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Abstract In this paper, the completeness and minimality properties of some random
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1 Introduction: Problem and Results

The probabilistic approach to classical question on exponential systems gives a new insight
and leads to new results combining the methods of probability theory and function theory. In
contrast to the well developed theory of classical Fourier series with random coefficients (see [4,
7]), only a few facts are known in the case of random exponents. Here we mention [1, 2, 9, 10]
which are devoted to the completeness, minimality and series expansion of random exponential
systems. (On the definition of completeness and minimality of an exponential system, the
readers can refer to [12].) Motivated by their works, we will study some random exponential
system in a weighted Banach space with the help of probability theory.

The main purpose of the paper is to prove a probabilistic analogy of Malliavin’s celebrated
theorem on completeness of real exponential system in a weighted Banach space (see [6]).
Furthermore, we study the minimality property of the random exponential system in the space.

Before formulating the main results of this paper, we first introduce some notations for
convenience of the readers.

Let a weight α be a nonnegative convex function on R such that

lim
t→+∞

α(t)/t = +∞. (1.1)

Consider the weighted Banach space

Cα = {f ∈ C(R) : lim
|t|→∞

|f(t)e−α(t)| = 0 and ‖f‖α < ∞},

where C(R) is the set of complex functions continuous on R and

‖f‖α = sup{|f(t)e−α(t)| : t ∈ R}.
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Suppose that Λ = {λn}∞n=1 is a complex sequence such that

δ(Λ) = inf{Re(λn+1 − λn) : n = 0, 1, 2, · · · ;λ0 = 0} > 0, (1.2)

Θ(Λ) = sup{| arg λn| : n = 1, 2, · · · } <
π

2
. (1.3)

Let {ξn(ω)} be a sequence of independent real random variables defined on a probability space
(Ω,F ,P) such that

Eξn = 0, n = 1, 2, · · · , (1.4)

c1 = sup{E(|ξn|1+σ) : n = 1, 2, · · · } < +∞, (1.5)

where σ > 0, and E(ξ) denotes the mathematical expectation of ξ.
Under the above assumption, we define

λn(ω) = λn + iξn(ω), Λω = {λn(ω)}∞n=1 and E(Λω) = {eλn(ω)t}∞n=1. (1.6)

The condition (1.1) guarantees that E(Λω) ⊂ Cα. Then we ask whether E(Λω) is complete or
minimal in Cα. Our results are as follows.

Theorem 1.1 Let α(t) be a nonnegative convex function satisfying (1.1). Let E(Λω) be
defined by (1.6), where Λ = {λn} is a complex sequence satisfying (1.2)– (1.3) and {ξn(ω)} is a
sequence of independent real random variables satisfying (1.4)– (1.5). Define λ(r) as follows:

λ(r) =
∑

Reλn≤r

Re
1
λn

, if r ≥ Reλ1; λ(r) = 0, otherwise. (1.7)

Then
( i ) If ∫ +∞

0

α(λ(t)− a)
1 + t2

dt = +∞, ∀ a ∈ R, (1.8)

then E(Λω) is complete with probability 1.
( ii ) If there is some b ∈ R such that

∫ +∞

0

α(λ(t)− b)
1 + t2

dt < +∞, (1.9)

then E(Λω) is incomplete with probability 1.
(iii) If (1.8) holds, then E(Λω) is not minimal with probability 1. If (1.9) holds, then E(Λω)

is minimal with probability 1.

Remark 1.2 The theorem when {ξn(ω)} = {0} includes Malliavin’s result in [6]. So the
conclusions (i) and (ii) can be rewritten into:

If {eλnt} is complete/incomplete in Cα, then so is {eλn(ω)t} with probability 1.
Theorem 1.1 may be viewed as a probabilistic generalization of [6].

2 Preliminary Results

We need some auxiliary facts to prove our theorem.

Lemma 2.1 (See [6]) Let β(t) be a nonnegative convex function on R satisfying (1.1), and
assume that

β∗(t) = sup{xt− β(x) : x ∈ R}, t ∈ R (2.1)
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is the Young transform (see [8]) of the function β(x). Suppose that λ(r) is an increasing function
on [0,∞) satisfying

λ(R)− λ(r) ≤ A(log R− log r + 1), R > r > 1. (2.2)

Then there exists an analytic function f(z) 6≡ 0 in C+ satisfying

|f(z)| ≤ A exp{Ax + β(x)− xλ(|z|)}, z = x + iy ∈ C+, (2.3)

if and only if there exists a ∈ R such that
∫ +∞

0

β∗(λ(t)− a)
1 + t2

dt < ∞. (2.4)

We note that in the whole paper A denotes the constant and Aω denotes the positive number
only depending on ω, whose values may be different in different cases.

Lemma 2.2 Assume that the hypothesis of Theorem 1.1 holds. Then there is Ω′ ⊂ Ω such
that P(Ω′) = 1 , and for every ω ∈ Ω′, the function

G(z) =
∞∏

n=1

(1− z/λn(ω)
1 + z/λn(ω)

)
exp

( z

λn(ω)
+

z

λn(ω)

)
(2.5)

is analytic in the closed right half plane C+ = {z = x + iy : x ≥ 0}, and satisfies the following
inequalities:

|G(z)| ≤ exp{xλ(r) + Aωx}, z ∈ C+, (2.6)

|G(z)| ≥ exp{xλ(r)−Aωx}, z ∈ Σ(Λω), (2.7)

where r = |z| , Σ(Λω) = {z ∈ C+ : |z − λn(ω)| ≥ δ(Λ)
4 , n = 1, 2, · · · } and λ(r) is defined by

(1.7).

We recall some theorems from probability theory that we need before we proceed to the
proof of Lemma 2.2. We refer to [11] for complete proofs and comments.

Theorem A (Chebyshev Inequality) Let ξ be a real-valued random variable and f(x) be
a non-decreasing positive continuous function. Then, for each a > 0,

P{|ξ| > a} ≤ E(f(|ξ|))
f(a)

.

Theorem B (Borel-Cantelli Lemma) Let E1, E2, · · · , En, · · · be a sequence of events from

a probability space and E =
∞⋂

k=1

∞⋃
n=k

En.

(1) If
+∞∑
n=1

P(En) < ∞, then P(E) = 0;

(2) If the events En are independent and
+∞∑
n=1

P(En) = ∞, then P(E) = 1.

Theorem C (Two-Series Theorem) A sufficient condition for the convergence of the series
+∞∑
n=1

ξn of independent random variables with probability 1 is that both series
+∞∑
n=1

D(ξn) and
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+∞∑
n=1

E(ξn) converge, where E(ξn) and D(ξn) denote the mathematical expectation and variance

of ξn, respectively.

Now we begin to prove Lemma 2.2.

Proof of Lemma 2.2 For a fixed positive number τ , consider the truncated random
variables

ξ∗n =





ξn, if |ξn| ≤ τ |λn|,
0, otherwise.

(2.8)

Let λ∗n(ω) = λn + iξ∗n(ω). By the Chebyshev inequality,

P{ξ∗n 6= ξn} = P{|ξn| > τ |λn|} ≤ E(|ξn|1+σ)
τ1+σ|λn|1+σ

≤ c1τ
−(1+σ)

|λn|1+σ
. (2.9)

The separation condition (1.2) yields
∞∑

n=1
|λn|−(1+σ) < +∞. Hence

+∞∑
n=1

P{ξ∗n 6= ξn} < +∞. (2.10)

By the Borel-Cantelli Lemma we have

P
{ +∞⋂

k=1

+∞⋃
n=1

{ω : ξn(ω) 6= ξ∗n(ω)}
}

= 0. (2.11)

Set

Ω1 = Ω
∖ +∞⋂

k=1

+∞⋃
n=1

{ω : ξ∗n(ω) 6= ξn(ω)}.

Then P(Ω1) = 1 and for each ω ∈ Ω1,

#{n : λ∗n(ω) 6= λn(ω)} = #{n : ξ∗n(ω) 6= ξn(ω)} < +∞, (2.12)

where #E denotes the number of elements in the set E. The condition (1.3) yields that
∣∣∣ Im λn

Re λn

∣∣∣ ≤ tanΘ(Λ),
1

Re |λn| ≤
1

|λn| cosΘ(Λ)
.

Then

| arg λ∗n(ω)| =
∣∣∣ arctan

Imλn + ξ∗n
Reλn

∣∣∣ ≤ arctan
(∣∣∣ Imλn

Reλn

∣∣∣ +
∣∣∣ ξ∗n
Reλn

∣∣∣
)

≤ arctan
( sinΘ(Λ) + τ

cosΘ(Λ)

)
= A1 <

π

2
,

where A1 is a positive constant independent of n. Now by (2.12), for every ω ∈ Ω1, there exists
a positive number Θ(Λω) such that

| arg λn(ω)| ≤ max{{| arg λn(ω)| : λn(ω) 6= λ∗n(ω)} ∪ {A1}} = Θ(Λω) <
π

2
.

Besides,
inf
n
{Re(λn+1(ω)− λn(ω))} = inf

n
{Re(λn+1 − λn)} = δ(Λ).
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Then using a method similar to [3], we have the following estimates:
For every ω ∈ Ω1, the function Gω(z) defined by (2.5) is analytic in the closed right half

plane C+ = {z = x + iy : x ≥ 0} and satisfies:

|Gω(z)| ≤ exp{xλω(|z|) + Aωx}, z ∈ C+,

|Gω(z)| ≥ exp{xλω(|z|)−Aωx}, z ∈ Σ(Λω),

where Aω is a positive number only depending on ω and

λω(r) =
∑

Reλn≤r

Re
( 1

λn(ω)

)
, if r ≥ Re λ1; λ(r) = 0, otherwise.

To complete the proof, we only need to prove that |λω(r)− λ(r)| ≤ Aω holds for almost every
ω ∈ Ω1. For every ω ∈ Ω1, since (2.12) holds, we have

|λω(r)− λ(r)|

≤ 2
∣∣∣

∑

Re λn≤r

Re
1

λn + iξ∗n
−

∑

Re λn≤r

Re
1
λn

∣∣∣ + Aω = 2
∣∣∣

∑

Re λn≤r

[ Re λn

|λn + iξ∗n|2
− Re λn

|λn|2
]∣∣∣ + Aω

= 2
∣∣∣

∑

Re λn≤r

Re λn[(ξ∗n)2 + 2Im λnξ∗n]
|λn|2[(Re λn)2 + (ξ∗n + Im λn)2]

∣∣∣ + Aω ≤ 2
∑

Re λn≤r

|ξ∗n|2 + 2|ξ∗n||Im λn|
|λn|2Re λn

+ Aω

≤ 2
cos(Θ(Λ))

∞∑
n=1

τ |λn||ξ∗n|+ 2|λn||ξ∗n|
|λn|3 + Aω ≤ 2(τ + 2)

cos(Θ(Λ))

∞∑
n=1

|ξ∗n|
|λn|2 + Aω.

By (1.4) and Hölder inequality,

E|ξ∗n| ≤ E(|ξn|) ≤ [E(|ξn|1+σ)]
1

1+σ ≤ c
1

1+σ

1 < +∞.

Combining it with (1.2), we have

+∞∑
n=1

E|ξ∗n|
|λn|2 ≤ c

1
1+σ

1

+∞∑
n=1

1
|Re λn|2 < +∞,

+∞∑
n=1

E|ξ∗n|2
|λn|4 ≤

+∞∑
n=1

τE|ξ∗n|
|λn|3 ≤ τc

1
1+σ

1

+∞∑
n=1

1
|Re λn|3 < +∞.

Then according to Two-series Theorem, there exists Ω2 ⊂ Ω such that P(Ω2) = 1 and Aω =
+∞∑
n=1

|ξ∗n|
|λn|2 < +∞ for every ω ∈ Ω2. Let Ω′ = Ω1

⋂
Ω2. Then it follows that P(Ω′) = 1 and

|λω(r) − λ(r)| ≤ Aω for ω ∈ Ω′. Taking account of the above estimates, we have now proved
the lemma.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Below we will prove the main theorem in order.
(i) Suppose its contrary holds, i.e., there exists E ⊂ Ω such that P(E) > 0 and for every

ω ∈ E, E(Λω) is incomplete in Cα. By Hahn-Banach Theorem, it is equivalent to say there
exists a nonzero bounded linear functional Tω on Cα vanishing on E(Λω). So by the Riesz
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representation Theorem, there exists a complex measure µω satisfying

‖µω‖ =
∫ +∞

−∞
eα(t)|dµω| = ‖Tω‖,

Tω(h) =
∫ +∞

−∞
h(t)dµω, ∀h ∈ Cα,

where ω ∈ E. Because P(E
⋂

Ω′) = P(E) > 0, we can take one $ ∈ E
⋂

Ω′, where Ω′ is as
mentioned in Lemma 2.2. Then the function

f$(z) =
1

G$(z)

∫ +∞

−∞
etzdµ$

is analytic in the open right half plane C+ and continuous in the closed right half plane C+

satisfying
|f$(z)| ≤ ‖µ$‖ exp{α∗(x)− xλ(|z|) + A$x}.

Lemma 2.1 shows that there exists a constant b such that (1.9) holds, which contradicts (1.8).
Hence the assertion of (i) follows from the contradiction.

(ii) Suppose that (1.9) holds for some real number b. Let ϕ(t) be an even function such
that ϕ(t) = α(λ(t)− b) for t ≥ 0 and let u(z) be the Poisson integral of ϕ(t), i.e.,

u(x + iy) =
x

π

∫ +∞

−∞

ϕ(t)
x2 + (y − t)2

dt.

Then u(x + iy) is harmonic in the half plane C+ and there exists an analytic function T (z) on
C+ satisfying

Ax ≥ Re T (z) = u(z) ≥ (x− 1)(λ(r)− b)− α∗(x− 1), x ≥ 1. (3.1)

Therefore for every ω ∈ Ω′, taking Lemma 2.2 and the above inequality into account and
properly choosing the number Nω, we can establish that the function

gω(z) =
Gω(z)

(1 + z)Nω
exp{−T (z)−Nω(z)−Nω} (3.2)

satisfies the following inequality

|gω(z)| ≤ 1
1 + |z|2 exp{α∗(x− 1)− x}. (3.3)

Set

hω(t) =
1√
2π

∫ +∞

−∞
gω(1 + iy)e−(1+iy)tdy. (3.4)

Then hω(t) is continuous on R. Moreover, by (3.3) and Cauchy contour theorem,

hω(t) =
1√
2π

∫ +∞

−∞
gω(x + iy)e−(x+iy)tdy, x > 0 (3.5)

is independent of x and hence the Young transform formula α = (α∗)∗ yields

|hω(t)eα(t)| ≤ exp{−|t|}. (3.6)
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Since hω(t)ext can be viewed as the Fourier transform of gω(x+iy), the inverse transform shows

gω(z) =
1√
2π

∫ +∞

−∞
hω(t)eztdt, Re z > 0. (3.7)

Thus the functional Tω defined by

Tω(f) =
∫ +∞

−∞
f(t)hω(t)dt (3.8)

satisfies
Tω(eλn(ω)t) =

√
2πgω(λn(ω)) = 0, (3.9)

and according to (3.6),

‖Tω‖ =
∫ +∞

−∞
hω(t)eα(t)dt < +∞.

So Tω is a nonzero bounded linear functional on Cα and hence by Hahn-Banach Theorem,
E(Λω) is incomplete in Cα for every ω ∈ Ω′. This completes the proof.

(iii) If (1.8) holds, then by (i) E(Λω)\{eλk(ω)t} (∀ k ∈ N) is complete with probability 1. So
E(Λω) is not minimal with probability 1.

If (1.9) holds, then we can construct gω(z) as in (ii) for every ω ∈ Ω′ that is defined in
Lemma 2.2.

Letting An,ω be the coefficient of the singular part of the Laurent series of 1/gω(z) in
U(λn(ω)) = {z : |z − λn(ω)| ≤ δ(Λ)

2 }, we have

1
gω(z)

=
An,ω

z − λn(ω)
+ gn,ω(z), (3.10)

where gn,ω(z) is analytic in U(λn(ω)). Then

An,ω =
1

2πi

∫

|z−λn(ω)|= δ(Λ)
4

1
gω(z)

dz. (3.11)

But by (2.7) and (3.2), we get

|An,ω| ≤ 1
1 + |z|2 exp{−Re λnλ(Re λn) + AωRe λn + Aω}. (3.12)

Consider the analytic functions on C+,

Hn,ω(z) =
An,ωgω(z)
z − λn(ω)

, n ∈ N. (3.13)

Combining (3.3) with (3.12), we obtain that for n ∈ N,

|Hn,ω(z)| ≤ 1
1 + |z|2 exp{α∗(x− 1)− x− Re λnλ(|λn(ω)|) + AωRe λn + Aω}. (3.14)

Let

hn,ω(t) =
1
2π

∫ +∞

−∞
Hn,ω(1 + iy)e−(1+iy)tdy, n ∈ N. (3.15)

Then hn,ω(t) is continuous on R. By Cauchy contour theorem, the above estimates (3.14) yield
that

hn,ω(t) =
1
2π

∫ +∞

−∞
Hn,ω(x + iy)e−(x+iy)tdy, n ∈ N, ∀x > 0, (3.16)
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|hn,ω(t)eα(t)| ≤ exp{−Re λnλ(Re λn) + AωRe λn + Aω − |t|}. (3.17)

Then by Fourier transform theory,

Hn,ω(z) =
∫ +∞

−∞
hn,ω(t)eztdt, Re z > 0. (3.18)

It is easy to see that
Hn,ω(λj(ω)) = δnj (the Kronecker notion) (3.19)

and hence ∫ +∞

−∞
hn,ω(t)eλj(ω)tdt = δnj . (3.20)

Define functionals Tn,ω on Cα by

Tn,ω(f) =
∫ +∞

−∞
f(t)hn,ω(t)dt, ∀ f ∈ Cα. (3.21)

Then by (3.17) we see that Tn,ω ∈ (Cα)∗ (n ∈ N) and

‖Tn,ω‖ ≤ 2 exp{−Re λnλ(Re λn) + AωRe λn + Aω}. (3.22)

According to [12, Problem 2, p.24 ] or [5, Lecture 18], the following proposition holds:
A system {xk} of elements of the Banach space X is minimal if and only if there is a

biorthogonal system of functionals {fk} ⊂ X∗ , which means fk(xm) = δkm.
By (3.20) we see that the system {Tn,ω} is biorthogonal to E(Λω) and hence E(Λω) is

minimal. The above argument works for each ω ∈ Ω′. So E(Λω) is minimal with probability 1.
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