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Abstract This paper proves the existence of an order p element in the stable homotopy
group of sphere spectrum of degree p"q+p™q+ q—4 and a nontrivial element in the stable
homotopy group of Moore spectum of degree p"q + p™q + g — 3 which are represented by
ho(hmbn—1 — hnbm—1) and i.(hohnhm) in the Fa-terms of the Adams spectral sequence
respectively, where p > 7 is a prime, n > m+2>4, ¢=2(p—1).
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1 Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime
p. To determine the stable homotopy groups of spheres 7, S is one of the central problem in
homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS)
Eyt = Ext%'(Z,,Z,) = 7S, where the E‘-term is the cohomology of A. If a family
of generators x; in Eg’t converges nontrivially in the ASS, then we get a family of nontrivial
homotopy elements f; in 7,5 and we call f; is represented by z; € Eg’t and has filtration s in
the ASS. So far, not so many families of homotopy elements in 7,S have been detected. For
example, a family (,—1 € Tpng4q—3S for n > 2 which has filtration 3 and is represented by
hobp—1 € Exti’pnqﬂ(Zp, Z,) has been detected in [2], where ¢ = 2(p — 1). ‘

From [5], Ext;*(Z,, Z,) has Z,-base consisting of ao € Ext(Z,, Z,), hi € Exti"plq (Zy, Zp)
for all i > 0 and Ext%*(Z,, Z,) has Z,-base consisting of ay, a3, agh; (i > 0), g (i > 0), ki (i >
0), b; (i >0) and h;h; (j >i+2,i > 0) whose internal degrees are 2¢+ 1, 2, p'q+1, p"tlqg+
2piq, 2p*tiq + piq, p'tlq and piq + p?q respectively.

Let M be the Moore spectrum given by the cofibration

(SN SINY Y RE 3) (1.1)
and K be the cofibre of the Adams map « : X9M — M given by the cofibration
SIM - M i AL sy (1.2)

The above spectrum K actually is the Toda-Smith spectrum V(1).
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From [8, Theorem 1.2.14, p.11], there is a nontrivial differential in the ASS
da(hn) = agbn—1 € E3'" = Ext%'""(Z,,2,), n>1. (1.3)

The elements h,, € Ext}dpnq(Zp, Zy) and b, € Exti’pnq(Zp, Z,) are called a pair of ap-related
elements. Theorem IV in [2] states the following result on the ag-related elements h,, and b,,_1 :
hob,_1 € Ext®? nq+q(Zp, Z,) is a permanent cycle in the ASS and it converges to a homotopy
clement C,_1 € Tpngrq_sS of order p; moreover, i, (hohy) € Ext3? 9TI(H*M, Z,) also is a
permanent cycle in the ASS which converges to a nontrivial element in mpng4q—2M.

As a consequence of (1.3) we have

da(hnhm) = ao(hmbn—1 — hnbm_1) € By = Ext%"% (7, Z,) (1.4)

with tg = p"q+ p™q, n > m+2 > 3. That is, h,hy, and (hybn—1 — hyby—1) are another pair
of ag-related elements. The main purpose of this paper is to prove the following result on these
ag-related elements which is an analogue of Theorem IV in [2].

Theorem A Letp>7, n>m+22>4. Then

ho(Rmbn—1 — hbm_1) € Exty? P 097 7 )

is a permanent cycle in the ASS which converges to an element in Tpngipmqiq—aS of order p.
Moreover
is(hohnhy) € ExtSP 02"t (e 7))

also is a permanent cycle which converges to a nontrivial element in Tpnqqpmgrq—3M.
Remark The ho(hmbn—1 — hpbm—1)-map obtained in Theorem A is represented by
/Bprnfl/pm,fl7lﬂpn,71/pn—1 - ﬁpn—l/pn—lilﬂpynfl/pmrfl + other terms € EXt%%i%J;énnLq+q(BP*, BPy)
and 4, (hohphy,)-map in mpn gy pmqrq—3M is represented by
hohn i + other terms € Ext%? 412" 9(BP,, BP.M)
in the Adams-Novikov spectral sequence, where
Byn-t jpn-1_1 € Ext3? TYBP,, BP,), Byn-1jpn-1 € Extyh 4o (BP., BP,)
such that the images under the Thom map are
hohn € Ext3? Y Z,, Z,), b1 € Ext3"Y(Z,, Z,)

respectively and h,, € Extggqu p(BP,, BP,M) is the generator represented by [t’fn] in the cobar
complex.

Theorem A will be proved by some arguments processing in the Adams resolution of certain
spectra related to S and K. The only geometric input used in the proof is the nontrivial
differential (1.4). After giving some preliminaries on low dimensional Ext groups in Section 2,
the proof of Theorem A will be given in Section 3.
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2 Some Preliminaries on Low Dimensional Ext Groups

In this section, we consider some result on low dimensional Ext groups and some spectra
closely related to S which will be used in the proof of Theorem A.

Proposition 2.1 Letp>7, n>m+22>4, tg=p"q+p™q. Then

(1) Exti’tquJr“(Zp, Zy) =0 for r=2,3,4, u=-1,0 or r=3,4, u=1,
Ext'(Zy, Zp) = Zp{bn_1bm—1}, Ext5' (2, 2,) =2 Z,{aohnbm—_1, a0hmbn_1},
Ext%' " Z,, Z,) 2 Zp{hohnbm—1, hohmbn_1}.

(2) Ext3 TNz, Z2) =0 for r=1,3,4, Ext}"V(Z,,Z,)=0 for r=2,3,
Ext%" 77, 7)) = Z,{Gahnbm_1, G2hmbn_1},
Ext (2, Z,) 2 Zp{adhnbm_1,a3hmbn 1}, Ext} (2, Z,) = Z,{aoby—1bm-1},
a2by_1bm_1 # 0 € Ext$"73(Z,, Z,).

Proof From [8, Theorem 3.2.5, p.82] , there is a May spectral sequence (MSS) {E"* d,. }
which converges to Ext%'(Z,, Z,) with E;-term

Ey™* =E(h;;|i>0,j>0)®P(b;;|i>0,7>0)®P(a; |i>0),

where FE is the exterior algebra and P the polynomial algebra and

1,2(p*—1)p?,2i—1 2,2(p'—1)p? Tt p(2i—1 1,2p'—1,2i+1
hi; € Ey (p"'=1)p’, b;; € B> (P =1)p’ ™" ,p( ), a; € B p'—1,2i+1

)

Observe the second degree of the following generators (mod p™q) for 0 < i <mn,n >m+2 > 4,

|h5,i| = {

( )

( )

by = {(p”“ ++p)g )
( )

)

)

P g (
(
(
Pl 4 pi)g (modp™q), 1<i<s+i—1=n,
(
(

P g

modp™q), 0<i<s+i—1<n,
modp"q), 0<i<s+i—1=n,

modp™q), 1<i<s+i—1<n,

|ai+1|:(pi+~-~+1)q+1 modp”q), 1<1i<mn,

laigrl = (@™ 4+ 1)g+ 1 modp™q), i=n.

At degree k =tqg+rq+uwith0<r <4, -1 <u<2,k=p"q+rqg+u (modp™q). Then, for
3 <w <5, BT has no generator which has factors consisting of the above elements,
because such a generator will have second degree (c,p" !+ +c1p+co)g+d (mod p™q) with
somec; #0 (1 <i<m-—-—lorm<i<mn), where 0 < ¢ <p, I =0,---,n, 0<d<5.
Moreover, the second degree |b; ;—1| = p'q (modp™q) for 1 < i < n, |hy ;| = p'q (mod p"q) for
0 < i < n. Then excluding the above factors and factors with second degree > tq + pq, we
know that the only possibly factor of the generator in E}"**" 4" are a1, ag, h1.0, h1n, P1m,
b1.n—1,01,m-1-
So, by degree reasons we have

EPtatratbe — o for p =34, EPTTTT* —0 for r=2,3,4, u=—1,0,

4,tq,x 4,tq+1,% ~
El - p{bl,n—lbl,m—l}a E1 = Zp{aohl,nbl,m—l,aohl,mbl,n—1},
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Eil’tq_‘—l* = p{aghl,nhl,m}v
Eptatiatlx pih1,0a1P1 nh1m}, Bt = Zp{h1,0h1,001,m—1,h1,0R1 mb1n-1},
EPMTY = Z Laohi whim}, BV = Zp{hinbim—t1, himbin-1},
EPt e = Z {hiohtwhim}, BTN =0
Note that the differential in the MSS is derivative, that is,
d,(zy) = d(2)y + (~1)°ad.(y) forz € By, ye B '
Moreover, ag, hi,pn,b1,n—1, 1,001 are permanent cycles in the MSS which converge to
ag, hn, bp—1, a2 € Exty"(Z,, Z,)

respectively. Then the differential d, B3/ +s4+tu* = forallr > lands =u=0o0rs=1,u =0

ors=0,u=1ors=2u=1. Hence,
4% %
bl,nflbl,mfh aOhl,nbl,mfla aOhl,mbl,nfl» hl,Ohl,nbl,mfla hl,Ohl,mbl,nfl S Er

do not bound in the MSS and so b, 10,1, aohnbm—_1, a0hmbn_1, hohnbm_1, hohmb,_1 are all
nonzero in Extj’*(Zp, Zp). This completes the proof of (1).
Similarly, by degree reasons we have
E?’tqﬂﬂ’* = Zp{aoht 0hi,nb1,m—1, a0h1,0h1,mb1,n—1, 8101 n—1b1,m—1},
EXMtTatly — o for p =34, EYNTT* =0 for r =23,

5,tq+2q+1,%
E = Zp{h1,0a1h1 nbim—1,h10a1h1 mbin—1},

t 1 tq+2
Eir” g+1,%* Ef’ q+2,%

= p{aobl,n—lbl,m—l}a = p{a(Q)hl,mbl,n—h a(z)hl,nbl,n—l}7

4,tq+2q+1,% A
El’tq+ atl* o Zp{h1,0a1h1,nh17m}-
The generators in EY"P4T0* all die in the MSS since

aohi,0h1nb1,m—1 = —di(arhipnbim—1), aohio0himbin-1 = —di(a1h1,mbin-1),

di(a1byp_1b1m—1) = —aoh1 ob1p_1b1.m_1 # 0 € EPITITL*
then Exti{thrqH(Zp, Z,) = 0. Moreover, by the same reason as shown in the proof of (1),
d.EXtater =0, d.prar2atlr — g forall r>1, u=1,2.
So the generators in E2™** converges nontrivially in the MSS to
ashpbm—1, ashmbn_1, agbp—1bm—1, aghmbn_l, aghnbm_l
respectively. For the last result, note that d, E2'72* = ( for all 7 > 1 and so
aZby—1bm—1 # 0 € ExtG"%*(Z,, Z,).

This completes the proof of (2).
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Now we consider some spectra related to S, M or K. Let L be the cofibre of a; = jau :
¥4-18 — § given by the cofibration

so-lg @, g 37 vag (2.1)
Let Y be the cofibre of i'i : S — K given by the cofibration
SYL K Ty %S (2.2)

Y actually is the Toda spectrum V(l%) and it also is the cofibre of jo : ¥9M — XS5 given by
the cofibration

pICH VAN I SRILING SCING YRS U (2.3)

This can be seen by the following homotopy commutative (up to sign) diagram of 3 x 3 Lemma
in the stable homotopy category (cf. [9, pp.292-293])

v

s Log L yeriy
N SN S
M Y
Ja N Swo e
iy 2% ows B %S
Note that a; -p = p-a; =0, and then p = 7”7 and p = & with 7 € [X9S, L] and € € [L, S].
Since 7,S = 0, we have m,L = Z {n}. Moreover, i"¢i" = i"-p = (p A 1r)i", and then
pAlp ="+ Anj” for some A € Z(y. It follows that p-j” = j"(pA1p) = \j"n-j" = Ap- j".
Then A =1 and we have

pAlp =i"¢+mj". (2.4)
By the following commutative diagram of 3 x 3 Lemma in the stable homotopy category

IICHNAN Y - N 31

N g0 N e N
L M e+l

S Nk Ja NG ST
s = owly B wetlg

we have a cofibration
$ig T, [ L ow-ly I setig (2.5)

with @h =i - 5", hi" = .
Since 2aija = ija? +a?ij (cf. [7, p.430]), we have aja; = 0 and so there is ¢ € 224715, L]
and (o) € [X971L, S] such that
J"¢=0o1 = (ar)r-7". (2.6)

Let W be the cofibre of ¢ : ¥2¢=1S — L. Then W also is the cofibre of (o), : 8971L — S.
This can be seen by the commutative diagram of 3 x 3 Lemma in stable homotopy category
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y2-lg 2, 349 = xS
Noe S5 N ()L
L T
S Nw o S u NG
s 2w M wug

That is, we have two cofibrations
n20-1g ¢, W,y Iy y2ag (2.7)
wa-ip @E g Wil v sy, (2.8)

Since ag - (1) € [¥2¢72L,S] = 0 by mq—25 = 0 for r = 2,3, we see that there is o€
[¥2¢-1L, L] such that j”¢ = (a1)r € [E¥971L,S] and ¢ - i" € maq_1L. Since m.q—1S has a
unique generator a; = joi, as = ja2i for r = 1,2 respectively and ;"¢ -p = a; -p = 0, we
have ¢ - p = i"ay up to a scalar. That is, i} /me,—15 also is generated by ¢ and so we know
that moq_1L = Z,-{¢} for some s > 1. Hence, ¢i" = \¢ for some \ € Zpy and Aoy = \j"¢ =
§"¢i" = (a1)1i" = o so that A = 1 (mod p). Moreover, (a1) ¢ € [232L, S] = 0 since 7,425
= 0 for » = 3,4. Then by (2.8), there is ¢y € [23¢~1L, W] such that u¢y = ¢. Concludingly
we have elements ¢ € [X2071L, L], ¢w € [£37 1L, W] such that

j"¢=(a1)r, ¢"=Xp (A=1(modp)), udw =¢, m2q-1L=Zy{¢}. (2.9)

Proposition 2.2 Let p > 7. Then up to a mod p nonzero scalar we have

(1) ¢-p=i"az=m-01 #0, (1) 7 =02, p-(a1)p = az-j" = (ar)pmj" #0, [B* 1L, L]
has a unique generator ¢ modulo some elements of filtration > 2.

(2) ho(pAlL)#0¢€[S2L,Y].

(3) ho(m A1) (pAlL) #0 € [2%L,Y], "¢ Alp)m = jadi € w3, 1S up to a mod p
nonzero scalar and hg:(m A1p)m # 0 € ma,Y, where ¢ € [S29" LAL, L] such that p(1;,Ai") = 6.

(4) ma,Y has a unique generator hé(m A 1p)m such that hg(m AlL)m-p = 0.

Proof (1) Since j"¢ -p=a1-p=0=j"71-0a1 and maq_1S = Z,{as}, we have ¢ - p =
i’ag = 7+ a1 up to a scalar. We claim that ¢ - p # 0, which can be shown as follows. Look at
the following exact sequence

Z,{jo?} = [82471M, 5] - [s2a-1py, ) O [me-in, 5] s

induced by (2.1). The right group has a unique generator ja satisfying (a1).jo = jaija =
ijacij # 0. Then the above (aj). is monic, imj” = 0 and so [E297'M, L] = Z,{i"ja?}.
Suppose in contrast that ¢ - p = 0. Then ¢ € *[X2¢" 1M L] so that ¢ = i”ja?i and so
a1 = 7"¢ = 7"i"as = 0, which is a contradiction. This shows that ¢ - p # 0 and so the above
scalar is nonzero (mod p).

The proof of the second result is similar. For the last result, let « be any element in
[¥2971L L]. Then j"z € [$971L,S] = Z,:{(c1)1} for some s > 2 (similar to the last of (2.9)).
Consequently, j”x = A\j”¢ for some A € Z,: and so x = A\¢ + iz’ with 2’ € [¥2171L, S]. Since

z'i" € moq_ 1S = p{jazi} and m3q_15 = Zp{ja3i}, 2’ is an element of filtration > 2. This
shows the result.
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(2) Suppose in contrast that h¢(p A1) = 0. Then by (2.5) we have ¢p(pAlr) = N7+ (o)L
with A € Z,y. Note that m A 1y = (3" A 1pr)a since j”m A1y = p A1y = 0. It follows that
N(mAlpy)i- (o) = N1 Ad)m(ar)p = 0. Then N (@ A 1a)ai(aq), = N (w Alp)i(en)r =
0 and so Nai(a1)r € (a1 A 1py)[E9L, M] and Naiag € (a1 A 1) (@) [29L, M] = 0 by the
following exact sequence

205, 0] Y o, ) O e, ) @
where the right group has a unique generator i satisfying (a1)*ai = aijai # 0 so that
(i")*[£9L, M] = 0. This implies that A’ = 0 and so ¢(p A 1) = 0, which contradicts the fact
§"d(pA1L) =p-(a1)r # 0 in (1). This shows the result on ho(p A 1) # 0.

(3) Note that ¢(1, Aaq) € [2342L, L] = 0 since m.q—25 = 0 for r = 2,3,4. Then there is
¢ €[22 'L A L, L] such that ¢(1z Ai”) = ¢. We first prove that ¢(m A 11)(p Alp) # 0. For
otherwise, if it is zero, then ¢m-p = q}(ﬂ'/\lL)(p/\lL)i” =0 and so ¢ € i*[X39~ 1M, L]. However,
(4")«[237 1M, L] c [¥%¢7*M,S] which has a unique generator ja? satisfying (a1).(jo?) =
jaija? # 0. Then (j").[8% 1M, L] = 0 and so (a;)r7 = j"¢m € i*(5").[2%" 1M, L] = 0,
which contradicts the result in (1).

Now suppose in contrast that hé(m A 15)(p A1z) = 0. Then, by (2.5), ¢(m A 1z)(p A 1L)
= 7w with w € [¥2¢71L, S] which satisfies wi” = Ay for some A\; € Z,. It follows that
(i" AMpy)aiw = (1, Ad)m-w = 0. Then aiw € (ay A 1p)«[S?9L, M] and so M\jaias = aiwi’” €
(a1 A 1ag)« (i) [E29L, M] = (aq)*(i"”)*[£29L.M] = 0. This shows that \; = 0 since aiay =
aija?i # 0. Consequently, w = Aojadi- " and ¢(m Alr)(p AlL) = Ao - jaPi - j” for some
X2 € Z,). It follows that ¢m-p = ¢(m AlL)(p A lr)i” = 0 and so ¢m € i*[£397 1M, L] so that
(a1)pm = j"¢m € i*(j")[227"1 M, L] = 0. This contradicts the result in (1) on (a;)z7 # 0.

For the second result, since 7-j = i’ jo by the diagram above (2.5), we have j”¢(rAlp)m-j =
J"o(r AL)i"ja = j"¢mja = (a1)Lmjo = agja = jolij (up to a mod p nonzero scalar).
Consequently we have j”é(m A 11)m = jai (up to nonzero scalar) since m3, 1S = Z,{az} so
that p*m3q_1.5 = 0.

For the last result, we first prove that ¢(m A 15)m # 0. For otherwise, if it is zero, then
0=¢(rAl)m-j = ¢(nr Ar)i"ja = ¢mja and so asja = (a1)rmjo == j”¢mja = 0
which is a contradiction since agja = jaZija # 0 € [£3972M, S]. Now suppose in contrast that
hg(mAlp)m = 0. Then, by (2.5) and 3,15 = Z,{a3} we have ¢(mAlp)m = Am-jadi = Xi”jati
for some A € Z, and so j”¢(m A 1)m = 0 which contradicts the second result.

(4) Since (@).7m4,Y C 7341 M which has a unique generator ija’i = ij”¢(m A lp)m =
@h(m A 1p)m (up to a nonzero scalar ) and my,_ 1S = Z,{jai} so that (@W).msy 1S = 0, we
see that m4,Y has a unique generator i_zd;(ﬂ A 1p)m. Moreover, by (2.4), }_Ld;(ﬂ ANlp)m-p =
h(p A1L)(m Alp)T = hi’€¢(m A)m = Wjati = 0. This shows the result.

Proposition 2.3 Letp>T7, n>m+22>4, tqg=p"q+p™q. Then
Ext%"Y(H*L, Z,) =0, Exty'“(H*L,H*L) = Z{(hnbm—1)", (hmbn-1)"}
which satisfies (1")* (hpbm—1)" = (i)« (hnbm—1), (") (Ambn-1)" = (@")s(hmbn_1).
Proof Consider the following exact sequence

(1)«

Ext%' (2, Z,) ~ Bxt} UL, Z,) 2 Bxty(2,, Z,) @
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induced by (2.1). The right group has two generators h,b,,—1, Ambn—1 by [1, Table 8.1] which
satisfies

(1) (Bnbm—1) = Bohnbm—1 # 0,  (a1)s(Bmbn_1) = hohmb,_1 # 0 € Ext}""9(Z,. Z,)

(cf. Proposition 2.1(1)). Then the above (a1). is monic and so im j = 0. Moreover, the left
group has a unique generator hohphy = (1)« (hnhm) by [1, Table 8.1], so we have that im ¢/
= 0 and Ext}"""(H*L, Z,) = 0. Look at the following exact sequence

G0N (GON (e1)”

0= Ext3"“"H*L, Z,) 2= Ext}"(H*L,H*L) “= Ext%"(H*L, Z,) "~

induced by (2.1). Since Ext%'""(Z,, Z,) = Zp{hnbm_1,hmbn_1} for r = 0 and is zero for
r = 1 1in [1, Table 8.1], we see that the right group has two generators (i"’).(hpnbm—1) and

*

(¢"") 4 (hmbp—1) whose images under (a;)* are zero. So the middle group has two generators as

desired.

Proposition 2.4 Letp>7, n>m+22>4, tqg=p"q+p™q. Then

(1) Ext3 (L, 2,) = Z,{6um(hubur). 6um(ba1) ).
(2) Bt} HY, HOL) & Z (R (TALL) < (habim—1)' B (TALL )« (Binbi—1)'}, where
¢ € XML AL, L] such that ¢(1;, Ai") = ¢ € [8297 1L, L] as in Proposition 2.2(3).

Proof (1) Consider the following exact sequence
Ext 03 (7, 7,) 10 Ext3 U (B, 7,) 2 Bxt et (g, 7,) @

induced by (2.1). The left group is zero and the right group has two generators aohy, b, —1,
&hyb,—1 by Proposition 2.1(2). Note that jaai = (aq)p -7 = j"¢ -7 € ma4—15, (cf. Propo-
sition 2.2(1)). Then Gohnbm—1 = Jeuuis(hnbpm_1) = 7 Gume(hnbm_1) and ao(hmbn_1) =
3" Gs7e(hmbn_1) and so the middle group has the two generators as desired.

(2) Look at the exact sequence

C0N GION (e1)”

0= Ext} Y (H L, Z,) 25 Ext Y (Hr L B D) S BExtyTY (HE L, Z,)

induced by (2.1). The left group is zero since Ext%" "7 (Z,, Z,) = 0 for r = 3,4 (cf. Propo-
sition 2.1(2)). By (1) and ¢ = qS(lL A1), the right group has two generators

G (hnbm—1) = (I") Gu(m A1L)w(hnbm 1), GuTra(himbn—1) = (") Gu (7 A1L)s(Pamb 1)’
whose image under (aq)* is zero. Then the middle group has two generators
G (T ALL) s (Bnb—1)'s Gu(m ALL) s (hanbr_1)'-
Moreover, by Ext%'"""9(Z,, Z,) = 0 for r = 2,3 in Proposition 2.1(2), we know that
Ext’'""*(Z,, H*L) = 0.

Then, by (2.5), Ext%'“" "2 (H*Y, H*L) = h.Ext}"“"*"" (H*L, H*L) has the two generators
as desired.

Proposition 2.5 Letp>7, n>m+22>4, tqg=p"q+p™q. Then
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(1) Exty P (HY, H L) =0, Exti " (H*Y, Z,) = 0.
(2) Ext" T (HY, H*L) =0 for r=0,1.

Proof (1) Consider the following exact sequence

Ext’y' % (L, 1) 88 Bt et (v, 1) Y Bt (7, BoL) 5

induced by (2.5). The left group is zero since Ext?; STz, 7,) = 0 for r = 2,3, 4 by Proposition
2.1(1). The right group also is zero since Ext4 tatra=l(z  7,) = 0 for 7 = 2,3 by Proposition
2.1(1). Then the middle group is zero as desired.

For the second result, look at the following exact sequence

Extj’t“‘lq“(H*L,Z y s ()« M Bt tq+4q+2(H Y, z,) U5 (J“)* Ext® tq+3q(Z Z,)

induced by (2.5). The left is zero since Exts"*" %" (7, Z,) = 0 for r = 3,4 by Proposition
2.1(1). The right group also is zero by Proposition 2.1(1). Then the middle group is zero as
desired.

(2) Consider the following exact sequence (r = 0,1)

Ext 0 (g L B L) P B (e, B L) U Bt (7, L)

induced by (2.5). The left group is zero since Ext%' ™= (7z 7y =0 for k = 2,3,4,7 = 0,1
by [1, Table 8.1] . The right group also is zero since Ext3 tatkatr— *(Zp, Zy) =0 fork=2,3,r =
0,1 by [1, Table 8.1] and so the middle group is zero as desired.

Proposition 2.6 Letp>7, n>m+22>4, tqg=p"q+ p™q. Then

i (1) ]?xti’tq%q(H*M/, H*L) = Z,{(¢w)s(hnhm)'}, where ¢y € [S397LL, W] satisfying

upw = ¢ € [L27LL L] as in (2.9), (hnhm) € Exti’tq(H*L,H*L) such that (i")* (hphy)' =
(i) (hnhum) € Exty' Y (H*L, Z,).

(2) Ext3"t(H*Y,H*L) =0, Ext3'™(H*M,H*L) = 0.

Proof (1) Consider the following exact sequence
Ext®! %9 (B L, L) % Bxt® % (5w, B L) U Extd0t (2, H'L) 45

induced by (2.7). The left group is zero since Ext%'"""(Z,,Z,) = 0 for r = 2,3,4 by [1,
Table 8.1]. Since (i”)*Ext%'""(Z,, H*L) C Ext%'""9(Z,, Z,) which has a unique generator
hohnhm = (1) (hnhm) = (i")*((@1)1)* (hnhm) and Ext%"%29(Z, Z,) = 0 by [1, Table 8.1],
we see that the right group has a unique generator

((@r))" (hnhm) = ((@1)L)s (hnfim)" = (7"0) s (Sw ) (A )’
with (hnho,) € Exty'(H*L, H* L) satisfying (i) (hnhm)' = (i")s(hnhm) € Ext3'Y(H*L, Z,).
Moreover, ¢ (1))« (hnhm) = 0 € Ext}'3I(H*L, H*L), so the middle group has a unique
generator (¢w )« (hnhm)" as desired.
(2) Look at the following exact sequences

Ext3 (g L, B L) 2 Bt} t(5y, Ho L) Y Bt} 2 (7, B L),

Ext}' 7Yz, H*L) = ExtX! MY (e M, HY L) 25 Ext3T (7, H L)
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induced by (2.5) and (1.1) respectively. The upper left group is zero since Ext%'"" " '(Z,, Z,)
= 0 for 7 = 2,3,4 and the upper right group also is zero since Ext%'"""17%(Z,, Z,) = 0 for
r = 2,3 (cf. [5]). Then the upper middle group is zero as desired. Similarly, the lower middle
group also is zero as desired.

Proposition 2.7 Letp>7, n>m+2 >4, tqg=p"q+p™q. Then
Ext%' " (H*M, Z,) = 0, Ext}"T Y H M AL, Z,) 2 Z,{(i AL)em(huhm)}.
Proof Consider the following exact sequence
Ext’'"(Z,, Z,) - Ext%(H M, 2,) 25 BExt%Y(2,, Z,) £
induced by (1.1). The right group has a unique generator agb,,—1b,,—1 which satisfies
Pul(@obn—1bm—1) = agbp_1bm—1(# 0) € Ext§""**(Z,, Z,,)
by Proposition 2.1(2). Then im j, = 0. The left group has two generators
aghmbnfl = P« (aohmbnfl)v a%)hnbmfl = Px (aohnbmfl)

so that imé, = 0. So the middle group is zero as desired.
For the second result, look at the following exact sequence

Ext} et (5L, 7,) VS Bt (BT M AL 2,) Y Bt (B L, 7,)

induced by (1.1). The right group is zero by Proposition 2.3(1). Since
(j”)*Extitq—"_qul(H*L, ZP) C EXt3A7tq+1(Zp’ ZZ)) = Zp{aohnhm = (j//)*ﬂ-*(hnh""n)}

and Exti’tﬁﬁl (Zp, Zp) = 0 by [1, Table 8.1], we see that the left group has a unique generator
7y (hnhy,) and so the result follows.

3 Proof of the Main Theorem A

The proof of Theorem A will be done by an argument processing in the Adams resolution of
certain spectra related to S which is equivalent to computing the differentials of the ASS. Let
L2, oyw—2p, B, w-lp g =S
l62 lBl igo
Z_QKGQ Z_lKGl KGy
be the minimal Adams resolution of S satisfying
(1) E LNy ¢ Gy = By 1 25 NE, are cofibrations for all s > 0 which induce short exact
cx b*
sequences 0 — H*E, 1 — H*KGy — H*E; — 0 in Z,-cohomology.
(2) KG; is a wedge sum of Eilenberg-Maclane spectra of type K Z,.
(3) mKG; are the Ef’t—terms , (bsCs—1)w : mKGy 1 — 1 KG, are the di_l’t-differentials
of the ASS and 1 K G = Ext%'(Z,, Z,) (cf. [3, p.180]).
Then, an Adams resolution of arbitrary spectrum V can be obtained by smashing V on the
above minimal Adams resolution. We first prove the following lemma.



Two New Families in the Stable Homotopy Groups 321

Lemma 3.1 Letp>7, m>n+2>4, t¢q=p"q+p™q, 0’ = huby_1— hybpm_1. Then

(1) do(hphm) = apo’ € Ext%"Y(Z,, 2,), where dy : Ext3'(Z,, Z,) — Exty' " (Z,, Z,)
1s the differential of the ASS.

(2) é3-hohnhm = (1g, A1)k up to a scalar, where k € Tig1 Eq such that € - hyphy, = a3 K
and by - k = ago’ € mg1 KGy = Exty' (2, Z,) by (1).

Proof (1) From [8, Theorem 1.2.14, p.11], da(hy) = agbn—1 € Exti"pnq"'l(Zp, Z,). Then,
do(hnhm) = do(hp)hm + (=) P 90, dy(hyn) = aobp—1hm — hnaobm—1 = ago’ as desired.

(2) The di-cycle (1ga, Ai"Yhohnhm € Tigsq(KG3 A L) represents an element in Ext?'4"9
(H*L, Z,) = 0 by Proposition 2.3(1), so it is a di-boundary and (éz A1r)(1xg, A" )hohnhm =
0 and &3 - hohphy = (1, A1) f” with " € mgp1 Eq. It follows that az - (1g, Acoq)f” = 0 and
az - f" = (1g, Aj")fY for some f§ € mqiq(E3 A L). The di-cycle (bs A1) f5 € migrqKGs A L
represents an element in Ext%"“ Y (H*L, Z,) = 0. Then (b A 11)f5 = (bséa A1)g” with g” €
Tig+q(KGaAL) and so fif = (éaA1L)g” +(asAly) fy for some fi € mgrqr1EaAL. It follows that
as-f" = as(1g, Nj") fi +e2(lxc, Nj")g" = as(1g, Nj") f + X ea-hphy = as(1g, AJ") f +Xas -k
for some A € Z, since (1xa, Aj")g" € mgKGa = Ext3"(Z,, Zp) = Zy{hnhm} (cf. [5]). Hence,
" =0g, N7")f{ + Ak + €5 - g4 for some g5 € mq11KGs and so

63 . h()hnhm = (1E4 A al)f" = >\(1E4 N Oll)li.

Since ho-p = hi" jai = 0 by Proposition 2.2(1) and (2.3), (2.5), we have h¢ = (1y Aj)ay anri
with ayan € [B297H M, Y A M]. Let XU be the cofibre of h¢ = (1y A j)ayani : £298 — Y
given by the cofibration

w205 M0y wa oy 2 w2e4g (3.1)

Moreover, ws(1y Aj)ay Ay = w-j with @ : ¥24S — U whose cofibre is X given by the cofibtation
N2 ©, L, x IY y2atig, Then, XX also is the cofibre of w = (1y Aj)ayanr : B29M — Y
given by the cofibration

w24 (DR g Bws gy D gy (3.2)

This can be seen by the following commutative diagram of 3 x 3 Lemma

sug My oy
Nt Sw Nwe S
Y20 XU
J% NG @ N
X JY w2e+lg P, w2e+lg
Since ju(h¢) = 0, then, by (3.1), ju = uzws with ug € [U,291S]. So, the spectrum U in
(3.1) also is the cofibre of wr : £S5 — W given by the cofibration

$I8 20 W LS U 1, patlg, (3.3)

This can be seen by the following commutative diagram of 3 x 3 Lemma
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vy 2% wetlg AT wpy
Nw2 Suz N7 S w
U YL
/! w3 Nu o N\h

u

w2 oyng My
Moreover, by usw = a1, the cofibre of @ws : W — X is X971 L given by the cofibration

"

Wiy 2 et I pyy (3.4)

where w’ € [LAL, W] such that w' (1, A¢"”) = w. This can be seen by the following commutative
diagram of 3 x 3 Lemma

Wy o x 9% g
Nws A N g0
U Rty
o Nug S i \w’(w/\lL)
Y245 2L yetlg Y0 v

Lemma 3.2 Let ¢y € [S3 1L, W] be the map in (2.9) and Proposition 2.6(1) which
satisfies ugpw = ¢ € [£2971L, L]. Then

(1) awzpw (p A1r) # 0 € [Z 1L, X].

(2) Exty" Y H* X, H*L) =0, Ext%""Y(H*X, H*L)= (tws).Ext3" I (H*W, H*L).

Proof (1) Suppose in contrast that dwséw (p A1r) = 0. Then by (3.4) and the result on
[¥2¢71L, L] in Proposition 2.2(1) we have

dw(pAlp) = ' (mAlL)¢ mod F3[X3~1L W] (3.5)

for some A\ € Z(,), where F3 [¥34=1L, W] denotes the subgroup of [£3¢~1L, W] generated by
elements of filtration > 3. Moreover, note that uw’(7w A 1) € [L, L] which has two generators
(p A 1p), mj” of filtration 1 (cf. (2.4)). Then uw'(m A1) = M(p A 1lp) + Aamj” for some
A1, A2 € Zpy. It follows by (2.8) that A\ip- (a1)r + A2(c1)rmj” = 0 and so we have Ay = Aoy,
where we use the equation (ay)mj” = —(Xo) ™ 'p-(a1)r with nonzero A\g € Z,) (cf. Proposition
2.2(1)). Hence, by composing u on (3.5) we have

A(pA1L) = udpw (pAlL) = duw (T A1)d = AMid(pAly) +MoMmi”é  (mod F3[8?7 1L, L))

and so by (2.5) we have

hé(p A1L) = Ahé(p AlL) (mod F5[S*L, YY),

This implies that AA\; = 1 (mod p) (cf. Remark 3.3 below). Consequently we have A\ Agmj” ¢
= 0 (mod F3[X2¢ 'L, L]) and by a similar reason as shown in Remark 3.3 below, this implies
A1 = 0 (mod p), which yields a contradiction.

(2) Consider the following exact sequence

ExtX' 3oy, ;L) M2 Bxt%etet (e x, B L) Y BxtX 9 (M, H L)



Two New Families in the Stable Homotopy Groups 323

induced by (3.2). Both sides of group are zero by Proposition 2.6(2) and so the middle group
is zero as desired. Look at the following exact sequence

Ext%' 3 (oW, L) " Bxt® et (e x, 1oLy "k Extd et (e L, HE L)
induced by (3.4). The right group is zero since Exti’tq”q*l(Zp, Z,) =0 for r =1,2,3 by [1,
Table 8.1]. Then the result follows.

Remark 3.3 We give an explanation for the reason why the scalar in the equation (1 —
M1)hé(pAlr) = 0 (mod F3[£27L, Y]) must be zero (mod p). For otherwise , if 1—A\; # 0 (mod
p), then (1 — AX\;)ho(p A 1) must be represented by some nonzero z € Ext%*9"*(H*Y, H*L)
in the ASS. However, it equals an element of filtration > 3. Then x must be hit by dif-
ferential and so = = dao(z’) € deBExt$* ! (H*Y, H*L) = 0 since Ext*"""(H*Y,H*L) =
Homif"‘l(H*Y7 H*L) = 0 by H'L # 0 only for r = 0,q. This is a contradiction so that
1 —2AX1 =0 (mod p).

Lemma 3.4 For the map k € myq+1E4 in Lemma 3.1(2) which satisfies aq-k = -yl and
by-k = ago’ € g1 K Gy = ExtjtqH(Zp, Zp), there exist f € mgy3Fs and g € myqr1(KGsAM)
such that

(A) (1g, Ni)k = (C3 A 1pr)g + (@aas A1) f,

(B) (lEc A (ly /\j)ay/\M)f . (Oll)L =0¢c [th+4qu2L, Eg N YL
where ayan € [R2PIM,Y A M| such that (1y A j)ayani = ho € TaqY.

Proof Note that the di-cycle (ba Alar) (1, Ai)k € g1 KGa A M represents an element
ix(ago’) = iups(0’) =0 € Extj’tq"'l(H*M, Z,) and so it is a di-boundary. That is (by A
Lar)(1kg, Ni)k = (baez Alpr)g for some g € my11 KG3 A M and so by Exti"tqH(H*M, Zy,) =0
(cf. Proposition 2.7) we have (1xg, Ni)k = (€3 Alpr)g + (Gaas A lpg) f with f € mygr3Ee A M.
This shows (A).

For the result (B), note from Proposition 2.2(1) that ¢ - p = i” ja?i up to a nonzero scalar.
Then h¢-p = hi”ja?i = 0 and so h¢ = (1y Aj)ay i with ay s € [S29F1M, Y A M]. Hence,
by composing 1g, A (1y A j)ayap on the equation (A) we have

(1E4 A\ B(b)lﬁ = (1E4 A\ (].y /\j)ay/\Mi)H = (@4@5 AN ]-Y)(IEG A (1y /\j)ay/\M)f7 (36)

where (1y A j)ayan induces zero homomorphism in Z,-cohomology so that (¢z A 1y )(1xg, A
(1y Aj)ayam)g = 0.

It follows by composing (a1)r, on (3.6) that (asas A 1y)(1g, A (Iy A j)ayam)f - (a1)p =
(1g, ARY(KA1L)¢ - (1) = 0 since ¢ - (o) € [B397 2L, L] = 0 by mpq_2S = 0 for r = 2,3, 4.
Hence we have

(a5 A 1y)(Lgs A (Ly Ajlayam)f - (a1)r = (€4 A ly)g1 = 0,

where the dy-cycle g; € [£4+34+1 [ K G, AY] represents an element in Ext %'t (H*Y, H*L)
= 0 (cf. Proposition 2.5(1)) so that it is a dy-boundary and so (¢4 A 1y )g; = 0. Briefly write
(1y Aj)ayan = w and let V be the cofibre of (1y A(ay) ) (wAlL) = w-(aq)g : L3 TMAL - Y
given by the cofibration

D VN A SRR L2 TR VLTS L) VNG (3.7)
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It follows that (&5/\1y)(1E6/\(ly/\(al)L)(w/\lL)(f/\lL) = ((_]J5/\1y)(1E6/\(ly/\j)ay/\jy[)f-(Otl)L
= 0. Then by (3.7) we have (asAlyar)(fALL) = (1g, Aug) f2 for some fo € [RU9F39T2L EsAV].
It follows that (bs A 1y )(1g, A ug)fz = 0 and so

(bs A1y)fa = (Lkgs Awa)go (3.8)

for some go € [XtH39+2L KG5 A Y]. Consequently, (bscs A 1v)(1xa, A ws)ge = 0 and so
(bes A1y )g2 € (1as A1y Alar)L(WA1L))[S*L, KGe AM ALl = 0. That is, g5 is a di-cycle
and it represents an element [go] € Exti’tﬁng(H *Y, H*L) which has two generators stated in
Proposition 2.4(2) so that

[92] = i (m A1L) (Nt [hunbp—1 ALz + Aa[hubm—1 A 17]) (3.9)

for some A1, Ay € Z,. By (3.8) we know that (wy).[ge] € Ey'?T?77(V) = Ext" %2 (H*V,
H*L) is a permanent cycle in the ASS. However, (1y A (a1)r)(w A 1) is a map of filtration
2, then the cofibration (3.7) induces a short exact sequence in Z,-cohomology which is split as
A-modules, that is, it induces a split exact sequence in E;-term of the ASS:

(wa) (ua)«

B2 (v) % Bpr(v) " B A L),
Consequently, it induces a split exact sequence in E,.-term of the ASS:

ES(y) @ poe vy M) gBe-sa(pr A L) (3.10)

T

for all » > 2. Hence, the fact that d,((w4)«[g2]) = 0 implies d,([g2]) = O for all r > 2.
That is, (3.8) implies that [go] is a permanent cycle in the ASS. By the vanishing of the
dy-differential we have (A1 4 A2)hads (7 A 17)x[aobn—1bm—1 A 11] = da[ga] = 0 and then we
have A\; + Ao = 0, where ﬁ*é*(ﬂ' A 1L)[agbn—1bm—1 A 1] # 0 € E><t174’tq+3q'~'3(H*Y7 H*L)
since ho(m A 11)(p A 11)(# 0) € [B3L,Y] by Proposition 2.2(3). That is, (3.9) becomes
[92] = Ahedu(m A1L).[0’ A 1L]. Now we consider the cases that ) is nonzero and zero
separately.

If A\; # 0, (3.8) implies that [go] and s0 hy ¢y (1 A 11).[07 A 1] € EMP3H2(y) —
Ext’" "3 2(H*Y, H*L) is a permanent cycle in the ASS. Moreover, by (as A 1y)(1g, A (1y A

Jayam)f - (aq1)r = 0 we have
(1E6 A (1Y /\j)aYAM)f . (al)L = (65 A\ ly)g3

with dy-cycle gg € [B434+2 L K G5 A Y] which represents an element [g3] € Ext%“ 32 (H*Y,
H*L) so that [g3] = hegu(m A1L)w(As[mbn_1 A 1L] + Malinbm_1 A 11]) for some Az, Ay € Z,,.
By the above equation and the fact that (1y A (aq)r)(w A 11) has filtration 2, we know that
the differential d2([g3]) = 0 and so by a similar argument as shown above we have Az + Ay = 0.
That is, [g3] = Ashe¢ (7 A1L).[0" A 1] and so we have

(1gs A(Iy Ala) L) (w A1) (f A1L) = (E5 Aly)gs =0

which shows the result.
If \; = 0, then go = (b5¢4 A 1y )gy for some g4 € [E¥T39T2L KG4 AY] and (3.8) becomes
(bs A 1y) fa = (bséq A 1y)(1ga, Awa)gs. Consequently we have fo = (¢4 A ly) (1, Awi)ga +
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(as A 1y)f3 for some f3 € [XU939T3L Eg A V] and so (a5 A Lyar)(f AlL) = (1p, Aug)fa =
(@5 A 1aiar)(1gg A ug)fz. It follows that (f A1lp) = (1g, A ua)fs + (€5 A Lararn)gs for some
gs € [StT393 L KGs A M A L) and so by (3.7) we have (1, A (1y A (c1) L) (WA 1L))(fFALL) =
(@ A 1ly)(kas A (Iy A (o)) (w A lp))gs = 0 since (a1)r induces zero homomorphism in
Z,-cohomology.

Proof of Theorem A We will continue the argument in Lemma 3.4. Note that the
spectrum V in (3.7) also is the cofibre of (13 Awi”)i : X — £24M AW given by the cofibration

x (AT Soq e A 8, M8, vy (3.11)

This can be seen by the following commutative diagram of 3 x 3 Lemma

S3-Ip AL — Y 3 owmx

NIl Ay Nwy S us N\
N2a ) Vv N2a+1pr

b N S Nous 1 agan)
X — Y2up AW MA sdapraL

It follows from Lemma 3.4(B) and (3.7) that fAly = (1g, Aug)f5 for some f5 € [LtaF3a+3 [
Es A V] and so by Lemma 3.4(A) we have

(agas N 1par)(Leg Aua) fs = (aaas A 1par)(f A1)
:(1E4/\’i/\lL)(H/\lL)—(53/\1M/\L)(g/\].L). (312)

Consequently, (a2a3a4a5N1prar)(1E, Aug) f5 = 0 and so (azasaaasAly) fs = (1g, Awy) f6 for
some fg € [Riat3a-1L EyAY]. Tt follows that (baAly)(1g,Awy) f6 = 0. Then (baAly)fe =0 and
by Ext® 39t (grey, H* L) = 0 for = 0,1 (cf. Proposition 2.5) we have (agazasasAly)fs =
(agazay A 1y)(1g, Awy)fr for some fr € [S1F39F2L Es A Y], Tt follows that

(@gaqaas A 1v)fs = (a3ag A 1v)(1g, Awy)fr+ (G2 Aly)gs (3.13)
with di-cycle gg € [X19T39L, KGy A V] which represents an element
g6] € ExtZ 3 (H*V, H*L).

Note that the dj-cycle (bs A 1y ) f7 € [S1T34F2L KG5 A Y] represents an element

[(bs A 1y) f7] € Ext% 9T (H*Y, H*L)
which has two generators stated in Proposition 2.4(2). Then

[(bs Ay) fr] = Nt (T A1) w[hanbr—1 A1L] + N Bty (m A1) w[nbm—1 A1L]
for some X', A" € Z,. By the vanishing of the differential
0= da[(bs ALy ) f7] = (N 4+ N)Vheu(m ALL)w[aobn—1bm—1 A1L]

we have X + A = 0 since hg(m A1r)(pAlL) # 0 € [B3L, Y] by Proposition 2.2(3). Hence we
have

[(bs A 1y) fr] = Nhagu(m AlL)LJo’ AlL) € Exty 2 (H*Y, H*L). (3.14)
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We claim that the scalar A’ in (3.14) is zero. This can be proved as follows.

The equation (3.13) means that the second order differential of the ASS da[gs] = 0 €
Eytat3atln vy = BExtb TN (Y, H* L) so that [g¢] € E2'*®Y(L, V) and the third order
differential

ds[ge] = (w4)«[(bs A 1y) f7] € B H3F(L, V), (3.15)
Note that
(WAL (A A(a) ) @A) T = (1y A j)ayami(ar) T = B¢(a1)L7T =0

since @), € [X2972L, L] = 0 by mq—2S = 0 for r = 2,3,4. Then, by (3.7), (i A 1L)7T = uyT
with 7 € [£%S,V] which has filtration 1. Moreover, us7 - p = (i Aly)m - p = 0. Then,
by Proposition 2.2(4), 7 -p = Awshd(m A 11)7 for some A € Zpy- The scalar A must be
zero (mod p) since the left-hand side has filtration 2 and the right-hand side has filtration 3 (cf.
Remark 3.3 and Ext%* ! (H*V, Z,) = 0 by Ext}* ™ (H*Y, Z,) = 0 = ExtG " (H*M AL, Z,)).
Consequently, by Proposition 2.2(4), 7-p = 0 and so 7 = 7i with 7 € [£*/M, V]. Since

(ua)«(m)"[go] € Ext3" " N H M A L, Z,) 2 Zp{(i A1) () u(hnhim) }
(cf. Proposition 2.7), we have
(ua)«m[g6] = Ao (i A 1L)ww(Pnhim) = Ao (1)« (T4) s (infim)

for some Ay € Z,, and so by (3.7) we have

7*196] = NoTuis(Bnhm) € Ext% 3 (1, 7))
since Ext%' 39T (H*Y, H*L) = 0 (cf. Proposition 2.5(1)). Recall from Lemma 3.1(1) that

dy(hnhm) = ago’ = p.(o') € Exty' " (Z,, Z,).
Then daiy(hnhm) = 0 and 50 ix(hnhm) € E3* (S, M). Moreover,

Ey'T2(8 M) = Ext} Y (H* M, Z,) = 0
by Proposition 2.7. Then the Es-term Eg’thrQ(S, M) = 0 so that the third order differential
d3is(hnhm) € E3"2(S, M) = 0.
Since 7*[g6] = Ao (F)wix (hnhim) € Ea' 19T (S V), we have
7*(96) = AoTu (ix (hnhm)) € B34 (5 V)
and so
dsm*[g6] = Aods(7)« (i (hhin)) = Ao(7)xda (i (hnhim)) = 0 € B3 HH5 (S, V),

It follows from (3.15) that (w4).7*[(bs A 1y)]i7] = ds7*[ge] = 0 € ES'T4H2(S V). Moreover,
by the split exact sequence (3.10) we have 7*[(bs Aly) f7] = 0 € ES'4%3(S5 y). Consequently,
in the Eo-term, 7*[(bs A 1y') f7] must be a do-boundary, that is

7(bs A 1y) f7] € do Byt 9M2(S V) = doBxty 2 (H*Y, Z,) = 0
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by Proposition 2.5(1) and so, by (3.14), N i, (7 Alp).m.(0") = 0. This implies that the scalar
M is zero (cf. Proposition 2.2(4)) which shows the above claim.
Hence, (3.13) becomes

(astats A 1y) f5 = (astaas ALy )(1g, Aws)fs+ (G2 A 1v)ge
with fg € [S1F3943 L Eg AY]. Tt follows by composing 1z, A us that
(azasas N 1y aw)(1gs Aus)fs = (azaaas A 1x)(1g; A dwz) fs

(cf. the diagram above (3.12)), this is because (¢2 A 1x)(1kag, A us)gs = 0 by the fact that
(1xa, Aus)gs € [E41397 1L KGo A X] represents an element in Ext%3" " (H*X, H*L) = 0
(cf. Lemma 3.2(2)). Consequently we have

(ZL4(7,5 A\ 1)()(1]36 A\ U5)f5 = (d4d5 A\ 1X)(1E6 A ’l]’wz)fg + (63 AN 1x)g7 (316)

with dy-cycle g7 € [X!+39+ [ K G5 A X| which represents an element in Exti’tﬁsq(H*X, H*L).
Now we prove (¢ A 1x)g7 = 0 as follows. By Lemma 3.2(2) and Proposition 2.6(1),

lg7] = As(@ws) . (Sw )« [Fenhim A 1L]
and the equation (3.16) means the second order differential ds[g7] = 0. Since
da(hnhm) = apo’ = p.(o') € Exty"""(Z,, Z,)
by Lemma 3.1(1), we have
A3 (@ws)« (dw )« (P A 1L)u[0" AL] = da[gr] = 0 € Ext% T (H* X, H*L).

By Lemma 3.2(1), this implies A3 = 0 and so g7 is a dy-boundary so that (¢z3 A 1x)gy = 0.
Consequently, (3.16) becomes

(asas Ny aw)(Lgs Aus) fs = (aaas A 1x) (1, A tws) fs
and so by (3.2) and the diagram above (3.12),
(@1as A 1ag) (L A (Lag A (1) L)ua) f5 = (@aas A lar)(1gg A dus) fs = 0.
Moreover, by composing (1g, A 1ps A (a1)r) on (3.12) we have

(1E4 /\i)K' (Oél)L = (1E4 ANy A (Oél)L)(lE4 A1 A 1L)(;‘£/\ 1L)
= (5,4&5 A 1M)(1E6 A (lM A (Oél)L)U4)f5 =0.

It follows that
k(1)L = (1g, Ap)fo (3.17)

with fo € [219H9L, Ey). Recall that bg - & = ago’ = p.(o’) € Ext"97(Z,, Z,). Then & - (a1)r,
lifts to a map f € [LT9T1L, F5] such that bs - f represents

pe((@1)p)slo’ A1L] # 0 € Exty 1" (7, H*L)
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(cf. Proposition 2.2(1)). Then, by (3.17),

Pelba - fo] = pu((a1)r)<[0" A1L]

and so [by - fo] € Ext}'""9(Z,, H* L) must be equal to ((c1)z)«[0” A 1] since the location group
has two generator ((a1)r)s[hmbn—1 A 1z] and ((a1)r)«[nbm—1 A 11] by Ext}'77(Z,, Z,) =
Zyp{hoPnbm—1, hohmbn_1} and Ext}'"9(Z,. Z,) = 0 in Proposition 2.1(1). Write &, 4 = foi”.
Then

k-ar1=(1g, Ap)én.a (3.18)
with by - £,4 = hoo' € Ext%"%(Z,, Z,) and so by Lemma 3.1(2) we have
(E2 A1) (1gas Ad)hohphm = (1g, ANi)k-a; =0.
This shows the second result of the theorem. Moreover, by (3.18) and Lemma 3.1(2),
(a1 a2a3(1p, Ap)éna =0,

this shows that &, = apa1a2a3 - {na € Tigrq—aS is a map of order p which is represented by
hoo! € Ext%"%(Z,. Z,) in the ASS.
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