.3 and 3.4 again.
We finally prove (3.44).
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Noting (3.14), we have

uj = vj +
∑

(k,l)∈Γ

Ξjkl(u)ukvl, (3.49)

where Ξjkl(u) is defined by (3.15). Integrating (3.49) from 0 to T along the characteristic:
x = xi(s, α) and x = xi(s, β), respectively, and subtracting the last integral from the first gives

∫ T

0

{[uj ](α)− [uj ](β)}ds

=
∫ T

0

{[vj ](α)− [vj ](β)}ds +
∑

(k,l)∈Γ

∫ T

0

{[Ξjkl(u)ukvl](α)− [Ξjkl(u)ukvl](β)} ds

=
∫ T

0

{[vj ](α)− [vj ](β)}ds +
∑

(k,l)∈Γ

∫ T

0

{[Ξjkl(u)](α)− [Ξjkl(u)](β)} [uk](α)[vl](α)ds

+
∑

(k,l)∈Γ

∫ T

0

[Ξjkl(u)](β) {[uk](α)− [uk](β)} [vl](α)ds

+
∑

(k,l)∈Γ

∫ T

0

[Ξjkl(u)](β)[uk](β) {[vl](α)− [vl](β)} ds, (3.50)

where [ · ](α) stands for [ · ](s, xi(s, α)), while [ · ](β) stands for [ · ](s, xi(s, β)). Thus, noting
(3.3), (3.6) and using (2.1), (3.33) and (3.35), we obtain from (3.50) that

∫ T

0

|[uj ](α)− [uj ](β)|ds ≤ Ṽ β
α (T ) + c12{c4M |α− β|[U∞(T )Ṽ1(T ) + V∞(T )Ũ1(T )]

+ c2M |α− β|Ṽ1(T ) + Ũβ
α (T )V∞(T )

+ Ṽ β
α (T )U∞(T ) + c2M |α− β|Ũ1(T )}.

Then, using (3.7), (3.10) and (3.45), we have
∫ T

0

|[uj ](α)− [uj ](β)|ds ≤ c13ε|α− β|+ c14K1εŨ
β
α (T ). (3.51)

It follows from (3.51) that

Ũβ
α (T ) ≤ c15ε|α− β|+ c14K1εŨ

β
α (T ). (3.52)

(3.44) comes from (3.52) directly. Thus, the proof of Lemma 3.5 is completed.

Similarly, we can prove the following lemma.

Lemma 3.6 Under the assumptions of Theorem 1.1, there exists a positive constant K5

independent of ε, M, α and β such that

Uβ
α (∞), Ũβ

α (∞) ≤ K5ε|α− β|, (3.53)

V β
α (∞), Ṽ β

α (∞) ≤ K5ε|α− β|, (3.54)

W β
α (∞), W̃ β

α (∞) ≤ K5(M + ε2)|α− β|, (3.55)



Asymptotic Behavior of Global Classical Solutions 279

where

Uβ
α (∞) = max

(i,j)∈Γ

∫ ∞

0

|uj(s, α + λi(0)s)− uj(s, β + λi(0)s)|ds, etc. (3.56)

We finally estimate the difference of wi on two differential i-th characteristic at the same
time.

For arbitrary α, β ∈ R, we introduce

W ∗
α,β(∞) =

p∑

i=1

sup
t∈[0,∞)

|wi(t, xi(t, α))− wi(t, xi(t, β))|,

W i
α,β(∞) = sup

t∈[0,∞)

|wi(t, xi(t, α))− wi(t, xi(t, β))|, if i = p + 1, · · · , n,

where x = xi(t, · ) stands for the i-th characteristic passing through the point (0, · ).
Lemma 3.7 For any given i ∈ {1, · · · , n} and for any fixed α ∈ R, the limit

lim
t→+∞

wi(t, xi(t, α))

exists, denoted it by Ψi(α), that is,

lim
t→+∞

wi(t, xi(t, α)) = Ψi(α), ∀ α ∈ R, (3.57)

where x = xi(t, α) stands for the i-th characteristic passing through the point (0, α). Moreover,
Ψi(α) is a continuous function of α ∈ R and satisfies that there exists a positive constant K6

independent of ε, M and α such that

|Ψi(α)| ≤ (1 + K6ε)M, ∀α ∈ R. (3.58)

Furthermore, there exists a positive constant K7 independent of ε, M, α and β such that

W ∗
α,β(∞) ≤ (1 + K7ε)

p∑

i=1

|wi(0, α)− wi(0, β)|

+ K7(M2 + Mε + ε3)|α− β|+ K7
M2

M + 1
(M + ε)|α− β|ρ,

W i
α,β(∞) ≤ (1 + K7ε)|wi(0, α)− wi(0, β)|+ K7(M2 + Mε + ε3)|α− β|

+ K7
Mε

M + 1
(M + ε)|α− β|ρ, if i = p + 1, · · · , n. (3.59)

In particular, if (1.24) is satisfied, then there exists a positive constant K8 independent of
ε, M, ς, α and β such that, for all α, β ∈ R,

|Ψi(α)−Ψi(β)| ≤ K8

[
ς +

M

M + 1
(M + ε)max(M, ε)

]
|α− β|ρ

+ K8(M2 + Mε + ε3)|α− β|. (3.60)
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Proof It follows from (2.9) that

wi(t, xi(t, α)) = wi(0, α) +
∫ t

0

Gi(s, xi(s, α))ds. (3.61)

By (2.19), (2.27)–(2.28) and (2.34)–(2.39), we can rewrite Gi(t, x) similar to (3.26) as follows

Gi(t, x) ≡
∑

(k,l)∈Γ

γikl(u)wkwl +
∑

k,l∈{1,··· ,p}
m∈{p+1,··· ,n}

Γ(1)
iklm(u)wkwlum +

∑

(k,l)∈Γ

Γ(2)
ikl(u)ukwl, (3.62)

where Γ(1)
jklm(u) and Γ(2)

jkl(u) are similar to that in (3.26). Substituting (3.62) into (3.61), we get

wi(t, xi(t, α)) = wi(0, α) +
∫ t

0

[ ∑

(k,l)∈Γ

γikl(u)wkwl +
∑

k,l∈{1,··· ,p}
m∈{p+1,··· ,n}

Γ(1)
iklm(u)wkwlum

+
∑

(k,l)∈Γ

Γ(2)
ikl(u)ukwl

]
ds. (3.63)

Then, Lemma 3.3 implies that the integrals in the right-hand side of (3.63) converge absolutely
when t tends to +∞. Then, the right-hand side of (3.63) converges when t tends to +∞. We
denote the limit by Ψi(α). That is,

lim
t→∞

wi(t, xi(t, α)) = Ψi(α).

It follows from (3.63) that

|wi(t, xi(t, α))| ≤ |wi(0, α)|+ (c16 + c17K2)K2
1Mε ≤ (1 + K6ε)M. (3.64)

(3.58) follows from (3.64) directly.
Furthermore,

wi(t, xi(t, α))− wi(t, xi(t, β))

= wi(0, α)− wi(0, β) +
∫ t

0

[Gi(s, xi(s, α))−Gi(s, xi(s, β))]ds. (3.65)

Noting Lemmas 3.3, 3.4, 3.6, and making use of the method of (3.50), we get
∫ t

0

∣∣∣
∑

(k,l)∈Γ

γikl(u)wkwl(s, xi(s, α))−
∑

(k,l)∈Γ

γikl(u)wkwl(s, xi(s, β))
∣∣∣ds

≤ c18(M2 + Mε2)|α− β|+ c19ε
∑

(i,k)/∈Γ

sup
t∈[0,+∞)

|wk(t, xi(t, α))− wk(t, xi(t, β))|, (3.66)

where [ · ](α) stands for [ · ](s, xi(s, α)), while [ · ](β) stands for [ · ](s, xi(s, β)).
Similarly, we get

∫ t

0

∣∣∣
∑

k,l∈{1,··· ,p}
m∈{p+1,··· ,n}

[Γ(1)
iklm(u)wkwlum(s, xi(s, α))− Γ(1)

iklm(u)wkwlum(s, xi(s, β))]
∣∣∣ds

≤ c20
M3

M + 1
ε|α− β|ρ + c20M

2ε|α− β|
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+ c21
M

M + 1
ε

p∑

k=1

sup
t∈[0,+∞)

|wk(t, xi(t, α))− wk(t, xi(t, β))|, if i ≤ p ,

∫ t

0

∣∣∣
∑

k,l∈{1,··· ,p}
m∈{p+1,··· ,n}

[Γ(1)
iklm(u)wkwlum(s, xi(s, α))− Γ(1)

iklm(u)wkwlum(s, xi(s, β))]
∣∣∣ds

≤ c22M
2ε2|α− β|ρ + c22(M2ε + Mε3)|α− β|, if i ≥ p + 1, (3.67)

∫ t

0

∣∣∣
∑

(k,l)∈Γ

Γ(2)
ikl(u)ukwl(s, xi(s, α))−

∑

(k,l)∈Γ

Γ(2)
ikl(u)ukwl(s, xi(s, β))

∣∣∣ds

≤ c23

[(
Mε2 +

M2

M + 1
ε
)
|α− β|ρ + (Mε + ε3)|α− β|

]

+ c24
ε

M + 1

∑

(i,k)/∈Γ

sup
t∈[0,+∞)

|wk(t, xi(t, α))− wk(t, xi(t, β))|. (3.68)

We divide it into two cases to discuss.

Case I i ∈ {1, · · · , p}.
When i ∈ {1, 2, · · · , p} and (i, k) /∈ Γ, we must have k ∈ {1, 2, · · · , p}. Substituting (3.66)–

(3.68) into (3.65), we get

|wi(t, xi(t, α))− wi(t, xi(t, β))|

≤ |wi(0, α)− wi(0, β)|+ c25(M2 + Mε + ε3)|α− β|+ c26
M2

M + 1
(M + ε)|α− β|ρ

+ c27ε

p∑

k=1

sup
t∈[0,+∞)

|wk(t, xi(t, α))− wk(t, xi(t, β))|.

By the definition of i-th characteristic xi(t, α), we have

x1(t, α) = x2(t, α) = · · · = xp(t, α)
4
= x(t, α), ∀ t ∈ [0,+∞), ∀α ∈ R.

Then we get

|wi(t, x(t, α))− wi(t, x(t, β))|

≤ |wi(0, α)− wi(0, β)|+ c25(M2 + Mε + ε3)|α− β|+ c26
M2

M + 1
(M + ε)|α− β|ρ

+ c27ε

p∑

k=1

sup
t∈[0,+∞)

|wk(t, x(t, α))− wk(s, x(t, β))|. (3.69)

Summing (3.69) with respect to i = 1, · · · , p, we get
p∑

k=1

sup
t∈[0,+∞)

|wk(t, x(t, α))− wk(s, x(t, β))|

≤ (1 + K7ε)
p∑

k=1

|wk(0, α)− wk(0, β)|+ K7(M2 + Mε + ε3)|α− β|

+ K7
M2

M + 1
(M + ε)|α− β|ρ. (3.70)
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Case II i ∈ {p + 1, · · · , n}.
When i ∈ {p+1, · · · , n} and (i, k) /∈ Γ, we must have k = i. Substituting (3.66)–(3.68) into

(3.65), we get

|wi(t, xi(t, α))− wi(t, xi(t, β))|
≤ |wi(0, α)− wi(0, β)|+ c28(M2 + Mε + ε3)|α− β|+ c29

M

M + 1
(M + ε)ε|α− β|ρ

+ c30ε sup
t∈[0,+∞)

|wi(t, xi(t, α))− wk(t, xk(t, β))|. (3.71)

It follows from (3.71) that

sup
t∈[0,+∞)

|wi(t, xi(t, α))− wi(t, xi(t, β))|

≤ (1 + K7ε)|wi(0, α)− wi(0, β)|+ K7(M2 + Mε + ε3)|α− β|
+ K7

M

M + 1
(M + ε)ε|α− β|ρ. (3.72)

Then, (3.59) follows from (3.70) and (3.72) directly. Because wi(0, x) is continuous, it follows
from (3.59) that Ψi(α) ∈ C0(R).

If (1.24) holds, we see that wi(0, x) is globally ρ-Hölder continuous. (3.60) follows from
(3.59) easily. Thus, the proof of Lemma 3.7 is completed.

4 Asymptotic Behavior of Global Classical Solutions —
Proof of Theorem 1.1

This section is devoted to the study of asymptotic behavior of the global classical solution
of Cauchy problem (1.1) and (1.17) and gives the proof of Theorem 1.1.

Let

D

Dit
=

∂

∂t
+ λi(0)

∂

∂x
. (4.1)

Noting (1.1) and using (2.4)–(2.5), (2.36), we have

Du

Dit
=

∂u

∂t
+ λi(0)

∂u

∂x
= −A(u)

∂u

∂x
+ B(u) + λi(0)

∂u

∂x

=
n∑

j=1

(λi(0)− λj(u))wjrj(u) + B(u). (4.2)

Therefore,

Dui

Dit
=

Du

Dit
ei =

n∑

j=1

(λi(0)− λj(u))wjrj(u)ei + Bi(u).

Noting (1.2), (1.9a), (1.11a) and (1.15)–(1.16), we may rewrite Dui

Dit
as follows

Dui

Dit
=

∑

(j,k)∈Γ

Bijk(u)ujwk +
∑

(i,j)∈Γ

Bij(u)uj , (4.3)
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where Bijk(u) and Bij(u) are all C1,ρ continuous function with respect to u which can be
obtained by Hadmard’s formula similar to (3.14).

For any fixed (t, x) ∈ R+ × R, define

α = x− λi(0)t. (4.4)

It follows from (4.3) that

ui(t, x) = ui(t, α + λi(0)t)

= ui(0, α) +
∫ t

0

[ ∑

(j,k)∈Γ

Bijk(u)ujwk +
∑

(i,j)∈Γ

Bij(u)uj

]
(s, α + λi(0)s)ds. (4.5)

Then we can get the following lemma.

Lemma 4.1 For every i ∈ {1, · · · , n} and any given α ∈ R, the limit

lim
t→+∞

ui(t, α + λi(0)t) = Φi(α) (4.6)

exists; moreover, there exists a positive constant K9 independent of ε, M and α such that

|Φi(α)| ≤ K9ε. (4.7)

In what follows, we shall investigate the regularity of the limit function Φi(α).
First, we prove that Φi(α) is a globally Lipschitz continuous function of α.
For any fixed (t, α + λi(0)t), there exists a unique θi(t, α) ∈ R such that

θi(t, α) +
∫ t

0

λi(u(s, xi(s, θi(t, α))))ds = α + λi(0)t, (4.8)

namely,

θi(t, α) = α +
∫ t

0

[λi(0)− λi(u(s, xi(s, θi(t, α))))]ds, (4.9)

where x = xi(s, θi(t, α)) stands for the i-th characteristic passing through the point (0, θi(t, α)),
which is defined by

dxi(s, θi(t, α))
ds

= λi(u(s, xi(s, θi(t, α)))), xi(0, θi(t, α)) = θi(t, α). (4.10)

Lemma 4.2 Under the assumptions of Theorem 1.1, for any given α ∈ R there exists a
unique ϑi(α) such that θi(t, α) converges to ϑi(α) when t tends to ∞; moreover, ϑi(α) satisfies

|ϑi(α)− α| ≤ K10
ε

M + 1
(4.11)

and is a globally Lip-continuous function of α, more precisely, the following estimate holds

|ϑi(α)− ϑi(β)| ≤ (1 + K11ε)|α− β|, ∀α, β ∈ R, (4.12)

where K10 is a positive constant independent of ε, M and α, while K11 is another positive
constant independent of ε, M, α and β.
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Proof By (1.9a) and (1.11a), we have

λi(0)− λi(u) = λi

( p∑

h=1

uheh

)
− λi(u) =

n∑

j=p+1

Λij(u)uj , if i = 1, 2, · · · , p,

λi(0)− λi(u) = λi(uiei)− λi(u) =
∑

j 6=i

Λij(u)uj , if i = p + 1, · · · , n, (4.13)

where Λij(u) is a C1,ρ smooth function which can be obtained by Hadamard’s formula. Then,
it follows from (4.9) that

θi(t, α) = α +
∫ t

0

(λi(0)− λi(u))(s, xi(s, θi(t, α)))ds

= α +
∑

(i,j)∈Γ

∫ t

0

(Λij(u)uj)(s, xi(s, θi(t, α)))ds. (4.14)

By Lemma 3.3, we denote the limit by ϑi(α) as t tends to +∞. That is,

ϑi(α) = lim
t→∞

θi(t, α). (4.15)

The proof of Lemma 4.2 can be obtained immediately.

Lemma 4.3 For every i ∈ {1, · · · , n}, there exists a positive constant K12 independent of
ε, M, α and β such that

|Φi(α)− Φi(β)| ≤ K12M |α− β|, ∀α, β ∈ R. (4.16)

Proof By (4.8) and (4.10), for any t ∈ R+ and any α ∈ R it holds that

ui(t, α + λi(0)t) = ui(t, xi(t, θi(t, α))), (4.17)

where, as before, x = xi(s, θi(t, α)) stands for the i-th characteristic passing through the point
(0, θi(t, α)). Noting Lemma 4.2 and using (4.6), we have

Φi(α)− Φi(β) = lim
t→∞

{ui(t, xi(t, ϑi(α)))− ui(t, xi(t, ϑi(β)))}. (4.18)

Then, using Taylor’s formula and noting (2.5), (3.4), (3.46), (3.59) and (4.12), we obtain

|Φi(α)−Φi(β)|≤ sup
(t,x)∈R+×R

∣∣∣∂ui

∂x
(t, x)

∣∣∣ sup
(t,ξ)∈R+×R

∣∣∣∂xi

∂ξ
(t, ξ)

∣∣∣|ϑi(α)−ϑi(β)|≤c31M |α−β|, (4.19)

(4.19) is nothing but the desired estimate (4.16). Thus, the proof of Lemma 4.3 is completed.

Lemma 4.4 For every i ∈ {1, · · · , n}, the limit lim
t→+∞

wi(t, α + λi(0)t) exists, and

dΦi(α)
dα

= lim
t→+∞

wi(t, α + λi(0)t) = Ψi(ϑi(α)) ∈ C0(R). (4.20)

Moreover, if (1.24) is satisfied, then the following estimate holds, for all α, β ∈ R,
∣∣∣dΦi

dα
(α)− dΦi

dα
(β)

∣∣∣ ≤ K13

[
ς +

M

M + 1
(M + ε)max(M, ε)

]
|α− β|ρ

+ K13(M2 + Mε + ε3)|α− β|, (4.21)



Asymptotic Behavior of Global Classical Solutions 285

where K14 is a positive constant independent of ε, M, ς, α and β.

Proof It follows from (4.8) that

wi(t, α + λi(0)t) = wi(t, xi(t, θi(t, α))). (4.22)

Then noting Lemma 4.2, we have

lim
t→+∞

wi(t, α + λi(0)t) = lim
t→+∞

wi(t, xi(t, θi(t, α))) = lim
t→+∞

wi(t, xi(t, ϑi(α))), (4.23)

and then by Lemma 3.7,

lim
t→+∞

wi(t, α + λi(0)t) = lim
t→+∞

wi(t, xi(t, ϑi(α))) = Ψi(ϑi(α)). (4.24)

Since, by Lemma 3.7 and (4.12), Ψi( · ) and ϑi(∗) are continuous with respect to · and ∗
respectively, Ψi(ϑi(α)) is a continuous function of α ∈ R.

On the other hand, by the definition (4.6),

dΦi(α)
dα

= lim
∆α→0

Φi(α + ∆α)− Φi(α)
∆α

= lim
t→+∞

ux(t, α + λi(0)t)ei

= lim
t→+∞

n∑

j=1

wj(t, α + λi(0)t)rj(u(t, α + λi(0)t))ei

= lim
t→+∞

{ p∑

j=1

wj

(
rj(u)− rj

( p∑

h=1

uheh

))
ei

}
(t, α + λi(0)t)

+
{ n∑

j=p+1

wj(rj(u)− rj(ujej))ei + wi

}
(t, α + λi(0)t)

= lim
t→+∞

{ ∑

(j,k)∈Γ

Oijk(u)wjuk + wi

}
(t, α + λi(0)t),

where Oijk(u) can be obtained by Hadamard’s formula. Then, noting Lemma 3.3, we obtain
(4.20) immediately.

Moreover, if (1.24) is satisfied, then using (3.85) and (4.12), we obtain (4.21) immediately.
Thus, the proof of Lemma 4.4 is completed.

Proof of Theorem 1.1 Taking

ϕi(x− λi(0)t) = Φi(x− λi(0)t), i = 1, · · · , n (4.25)

and noting Lemmas 4.1, 4.3 and Lemma 4.4, we get the conclusion of Theorem 1.1 immediately.
Thus, the proof of Theorem 1.1 is completed.
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