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Abstract In this paper, the completeness and minimality properties of some random
exponential system in a weighted Banach space of complex functions continuous on the
real line for convex nonnegative weight are studied. The results may be viewed as a
probabilistic version of Malliavin’s classical results.
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1 Introduction: Problem and Results

The probabilistic approach to classical question on exponential systems gives a new insight
and leads to new results combining the methods of probability theory and function theory. In
contrast to the well developed theory of classical Fourier series with random coefficients (see [4,
7]), only a few facts are known in the case of random exponents. Here we mention [1, 2, 9, 10]
which are devoted to the completeness, minimality and series expansion of random exponential
systems. (On the definition of completeness and minimality of an exponential system, the
readers can refer to [12].) Motivated by their works, we will study some random exponential
system in a weighted Banach space with the help of probability theory.

The main purpose of the paper is to prove a probabilistic analogy of Malliavin’s celebrated
theorem on completeness of real exponential system in a weighted Banach space (see [6]).
Furthermore, we study the minimality property of the random exponential system in the space.

Before formulating the main results of this paper, we first introduce some notations for
convenience of the readers.

Let a weight a be a nonnegative convex function on R such that

tligl a(t)/t = +oo. (1.1)
Consider the weighted Banach space
Co={f€CMR): lim |f(t)e P =0 and |f|, < oo},

[t| =00

where C'(R) is the set of complex functions continuous on R and

I £lle = sup{|f(t)e~ )] : ¢ € R}.
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Suppose that A = {A,}52, is a complex sequence such that
d(A) =inf{Re(Ant1 — An) :n=0,1,2,--- ;g =0} > 0, (1.2)
O(A) =sup{larg\,| :n=1,2,---} < g (1.3)
Let {&,(w)} be a sequence of independent real random variables defined on a probability space
(Q, F,P) such that
E, =0, n=1,2,---, (1.4)
e1 = SUp{E(J&a+7) 10 = 1,2, } < +o0, (1.5)

where o > 0, and E(£) denotes the mathematical expectation of €.
Under the above assumption, we define

An(w) = Ay + 6 (W), Aw={M(W)}pl; and E(A,) = {ekn(w)t}zo:r (1.6)

The condition (1.1) guarantees that £(A,,) C Cy,. Then we ask whether £(A,,) is complete or
minimal in C,. Our results are as follows.

Theorem 1.1 Let a(t) be a nonnegative conver function satisfying (1.1). Let E(A,) be
defined by (1.6), where A = {\,} is a complex sequence satisfying (1.2)—(1.3) and {&,(w)} is a
sequence of independent real random variables satisfying (1.4)—(1.5). Define \(r) as follows:

1
A(r) = g Re)\—, if m>ReA1; A(r) =0, otherwise. (1.7)

ReA, <r n

Then
(i) If .
< a(At) —a)
———Zdt = v R 1.

/O TP +00, VaceR, (1.8)

then E(A,) is complete with probability 1.
(ii) If there is some b € R such that

+oo «a _
[Ty, 0o

then E(A,) is incomplete with probability 1.

(iii) If (1.8) holds, then E(Ay) is not minimal with probability 1. If (1.9) holds, then E(A,)
s minimal with probability 1.

Remark 1.2 The theorem when {&,(w)} = {0} includes Malliavin’s result in [6]. So the
conclusions (i) and (ii) can be rewritten into:

If {eMtY is complete/incomplete in Cy, then so is {e ()} with probability 1.

Theorem 1.1 may be viewed as a probabilistic generalization of [6].

2 Preliminary Results
We need some auxiliary facts to prove our theorem.

Lemma 2.1 (See [6]) Let 3(t) be a nonnegative convex function on R satisfying (1.1), and
assume that

0*(t) =sup{zt — B(z):x € R}, teR (2.1)
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is the Young transform (see [8]) of the function B(x). Suppose that A(r) is an increasing function
on [0,00) satisfying

AMR) = A(r) < A(logR —logr+1), R>r>1. (2.2)
Then there exists an analytic function f(z) Z 0 in Cy satisfying
F(2)] < Aexp{Az + B(z) — 2A(2)}, 2 =a+iy€Cy, (2.3)

if and only if there exists a € R such that

+oo *
[T, o)

We note that in the whole paper A denotes the constant and A,, denotes the positive number
only depending on w, whose values may be different in different cases.

Lemma 2.2 Assume that the hypothesis of Theorem 1.1 holds. Then there is Q' C Q such
that P(QY) =1, and for every w € ', the function

1;[ (1 T Zi(:j;) P (An?w) ’ %(w)) (25)

is analytic in the closed right half plane Cy = {z = x + iy : x > 0}, and satisfies the following
inequalities:

|G(2)| < exp{zA(r) + Avz}, z€Cy, (2.6)
|G(2)] > exp{zA(r) — Auz}, 2z € X(AL),
where r = |z] , B(A,) = {z € C1 : |z — Ap(w)] > %,n =1,2,---} and \(r) is defined by
(1.7).

We recall some theorems from probability theory that we need before we proceed to the
proof of Lemma 2.2. We refer to [11] for complete proofs and comments.

Theorem A (Chebyshev Inequality) Let & be a real-valued random variable and f(x) be
a non-decreasing positive continuous function. Then, for each a > 0,

E(f(€])
P{|¢| > a} < ——=4~.
(I > ap < S0
Theorem B (Borel-Cantelli Lemma) Let Fy, Es, -+, E,,--+ be a sequence of events from
oo oo
a probability space and E = (| U En.
k=1n=k

(1) If JFZO:O P(E,) < oo, then P(E) = 0;
n=1

+oo
(2) If the events E,, are independent and Y. P(E,) = oo, then P(E) = 1.

n=1
Theorem C (Two-Series Theorem) A sufficient condition for the convergence of the series

Z &n of independent random wvariables with probability 1 is that both series Z D(&,) and

n=1
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+oo
> E(&,) converge, where B(&,) and D(&,) denote the mathematical expectation and variance
n=1
of &, respectively.
Now we begin to prove Lemma 2.2.

Proof of Lemma 2.2 For a fixed positive number 7, consider the truncated random

variables
gn, if |'£n| < 7—|)\n|7

T = (28)
0, otherwise.
Let A% (w) = Ay + i€ (w). By the Chebyshev inequality,
. _ E(l&a"t7) _ ar”0*9)
P{gn 7& gn} - P“fﬂ‘ > Tp‘“‘} § 71+U|)\n|1+g S I)\n|1+g . (29)
The separation condition (1.2) yields > |\,|~(1*%) < +00. Hence
n=1
+oo
D P # &n} < +oc. (2.10)
n=1
By the Borel-Cantelli Lemma we have
+o00 +oo
Pl U6 2awn}-o (2.11)
k=1n=1
Set
+oo +oo
o =0\ ) Ulw: &) # &)}
k=1n=1

Then P(Q1) = 1 and for each w € 4,

#H{n A (w) # An(w)} = #{n: &, (w) # &n(w)} < +00, (2.12)

where #E denotes the number of elements in the set E. The condition (1.3) yields that

Im A 1 1
“| < tan ©(A < :
Re), | = an O(A), Re|[An] = |An] cosO(A)
Then
. ImA, + & ImA, ) | &
= — <
|arg Ay (w)] ‘ arctan Ron, | = arctan (‘ Rox, Re, )
sin®(A) + 7 7T

< [ S A — = A —
< arctan( cos O(A) ) 1 < 5

where A; is a positive constant independent of n. Now by (2.12), for every w € €, there exists
a positive number ©(A,,) such that

[arg A (w)] < max{{|arg An (w)[ : An(w) # Ap (@)} U {Ai}} = O(Ay) <

TR

Besides,
i%f{Re(An+1(w) —M(w))} = i%f{Re()\nH — )} =d0(A).



On Completeness and Minimality of Random Ezxponentials 307

Then using a method similar to [3], we have the following estimates:
For every w € Qq, the function G, (z) defined by (2.5) is analytic in the closed right half
plane C, = {2z = x + iy : z > 0} and satisfies:

|Gu(2)| < exp{aAu(lz]
|Gu(2)| = exp{aAy(l2]

)+ Ayz}, ze€Cy,
)— Aya}, z€X(A),

where A, is a positive number only depending on w and

1
Aw(r) = Z Re()\n(w))’ if r>ReAi; A(r) =0, otherwise.
ReA, <r

To complete the proof, we only need to prove that |A,(r) — A(r)| < A, holds for almost every
w € Q. For every w € {1, since (2.12) holds, we have

[Aw(r) = A(r)]

Re A Re A
< 2 Re Re w = 2 .n _ n + Aw
‘Rez\z< >\ +Z§* RAZ< ‘R An <7 |:|)\n +Z£*|2 |>‘n‘2}
Re \u[(£)% + 2Im A, ] |6: 17 + 20&5 [Tm Ay |
‘RWST AnlPl(Re An)? + (€5 + Tm An) ‘ e, PnPRes
2 o TIAnlln] + 2P0nl16] T+2 4
< n n Aw < w.
= cos(6(1) ; INE A S ol Z P "

By (1.4) and Hélder inequality,

E|&| <E(|&n]) < [E(|§n|1+a)} 5 < 1+U < 400,

Combining it with (1.2), we have

“+oo —+oo
E&l _ & 1
< clte — <
2D =4 L R, <

n

“+o0 “+o0
Ejé,[? TE[S e
< + < .
; IME TC; Z|Re)\ B +oo

Then according to Two-series Theorem, there exists 5 C Q such that P(Q2) = 1 and A, =
Z |)\ ‘2 < 400 for every w € Q. Let ' = Q[ Q2. Then it follows that P(2') = 1 and

|)\ ( ) — A(r)] < A, for w € Q. Taking account of the above estimates, we have now proved
the lemma.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Below we will prove the main theorem in order.

(i) Suppose its contrary holds, i.e., there exists £ C Q such that P(E) > 0 and for every
w € E, £(A,) is incomplete in C,. By Hahn-Banach Theorem, it is equivalent to say there
exists a nonzero bounded linear functional T,, on C, vanishing on £(A,). So by the Riesz
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representation Theorem, there exists a complex measure p,, satisfying

“+oo ;
HuwH::t/“ Oy, | = ||

+oo
T,(h) = / h(t)dp,, VheCCy,
where w € E. Because P(E(Y) = P(E) > 0, we can take one w € E[)Q, where Q' is as
mentioned in Lemma 2.2. Then the function

1 too
fw(z) = m/_oo e’ Api

is analytic in the open right half plane C, and continuous in the closed right half plane C,
satisfying
|f=(2)] < llpe |l exp{a” (z) — zA(|2]) + Amz}.

Lemma 2.1 shows that there exists a constant b such that (1.9) holds, which contradicts (1.8).
Hence the assertion of (i) follows from the contradiction.

(ii) Suppose that (1.9) holds for some real number b. Let o(t) be an even function such
that ¢(t) = a(\(t) — b) for t > 0 and let u(z) be the Poisson integral of ¢(¢), i.e.,

N A ()
u(x+zy)—;/_oo mdt.

Then u(z 4 iy) is harmonic in the half plane C; and there exists an analytic function T'(z) on
C, satisfying

Az > ReT(z) =u(z) > (x —1)(A(r) = b) —a*(x —1), z>1. (3.1)

Therefore for every w € €/, taking Lemma 2.2 and the above inequality into account and
properly choosing the number N, we can establish that the function

8u(2) = 2 exp{=T(:) ~ Nofe) — V) (3.2
satisfies the following inequality
09| < 1o expla’ (e = 1)~z (33)
Set . o |
he(t) = or [ N 9o (1 4 iy)e~TFWiay, (3.4)

Then hy,(t) is continuous on R. Moreover, by (3.3) and Cauchy contour theorem,

1 [t .
mmz?ﬁ/ gl +iy)e” Wiy, 2 >0 (3.5)

is independent of = and hence the Young transform formula o = (a*)* yields

[ (£)e™ ] < exp{—¢]}. (3.6)
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Since hy, (t)e** can be viewed as the Fourier transform of g,,(x+1iy), the inverse transform shows

9w (2) \/ﬂ /+OO ye*tdt, Rez > 0. (3.7)
Thus the functional T, defined by
400
()= [ b (38)
satisfies
To(e ") = V27, (A (w)) = 0, (3.9)

and according to (3.6),
+oo
|70l :/ ho (t)e*®dt < +o0.

So T, is a nonzero bounded linear functional on C, and hence by Hahn-Banach Theorem,
E(A,) is incomplete in C,, for every w € Q'. This completes the proof.

(iii) If (1.8) holds, then by (i) £(A,)\{e**“)*} (Vk € N) is complete with probability 1. So
E(A,) is not minimal with probability 1.

If (1.9) holds, then we can construct g, (z) as in (ii) for every w € ' that is defined in
Lemma 2.2.

Letting A, . be the coeflicient of the singular part of the Laurent series of 1/¢,(z) in
U (W) = {z: |z = M\ (@)] < 22}, we have

1 A

9.(2)  z— A;(w) + gnw(2), (3.10)

where ¢y, ,(2) is analytic in U(A,(w)). Then
1 1

Anw = 5= dz 3.11
2 |z () =222 G(2) 34y
But by (2.7) and (3.2), we get
[Ap o < T | E exp{—Re A, A(Re ) + ARe A, + Al }- (3.12)
Consider the analytic functions on C,,
An wgw(z)
H == . 1
nw(2) (@)’ neN (3.13)
Combining (3.3) with (3.12), we obtain that for n € N,
|Hpw(2)] < FupE exp{a®(z — 1) — 2 — Re \pA(JAn(w)]) + AuRe A + AL} (3.14)
Let
L[t ;
fin o (B) = o~ H, (14 iy)e” I Wtay  neN. (3.15)
0

Then h,, ,,(t) is continuous on R. By Cauchy contour theorem, the above estimates (3.14) yield

that .
1 0 ,

hnw(t) = Py H,o(z+iy)e”@HWtdy  neN, Vo >0, (3.16)

™

— 0o
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| () D] < exp{—Re \yA(Re \,) + A Re )\, + Ay, — [t]}. (3.17)
Then by Fourier transform theory,
+oo
Hyo(2) = / I ()e*tdt, Rez > 0. (3.18)
It is easy to see that
H, (\j(w)) =6,; (the Kronecker notion) (3.19)
and hence oo
/ P o (t)eX @t = 6,5 (3.20)
Define functionals T, ., on Cy by
+oo
Tn,w(f) = / f(t)hn,w(t)dt7 VfeC,. (3'21)
—o0

Then by (3.17) we see that T;, ., € (Cy)* (n € N) and
ITh.wll < 2exp{—ReAA(ReA,) + A,Re A, + Ay} (3.22)

According to [12, Problem 2, p.24 | or [5, Lecture 18], the following proposition holds:

A system {x} of elements of the Banach space X is minimal if and only if there is a
biorthogonal system of functionals {fi,} C X* , which means fi(zm) = dkm.

By (3.20) we see that the system {7, .} is biorthogonal to £(A,) and hence £(A,) is
minimal. The above argument works for each w € €. So £(A,,) is minimal with probability 1.
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